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Abstract—Bayesian reasoning (BR) or Linear (Auto) Regression
(AR/LR) can predict different sources of data using priors or other
data, and can link social service demands in cohorts, while their
consideration in isolation (self-prediction) may lead to service misuse
ignoring the context. The paper advocates that BR with Binomial
(BD), or Normal (ND) models or raw data (.D) as probabilistic
updates can be compared to AR/LR to link services in Scotland
and reduce cost by sharing healthcare (HC) resources. Clustering,
cross-correlation, along with BR, LR, AR can better predict demand.
Insurance companies and policymakers can link such services, and
examples include those offered to the elderly, and low-income
people, smoking-related services linked to mental health services,
or epidemiological weight in children. 22 service packs are used that
are published by Public Health Services (PHS) Scotland and Scottish
Government (SG) from 1981 to 2019, broken into 110 year series
(factors), joined using LR, AR, BR. The Primary component analysis
found 11 significant factors, while C-Means (CM) clustering gave five
major clusters.

Keywords—Bayesian probability, cohorts, data frames, regression,
services, prediction.

I. INTRODUCTION

D IGITAL health and social care allow the linkage of public

services and healthcare systems, enabling the evaluation

of individual treatment and potential risks as in [1] and [2].

Saving on resources can be based on connecting services using

classification and prediction, linking them using BR networks

with posterior, prior, and likelihood represented by linked

services, or using known fitted distributions used as predictors

or targets. Healthcare costa are forecast in the UK to reach,

by 2028, a range of several billion pounds a year if they are

not better managed. As an indication of that, Bottery discusses

that the cost can reach as high as £12 billion by 2030/31 at

an average rate of 3.7% a year. The present paper attempts

to address this problem using public H&Sc data available on

PHS’ website at [3] and from the SG [4] posted by June

2019. The data used here were counts of patients (called the

”value” attribute in the data) and contained the parameters

for each service. PCA was applied to see the most important

ones after normalization, as discussed by Lippi [5]. Linkage

is similar to mining service patterns from the same category

using similarity metrics to those stored in databases, according

to Litchfield [6], and further on to prediction or being in the

same cohort. Zero padding replaced data imputation of missing

data, and Bertsimas [7] discusses works on imputation using

Markov models while [8] and [9] use statistical models to

approach the missing data. The paper is organized as follows:

Mr. Raptis is with the School of Design and Informatics, Abertay
University, Dundee, Scotland, Bell Street, Dundee, DD1 1HG, (e-mail:
sotnraptis@yahoo.com).

In the first section, the nature of the data is explained, and

the main analysis is given by introducing PCA, and the BR

methods (data-driven, ND prior, and BD prior). Indicative

comparisons and results are presented and accompanied by

comparative plots or tabular forms for numerical comparisons.

II. MATERIALS AND METHODS

The data analyzed had a hierarchy of three levels: (A)

services, (B) attributes of the services, and (C) levels of

the attributes, as seen in Fig. 1. In Fig. 1, the services

are represented by black boxes that are connected to black

circles that are the attributes with no further breakdown and

one level (“value”) that has no further connections, and to

red circles that represent attributes with more levels (more

unique values). The services share common attributes, and

attributes share common values that are represented as links

between the boxes and the circles and as links between the

red and black circles. Services are also called ’factors’ and

are assigned acronyms such as ‘S-A-Z‘ to denote a service’s

name (S), that is its ID, the attribute (A), and the ID of it as

(Z). For example, for service (S1), the attribute for age (A)

has levels (Z): ‘13‘, ‘15‘, ‘All‘ and each was tracked as an

individual factor (service) or setting indicating the number

of patients aged 13 or 15, or any age (‘All‘) tracked over

the 39 years. The services with the same (A) are in the

same H&Sc ’pack’. The year series of all levels per service

(summed over the attributes, and levels) can be visualized

for representative ones in Figs. 2 (a)-(f) using the (A)’s

defined in Table I. Table I illustrates the separate factors TS

per service, that cannot exactly be mapped to the services

in Fig. 1 due to the summation. The services shown in

Fig. 1 are (1) “Primary1ChildrenBMI-Epidemiological“,

(2) “SmokingPrevalenceInYoungPeopleSALSUS”,

(3) “SmokingPrevalenceAndDeprivationSALSUS”,

(4) “NumberGeneralPracticesRegisteredPatients“,

(5) “IntensiveHomeCare“, (6)

“SmokingBehaviorAndSelfRatedHhealthSALSUS“, (7)

“Primary1BMIDistribution - MainClientGroup“, (8)

“LowBirthweight”. In Fig. 2, the Y-axis shows the attendance,

and the X-axis shows the span of 39 years. The breakdown

of the service packs into attributes and levels is shown in

Fig. 1. The data were heterogeneous (of various formats,

dates, and other counts), with missing years, numerical ones

(ages), dichotomous (presence, absence of a demographic

class or age-band), categorical (classes or text descriptions).

For example, ages were kept as ranges, as ‘...ages 65+ ‘ or,
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as numbers. The gender was a numerical tag: ‘1‘ for ‘male‘

and ‘2‘ for ‘female‘. Other records were counts of patients or

percentages. The data contained up to six attributes (settings)

per service, and each attribute had possible values (‘levels‘).

The attribute (‘Value‘) indicates summed counts across all

attributes or no attributes. Some data had up to 20 levels, as

in the service ’S20’. This setting allowed levels and attributes

to be predicted and tracked as in [10], where the workload

in an emergency department is forecasted using an ARMA

model. The services can also be studied by associating pairs

of administrative and clinical data as co-occurrences or

contingency ’dashboards’ using the ’matrix‘ method from

NHSS as per Langton [11]. The works of Mishra [12],

Guersel [13], and Marshall [14] use simulation algorithms

to test the sensitivity of similar patient counts to clinical

events (’early diagnosis’, ’critical clinical outcomes’, etc.)

to compute the healthcare (HC) system’s sensitivity. Arrival

models can predict demand or discharge rates, as per Tovim

[15]. Then, the prediction error is the difference from the

actual rate. PCA analysis was used to determine important

services such as service pack (S20), with the 10 H&Sc factor

explaining 56.8% of the variance as in Table II. The second

factor explains 28.3%. The attributes and their levels are part

of Bayesian relationships, and some are presented in Table II.

The Bayesian analytics are compared across the entire time

span (39 years). POST.D shows the data-driven posterior for

the same target (predicted factor) and the same predictors,

with evidence denoted as LKL.D (data-driven under the LKL

column) and with the likelihood (LKL) as the joint probability

of the rest of the factors from the second factor and onwards.

Column AVEPOST is the average posterior probability for

the same target (across all levels of it) and years. The

columns POST.BD, PRIOR.BD, LKL.BD refer to the use of

the binomial models, and LKL.BD, LKL.ND, LKL.D refer

to the likelihood of using the three models. Some attributes,

like age and gender, are shared among more H&Sc groups.

Fig. 1 shows indicative (not all) breakdowns of H&Sc data

frames (the (S)s) into their attributes (the (A)s) and of their

attributes into their levels (items in (A) lists). Roughly, the

same attributes (per H&Sc pack) were found in the same

K-means cluster (not shown due to the limited space) after

computing the clusters. In Fig. 3, linear relationships can be

seen between selected services using the data-driven models

(i.e., not the ”.ND” or the ”.BD” models) as three pairs

of co-plots of two (as sub-plots) that contain the original

service’s year data for the service “S8-SIMDquintiles-1” and

2 (can be more) other service data that are best related

to it in the BR context and any (as a third) of the best

cross-correlated services that are more than one. In Fig. 3, the

plots show the regression between services (cohorts) demands

(1) “Primar1BMIDistribution-MainClientGroup-InCareHome-

AdultsWithPhysicalDisabilities” as a target (predicted

demand) with predictors (2) “MentalWellbeing

SSCQ-BirthWeight-LowWeightBirths”, (2) “Smoking

PrevalenceInCYoungPeopleSALSUS-SmokingBehaviour-

RegularSmoker” (3) “SmokinBehaviourAndSelfRatedHealth

(SALSUS)-Gender-Female” (4) “NumberGeneralPractices

RegisteredPatients-Gender-Male” (5) “SmokingPrevalenceIn

YoungPeople(SALSUS)-SelfAssessedGeneralHealth-VeryGood”.

The plots in Figs. 3 (a) and (b) show the separate linear

connections between services (1) and (2) and (1) and (3),

while Fig. 3 (c) shows pairs of four comparative plots

(sub-plots) for the pairs (1) predicted demand for service “1”

paired with the actual one (almost the same), (2) predicted

demand for service “1” paired with service “2”, (3) predicted

demand for service “1” paired with service “3”, (4) predicted

demand for service “1” paired with service “4”. These are

shown as pairs of 1 (original target service, which is the

POST variable) and three other service plots. Overall, plotted

are the pairs (1) (original (POST), one well-correlated (using

CC) service), (2) (original, service found as PRIOR), and

(3) (original, other service found as LKL). Again, the POST,

PRIOR, and LKL are the three quantities involved in the BR

setting. We can contrast regression methods (many predictors)

to BR models where we have two knowledge sources (as

predictors) to combine, that is, the likelihood (LKL), and the

prior (PRIOR) to get the target, that is, the posterior (POST).

This is not a limitation of the BR approach, though, since

the quantities (LKL) and (PRIOR) are not necessarily single

variables and can be statistical hypotheses concerning more

variables. This is a case that is covered in the present work.

The BR can also be used for prediction. As explained by

[16], Bayesian methods interpret data from a study in the light

of external evidence and judgment. The external evidence can

be taken as a predictor. In the Bayesian context, the predictors

can be the prior probability of the evidence P (hsctarget),
where P (x) stands for the unconditional probability of having

PX = x. Also, the likelihood L(x/y) that relates the

occurrence of data x to a likely model for it, y, that is a

knowledge of the model that can be used as an added predictor

for x.

III. BAYESIAN PREDICTION USING DATA-DRIVEN PRIORS

For a specific factor, hsci, we can define a Bayesian

predictor on the grounds of other factors from the same data,

hscj , i = j,� i, j,∈ [1, 110]. The Bayesian prediction using

two predictors as conditions can be formulated using the basic

formula as in (1):

P (hsci,t/hsc{j,k},t) =
= P (hsci,t)×

(
P (hsc{j,k},t/hsci,t)

P (hsc{j,k})
),

i, j,∈ [1, 110], i /∈ {j, k}, t ∈ [1981, 2019]
(1)

The above minimal generic model predicts that the demand

for H&Sc factor, i in year, t, will depend on two other factors,

j, and k, in the same year. This can be extended to more factors

so that the H&Sc factor, i, at year, t, can be predicted from a

combination of the demands of the rest of the factors that are

the predicting factors, j, k, l., , ,� {j, k, l, ...} ∈ [1, 110] \ {i}.

In this case, (1) generalizes to (2):
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P (hsci,t/hscj,...,t, j ∈ Si,t) =

P (hsci,t/hscj,t, j ∈ Si,t)
∑

m∈[1,110] P (hscm,t,m ∈ [1, 110])
)

t ∈ [1981, 2019]

Si,t{Set of predictors for i at year t} ⊂ [1, 110]

(2)

A. Bayesian Prediction Using Normal Priors

We may not be able to have reliable data for one of the

predictors in year, t. In the context of H&Sc data (that is,

likely zero-padded data), we can define suitable priors from a

ready prior (that is not data-driven from other HSc factors).

This prior can be a suitable normal distribution (ND), that

is adapted to the target model for each factor. If we need to

model any data stream using ND, then a good approach to

do it is to take a generic model and then take its long-term

mean and standard deviation, even if we model the target at

a year, t <= 39 or by 2019. In this version of the BR, we

are actually modeling the target independently of other factors

(data) and adapting an ND model for the specific year, t. If

we model the prior as an ND and try to predict a year series

of demands (that is, we do not seek one year’s demand but

model demands over more years for some services), then the

term above becomes as in (3):

ND�μ,Σ(�x) = P (�x) =
1√
2π

∗ exp
(�x−�μX )2

COV (X)

Σ(�x) = COV (X)

�x ∈ X = { �hsci,jj ∈ Si,t}, μX =
1

|Si,t| ∗
∑j=39

j=1 (�xj)

(3)

where X is the local set of the predicting factors for the

target factor, i, in the year, t. As we can see, although we

do not model the other data (year series of other factors),

we need to use the closest ND model we can have, that is,

borrow the factor set’s mean, μX , and set’s variance, Σ(�x) to

develop the generic ND model. The quantity COV (X) is the

covariance for the set, Si,t of factors year series by the year,

t. This covariance was computed from the covariance of the

equivalent ND for the same size of observations (size of Si,t)

and for a magnitude (statistical average) equal to the average of

the observations (that is, factors attendance over the examined

year span). The choice of a ready ND prior overcame problems

with computing the covariance of extensively zero-padded data

(zero columns and zero standard deviation). Thus, for some

specific year and almost any combination of factors, the set

Si,t, will be a subset of all the observations (evidence) we

have for that year and for all of the 110 factors. It will also

depend on the number of them, that is, the size of that set,

denoted as, |Si,t|, in (3). This number is the one to take as the

predicting set in the BR schema. To make the BR methods

comparable, Table III was developed, which has up to four

such observations (predictors) per year that can be taken into

account. For more, orders or lags, as discussed, the LR or

AR methods would not work well. Also, as we raise the data

dimensionality, the prior becomes very low, P ≈ 1E − 20.

B. Bayesian Prediction Using the Binomial Model (BD) as
a Prior

A second approach was investigated to benefit from the

extensive zero-padding, practically producing two data classes

(’events’). These are the years with missing data (class #1)

and the years with records (class #2). The smooth variation

(low fluctuation of the data), seen in most curves in Fig. 2,

justified this. This two-class problem was also modeled using

the binomial distribution as a prior (BD) for two kinds of

events as in (4):

P (eventB = ”missing value”) =

P (hsci,t = 0), i ∈ [1, 110], t ∈ [1, 39]

q =
{No. of zeros by year t}

t
p = P (eventA = ”existing record”) = P (hsci,t > 0)

p = 1− q

P (t, n) = C × pn ∗ qt−n = BD(t, n) is

probability of (n) non− zero records by year (t)

C =
t!

(t− n)!

(4)

The BD model, BD(t, n), is a function of the year of

reference, t, and of the number of events (’successes’), n.

The choice of the prior models from (3) and (4) depends

on zero-padding. Services with up to 3 years (as in Table

I) of nonempty records would be better represented as an

occurrence (’existing record’) or not (’missing record’). The

services with more than 3 years of non-missing records have

attendances (people who benefited) in numbers that vary

slowly (examples are Figs. 1 (b), (c), and (f)). Both are widely

used in the social sciences. As discussed, the ND and the BD

are very similar when the number of samples (in our case, the

number of years) is very large (that is not the truth, here)

or when the odds of having any attendance is P ≈ 1/2.

It can be seen from Fig. 1 that the patterns (a)–(d) may fit

this case, while the rest of the patterns are two-event cases

(missing/no missing). For most H&Scs, 67%, have more than

three non-empty years, and the “non-missing” event is 62%

(taken across all 110 factors). More than half of the HSc’s data

are not suitable for both ND and BD modeling (P > 1/2)

while for the rest of the data, there is no standard prior

(best one) unless they are modeled using other service data

(that is, not known distribution models) as in (2). Then, each

factor can be modeled as in (4) with individual p’s and q’s.

Each year sequence has its own BD model, and the quantities

p(i, t), q(i, t), P (i, t), i ∈ [1, 110], t ∈ [2, 39] are functions of

the data IDs ([1,110]) and of the years. The BD model does not

check all attendance as the ND model does and only checks

for ’successes’ (above zero) and ’failures’ (zero). This makes

different service patterns (year series of attendances) with the

same frequency of missing or existing records have the same

probability with the BD model. Hence, the BD model is more

suitable than the ND when examining hypotheses where the

prior or likelihood are used as predicting services and are zero,

as well as when the target is not.

The BD model has only two events to examine, as in (4),

while the ND model accepts many levels of attendance found

in a service. On the other hand, the BD model does not assign
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a value p = q = 1/2, to each event and actually counts

strings of ’successes’ or ’failures’ by a certain year. The two

probabilities, above, and in this work are computed from the

actual frequencies of these events.

To use the BD model for a specific year, t, we use (4). This

probability does not depend on the probability of ’success’ or

’failure’ by the year, (t−1). The two events do not have equal

chances any year and depend on the previous years’ records.

Therefore, we cannot take p = q = 1/2. Using the BD model

for a prior, (2) becomes as in (5):

P (hsci,t/hscj,...,t) = P (hsci,t)× (

∑
b BD(j, t, b)

∑
m

∑
b BD(m, t, b)

)

b ∈ {0, 1}, j ∈ Si,t,m ∈ [1, 110] \ i, t ∈ [1981, 2019]

Si,t = Set of predictors for i at year t ⊂ ([1, 110])

(5)

In Fig. 4 (c), the BR groups can be seen (set of services

linked using BR models) (’S2-Value’, ’S10-HouseholdType-

Adults’, ’S12-TypeOfTenure-Rented’) where the posterior

is (POST = 0.3594). Both are among the highest. The

same holds for row #5 and group (’S5-Gender-Male’,

’S20-Gender-Female’, ’S12-TypeOfTenure-All’) where

(POST = 0.36) and for row #7. CC (also likely LR)

is not in line with BR in row #6 where the group is

(’S20-WeightCategory-Epidemiological (Obese)’, ’S10-

HouseholdType-Adults’, ’S7-AgeBands-75YearsAndOver’)

have (POST = 0.488). Most of the groups (predicted,

predictors) in Table III are good ones (high POST). As it can

be seen, the BR in rows #9 (target is ’S10-LowWeightBirths’),

and #10 (target ’S20-AlcoholCondition-AllAlcoholic’) have

a low POST. Low birth weights are well correlated with

alcohol-related conditions but do not occur often together

(to use BR). In the work of Langton [11], BR can be used

to define the LR predictors. The work by Porwal [17] also

puts together LR and BR and advocates that BR can select

the factors in an LR model to form prediction groups. In the

same Fig. 4, labels attached to the edges show the likelihood

of the connected services being linearly regressed (related).

The arrow points to the regressed (the one that is predicted)

service and originates from each of the predictors. The

one-to-one connections shown do not mean we only have a

single predictor per target. Each arrow is set to link only two

services (for clarity in the diagram), and as we can see, some

services (“Smoking prevalence in young – SALSUS - Age -

All”) are the end-points of many arrows. Also, it is possible

that a predictor is linked to a target in more ways depending

on the rest of the predictors in a linear set. Hence, the service

“Smoking prevalence . . . Regular Smoker” is connected to

the above target in two ways (i.e., it is part of two linear sets

that have the same target but not all the same predictors).

The three BR probabilities are computed for the same year.

BR uses missing records as a single number (probability

of zero), while regression takes all records (weighted

sum). As a result, BR and regression schemas may not

agree on the degree to which they support a target.

An example is the two factors ’S10-SIMDquintiles-1’ and

’S20-AlcoholCondition-LiverDisease(ALD)’ that are part of

two BR groups #6 and #9 with different probabilities, (0.488 =
PPOST (15, 16, 17)), while 1 = CC(15, 17), CC(16, 17). We

assume that a very high CC is indicative of good LR quality.

Indeed, LR is based on the similarity of two (or more) factors,

�xi, �xj , and, �xk,.... Their CC, CCj,k,... = �xj
T ∗ �xk, is higher

if they are linearly related, �xi = LR( �xj , �xk, ...) or when

they are alike. Thus, CC depends on LR since a product is

maximized if two or more factors are as similar as possible.

The factor (S8) (’drug related discharges’ is short for it) has a

low (POST.D = 0.06) when it is predicted from the factors

’regular smokers’ (S9) and (S8) (’occasional smoker’) but all

are well correlated (CC = 0.993).

Each year, a new BD model is computed using (5), as

shown in Fig. 5, and then an updated binomial probability

is assigned to the examined level. The x-axis is the order

of different data (110 HSc factors) used to derive the BD

models. In Fig. 5, the Y-axis shows the binomial probability

for one ’success’ (existing record) (given the model). It is

thus a Bayesian likelihood for one non-zero record. Fig. 5

(a) shows binomial non-zero probabilities using data from

years, t ∈ [1981, 2001]. Fig. 5 (b) shows binomial non-zero

probabilities using data from years, t ∈ [1981, 2001], Fig.

5 (c) shows a normal model for above zero attendance and

years, t ∈ [1981, 2001], and Fig. 5 (d) shows a normal model

for above zero attendance and years, t ∈ [1981, 2001]. In

Fig. 6 the left plot, (a) shows the three Bayesian distributions

(“LKL”, ”PRIOR”, ”POST”) and the normalized posterior

(the fourth one) for the examined attendance, (0). The right

plot, (b), in Fig. 6, shows the plots for the same Bayesian

distributions for the examined attendance (151564), that is

also observed. Both levels (0, 151564), are observed. The

distributions are computed using (9). This plot specifically

shows the Bayesian distributions for service (ID = 70,

“Primary1BMIDistribution-MainClientGroupInCareHome-

AdultsWithLearningDisabilities”) taking specific values that

assume 12 distinct levels, including (0), that is the prevalent

(count = 28) one, and eleven others (non-zeros) that only

occur once in the 39-year span and belong to the region,

> 0. The left panel for the Bayesian distributions of (0), is

therefore quite different from the analogous distributions for

the rest (> 0), which are represented by a single distribution

(almost the same for the 10 other observed attendances) by

the panel on the right. The distributions are computed using

(9).

Since BD only provides probabilities for the number of

’non-zeros’ in the span of 39 years, (5), was applied to the

event b = 1 (”success”). The plot of the relevant probabilities

for one ’success’ (n = 1) (”one success”) and not (”any

success”) over the 39-year span is shown in Fig. 5, where the

probability of having a non-zero attendance is given, provided

that the current BD model used is the one with a specific

ID (ID > 80) as seen in the x-axis. It is interesting to

observe that the HSc factors with IDs below 50 (overall,

the IDs are 110) clearly favor non-zeros, although, most of

them did not have records before 1997. It was observed that

factors with (ID > 80) that mostly started after 2010, had

more than three records (as in Table I). The distribution in

Fig. 5 (a) was computed with known data (either known as

present or known as missing) until 2001. The first one shows

that until 2001, having zero records was more likely than
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having a record, except for a few factors (local peaks), when

there were some early recordings of the attendances for a few

services before 1997. The data represented in Fig. 5 show the

likelihoods (i.e., what are the odds of attendance given that

the underlying distribution is an ND or a BD). The ND as

a prior favors ’recent’ services (H&Scs with fewer missing

records in the past or roughly before 1997), while the BD

favors ’early’ services (HSc’s with fewer missing records in

the past). In the second group, (Fig. 5), services for which

records started being kept after 1997, in the Bayesian context,

likely have higher posteriors as target services since we have

non-zero probabilities. Doing the same calculations with the

ND model and taking the cumulative probability for having

any above-zero attendances in both, above, year spans gives

us roughly similar results as shown in Figs. 5 (b) and (d).

Fig. 5 (b) shows the distributions with more updated data

(up to years from 2001 to 2019) and shows the three (four is

the normalized) BR probabilities (that is, the POST probability

of the event (no model, no data) probability in [0,1]). The

graph assumes 12 distinct levels, including (0), which is the

prevalent (counts = 28) one, and 11 others (non-zeros) that

only occur once in the 39-year span and belong to the region

[150282, 157998]. The left panel for the Bayesian distributions

of (0) is therefore skewed to high values, while for the rest

of the values observed, (> 0), the Bayesian distributions are

skewed towards low values on the right panel.

Overall, the three paradigms examined are: (a) the use of

two or more other H&Sc services as priors and likelihood

(2) and co-occurrences (that is, adopt no specific distributions

for them), (b) the use of specific distributions as priors and

likelihood as predictors of services (ND model as in (3)), (c)

the use of the BD model as in (4) and (5). The formulas used

to compute the columns PRIOR.ND/BD are:

POST.ND.PRIOR(j, CandidateAttendance) =

LKL.ND(j, CandidateAttendance)×
ND.PRIOR(j, CandidateAttendance) =

NDhscj (i, t)× P (hsc(i, t)/NDk)

CandidateAttendance = HSc(i, year = t)

LKL.ND(j, CandidateAttendance) =

= P (CandidateAttendance/NDhsc(j,t))

ND.PRIOR(j) = ND(μhsc(i),Σhsc(i))

(6)

where, (POST.ND.PRIOR(j, CandidateAttendance)) is

the posterior for service, j, having to compute the attendance

level ‘CandidateAttendance‘ using the current ND model

P (x/NDhsc(j,t)), LKL.ND is the likelihood for the same

conditions, and PRIOR.ND for service j, that is, a known

distribution for j, that is not shaped (not a function of) by

the searched attendance. The Bayesian probabilities, under a

known distribution (methods ’b’ and ’c’ above) for PRIOR or

LKL, are computed from the entire year span of the predicting

services, denoted as j, k, ..., while the target attendance

‘CandidateAttendance‘ as, i, is assessed on the basis of the

predicting ones setting aside the (i), that is from {j, k, ...}\{i}.

The predicting services are, thus, computed using (3) for the

ND or (4) for the BD model, while their Bayesian combination

under ND model is given in (5) by replacing ’BD’ with ’ND’

with parameters ND(μ,Σt, �xt
, ). The expression �x(t) is the

current data to evaluate the ND in the year, t.

IV. THE PEGRESSION METHODS

BR is a prediction method for POST using LKL, and PRIOR

as predictors. Mainly reported prediction methods by [18],

such as Random Forests as per [19], are used to predict

the workload in hand surgery operations as in the work of

Uematsu [20], whereas BR develops hypotheses including

the target and the predictors as clinical factors as per [21],

[22] and [10] while [23] uses LR to infer daily patient

discharges using twenty patient features, as well as 88 hospital

ward-level features. BR models need a reliable PRIOR, or

LKL while regression models, as per [24], need the number

of predictors or time delays or can define linear predictors

on-the-fly, as discussed by [25]. Good candidates for PRIOR or

for LKL were partially based on trials using CC and CM since

CC checks for numerical similarity and CM for the closest

distance. Dunsmuir [26] advocates that CC coupled with ML

can reveal specific relationships across data. The regression

models define relationships also determined by probabilities

as per [27], while BR checks probabilities of co-occurrences

(LKL) and ground knowledge (PRIOR) to infer POST. BR

computations involved year series of H&Sc observations,

Xi = [xi,1, xi,2, ..., xi,N ], i ∈ [1, 110] and N = 39 and

related service attributes, or patient parameters (demographics)

or other services to create mixed cohorts. Hence, a level

of demand, ’a’, for POST can relate to another level of

demand, ’b’, for LKL (first predictor), and to a levels of

demand, ’c’ for PRIOR (second predictor), using compound

hypotheses that involve them. An LR model’s sensitivity to

year lags or to the number of predictors is equivalent to

POST’s changes, as seen in Table III, when using different

predictors for the same target. CC/CM was not always efficient

for LKL and PRIOR due to extensive zero-padding that biased

CC/CM towards false alarms (high CC for low POST.D,

LKL.D, PRIOR.D). This affected less the ND/BD models

that used equivalent data (no zero padding). For example, as

seen in Table III, we have very low POST and high CC in

the group (’S22-HomeCareClientGroup-LearningDisability’,

’S23-SmokingBehaviour-NonSmoker’, ’S22-Epidemiological-

ClientGroupInCareHome-AdultsWithDisabilities-1”), that is,

POST ({9, 10, 11}) = 2.8E − 34, while CC(9, 10) =
1, , CC(9, 11) = 1.

V. RESULTS

For no models, the priors, as discussed, for both LKL, and

PRIOR is computed from other data (factors). That is, the rule

POST = ˆP (hsci,t/hsc{j,k},t)t∈[1,39]
applies. The column,

AVEPOST is computed keeping the same group of factors,

{i, j, k}, and the POST is averaged with respect to years (from

year 1 to 39). The POST is a better-informed probability and

represents what is expected when we try to predict, using BR,

any attendance for a factor, i, considering that we have data

for the factors j, k, .... As it can be seen in Table III, the

second factor, jth, represents the evidence (observed data).
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The likelihood is the third factor, k, along with any other factor

beyond the k-th, if it exists at all. The factors j, k, ..., can be a

joint probability, P (hscj,k,year=t), that we have for the factors

j, k, ..., across all possible values (that is, over years till the

year, t). This normalized probability(i.e., over all years, t) is,

(
P (hsc{j,k},t/hsci,t)

P (hsc{j,k})
). The joint probability is seen in (2).

Table III shows that the probability of having non-zero

attendance for most services is not even (as per prior), as is

the theoretical case, and depends on how often two services

are co-attended. The POST and LKL probabilities can be

computed at any year from 1 to 39 as per (1), where the

year, t, is also an input argument. Table III shows that

when priors are computed using ND or BD models, then the

posterior and priors drop by several scales as they are not

observed frequencies (are theoretical) using equivalent (not

zero padded) data tailored to the target as in (3) and (5). This

was necessary to avoid missing year problems that made the

covariance a sparse matrix in the early years. In the data-driven

probabilities, PRIOR.D, POST.D, and LKL.D assume roughly

values in the scale 1E − 2 <= prob <= 1E − 1,

using observed evidence that are more confident estimates

(higher) than model-driven priors are. In some cases,

though, as with the relationship where the service (1)

’S22-HomeCareClientGroup-LearningDisability’ is predicted

from the service (2) ’S11-TypeOfTenureOwnedOutright’,

and from the service (3) ’S22-LivingArrangements-Age-All’,

the posterior is a little higher than CC, and it is the

probability of linear similarity. This indicates that no new

knowledge is offered by the added factors ’3’, or ’2’. The

actual range of the attendances in the data (110-year series)

is in the interval [0, 176944] but not all attendances are

observed, and the frequentist probability is much higher

than using the ND or BD. The frequentist probabilities are

less variable (only observed) than the model-based ones

are (infinite). The data-driven probabilities have a limited

range, based on observed, unique, same year, often zero

attendances, yield a POST.D ( = 1) for most (but not

all), and are almost uniquely linked to predicting factors

unless a specific combination of factorsoccurs more than

once. This finding (variable combinations can predict

the same target) occurred only in a few cases. Some of

these are: (1) ’S11-BirthWeight-LiveSingletonBirths’, (2)

’S23-WeightCategory-EpidemiologicalOverweightObese’,

(3) ’S6-EverDrank-EverHadAnAlcoholicDrink” where the

probability P (i/j, k, l...) = 0.045 when applying (2) and (1)

’S19-Epidemiological-WeightCategory-ClinicalSeverelyObese’,

(2) ’S23-SelfAssessedGeneralHealth-Bad”, (3) ’S22-

HouseholdType-Adults’ with P (i/j, k, l...) = 0.628. Fig. 4

shows the data-driven posterior relationships (in 3-factor sets

i, j.k), that is, which factors (as posteriors) can be predicted

probabilistically in the Bayesian context. The arrows point to

the target service, i, and originate from the two predicting

factors, j, k. The labels attached to the edges show the

likelihood of the connected services being BR related. Fig. 4

is set to show one-to-one connections for clarity, but some

services (’S23-Age-All”) are the end points of more arrows,

and it is possible that a predictor is linked to a target in

more ways (along with different predictors). Here, the service

’S23-RegularSmoker’ points to the same target as part of

different sets/predictors with probabilities (0.440, 0.814). Fig.

4 shows that public services offered to young people who

smoke can be predicted from services concerning young

smokers of all ages with variable probabilities. Those who

are self-assessed as being in good health, as an attribute, is

a good predictor (POST.D = 0.814) for young smokers,

indicating that given that we observe young people who

are self-assessed as being in good health, then in the same

cohort, the chance that smokers of all ages are in good health

is high as well. Young smokers can also be BR predicted by

those who are most deprived (POST.D = 0.729) which is

more expected because social deprivation is a likely cause

of smoking and is also confirmed by another likely good

predictor, which is young people who are self-assessed as

being in bad health (POST.D = 0.729). Gender is not likely

to affect the prevalence of smoking in young people since

the relative probability is rather low for cohorts that are

based on age banding (POST.D ≈ 0.4), and it is related to

the prevalence of smoking in different contexts (along with

other predictors). More arrows originate from gender-related

cohorts that end up in the cohort with a high smoking

prevalence. Hence, social deprivation, smoking frequency,

age, and gender define young people’s cohorts that can

variably predict the cohort where smoking is prevalent.

The names of the services in Fig. 4 are defined in Table I.

VI. DISCUSSION

The paper discussed how we can relate H&Sc service

attendances using BR prediction to form service cohorts and

evaluated three main methods as well as side tools. The

dependence of these relationships on classification as well

as on service settings was studied using Bayesian statistics,

and CC and PCA provided more context, although not fully

analyzed due to space limitations. Among the major findings

of this work, it was found that, on average, a number of

factors in the region ([2, 6]) were well connected using

BR. The work mainly reports on data-driven posteriors,

POST.D. Model-driven POST.ND, POST.BD posteriors were

theoretical approaches to the problem and made it more clear

how the zero padding (missing data) can be better modeled

using equivalent distributions (if no data are available)

using BD or how difficult it is to obtain parameters like

the covariance in ND models that need to be approached

by equivalent models. The data-driven models made it more

clear how the posterior is a better version of the prior

(higher confidence), which was not always clear with data

models. Using all BR approaches, 3-5 independent factors (as

predictors) were practically found and 1 dependent, that is,

in groups of up to 4 or 5. Larger groups either did not have

co-occurring demands and gave zero data-driven posteriors

or had extremely low model-based posteriors (practically

zero as well). Similar sizes in the region ([2, 5]) were also

discussed by [27]. There were no H&Sc factors that could not

be expressed through BR combinations except for those with

a single or a few (<= 2) years of non-missing records like
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Fig. 1 Block diagram of services, attributes, and levels (values) associations in the data

Fig. 2 Representative service plots showing demands summed over all
attributes per service offered (22 overall, 8 indicative are shown)

‘S17-Health-Fair‘ (year: 2017) or others with no records after

1997, or, those with a single low attendance before 1997.

Most H&Sc factors did not have records then. Also, those

H&Sc factors with only very recent records, i.e., after 2017

and not before, like ‘S18-OtherLivingConditions-AllLevels’,

did not relate well (few cases or low CC). The most often

observed factors in various BR sets (as BR data-driven

predictors) are (S22) (overall, i.e., summed over all attributes

and level counts) and smoking-related ones. The factor

(S20) (1981-2019) is the target in a combination that had

three strong predictors with relatively high probabilities

{POST.D = 0.5, P IOR.D = 0.36, LKL.D = 0.72}
as seen in Table III (row #5). The pack (S2) is also

the target in several combinations (rows #3 and #5 in

Table III are only indicative). It is also interesting to

observe how well the ’S8-Gender-Male’ and ’S23-Smoking

Behaviour-NonSmoker’ correlate (high POST.D) which shows

the relevance of smoking to alcohol in males. This can be

very helpful in general for the planning of resources (for

example, the GPs). Another combination for this target had

predictors ‘S12-Age-16-64‘, ‘S12-Age-All‘, with probabilities

POST.D = 0.025, POST.D = 0.046 (not shown in tables or

figures). The less supported group is ’S8-SIMDquintiles-1’,

’S23-SmokingBehaviour-RegularSmoker’, ’S8-Smoking

Behaviour-OccasionalSmoker’ (POST.D = 0.06) group

that shows that alcohol-related admissions are not well

jointly related to both smoker categories (regular and

occasional smokers). Row #3 has as a target ’S8-Smoking

Behaviour-OccasionalSmoker’ with three strong data-driven

probabilities {0.594, 0.35, 0.719} while the target is the same

with row #5 ({0.5, 0.36, 0.72}) which has four predictors with

similar three strong probabilities. The factors in the pack (S2)

were common as dependent variables and were connected to

several other factors, as also discussed by [28], where the

30-day and 48-hour re-admission risks are computed using

seven reasons/factors that were not in the PHS data processed
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a b

c

Fig. 3 Plots for indicative linear connections found (HScfactori = LR(HScfactorj ), i <> j)

and use the ARMA method, which considers re-admission

drivers such as the number of re-admissions in the past 12

months. According to [16] and [29], the number of factors is

actually, a parameter to adjust, which in our case is fixed, i.e.,

110. It was found that among very good independent factors,

the strongest belonged to the packs: (S20) and (S23) with

many likely dependencies (that is, relatively high posteriors).

The Bayesian relationships in rows #3 and #5 connect two

or three cohorts: (1) ’S9-WeightCategory-HealthyWeight’,

(2) (S28), and (3) (S16) Indeed, this can be expected, as

such causes are dominant in hospital admissions and are

at the root of social problems. Also, a well-matched pack

whose factors are often used as independent predictors is

(S11), as in rows (#2, #3, #4). This can be so because

the mental problems (pack (S15)) cannot be isolated from

smoking (packs (S2) and (S10), etc.), and they might be

related to a range of alcohol-relevant public services or

patient cohorts. One of the factors was ‘Percent of people

aged 65+’ who are admitted as an emergency to hospitals at

least twice within 12 months (part of the pack (S2)) alone has

connection POST.D probabilities 0.026, 0.035, respectively,

to its Bayesian predictors (S12) and (S16) that is not listed

in Table I. In row #9, it can be seen that the pack (S11)

and (ID=25 from the 110) are linked to the distance-health

pack (’S22-HomeCare-ClientGroup4’) which reveals the

relationship between remote healthcare and mental problems.

The packs (S1) (1998-2010) and (S3) (2008-2019) had very

low overlap, and although brought into the same span after

zero-padding, they were not found to be well correlated as a

pair, but they were with other services. An example is (S13)

(2007-2017), while (S1) is well connected, in the BR context,

with many but not with (S3). The service pack, (S9), and

especially its factor ‘Any.TypeOfTenure‘ is a well-modeled

(predicted) factor and creates (where it is common) patient

categories (example is ’S9-TypeOfTenure-OwnedOutright’)

as it can be seen in Fig. 5 with a POST.D probability, 0.521.

This knowledge update (an increase in belief) from PRIOR

to POST is also roughly seen in the ND and BD models.
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TABLE I
INDICATIVE SERVICES OF FIG. 4 WITH DATES OF NO MISSING RECORDS AND THEIR ACRONYMS

H&Sc full names Ab Bb Cc

Alcohol use among young people S1 1998-2010 3
Headcount of General Practice Workforce S3 2008-2019 1
Living Arrangements for Home Care Clients S5 2005-2009 2
Number of single Rooms in care homes S7 2007-2017 2
Home care services S9 2005-2009 2
Mental wellbeing by tenure, household type, age, sex, disability S11 2014-2017 4
Number of care homes by type of provision S13 2007-2017 6
Places in care homes with en-suite facilities S15 2007-2017 2
Smoking prevalence among 13 and 15 year olds in Scotland S17 2001-2019 2
% of children classed healthy weight, overweight, obese,severely obese at Primary 1
review

S19 2002-2015 2

Drug use among 13 and 15 year olds in Scotland S21 2002-2015 2
Repeated emergency admissions S2 1998-2010 1
Number of home care clients by care type or disability S4 2005-2009 3
Intensive Home Care S6 2002-2011 1
Drug related hospital discharges S8 1996-2018 2
Number, percent, for low birth weight (¡=2.5Kg) for single births S10 2000-2019 1
Number of general practices (GPs) with registered patients S12 2007-2019 1
Occupancy rate in care homes by type of provision S12 2007-2017 2
Body mass index (BMI) distribution of primary 1 education children S16 2001-2019 1
Delayed discharges: monthly census S18 2016-2020 2
Alcohol-related admissions (stays) or discharges S20 1981-2019 20
Health care clients S22 2016-2019 2

a Acronyms for services names, b years of existing records, c number of attributes tracked per service

Fig. 4 Data-driven factors (services) relationships diagram for sampled (Smoking-related) factors and names of them as defined in Table I

An innovation of this work is the combination of the three

BR approaches and the notion of cohorts that can include

services and patients (not only services or only patients)

using prediction. As observed in Fig. 5, these relationships

change over the years. Table III presents the results for a

year, t = 38, or the year, 2018. This suggests a learning

ratio of 37/39 >= 90% (i.e., 0.9), which is more than the

necessary one ([0.6, 0.9]). This is advocated by [30], where

the learning ratios are discussed with respect to the quality

of the prediction. Lower learning ratios (or fewer years from

the past) were possible in the region ([0.2, 0.8]), due to

the smoothness of the data. Independently of BR, the PCA

analysis was also applied and defined a feature space in the

wider H&Scdata space. The most important services that
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a b

c d

Fig. 5 How specific service attendances that differ in scale (0) and (151564) are modeled using a ND model

were found in the pack (H&Sc data frame) (S23) were five

H&Sc factors explaining 56.8% of the data variance, while in

the pack (S20), 20 H&Sc factors were found, which explain

28.3% of the variance. The rest of the packs contributed a

low percentage to the PCs and were less than 2% or 3%.

That is, they contribute to PCs much less. PCA analysis

could reduce the data dimensions of the feature space for

the classification of the factors so that BR can be applied

in a lower dimensional space. PCA was applied to the 110

factors and gave 11 major eigendirections. Alcohol-related

factors dominated the major PCs as they are more populated

(20 attributes). The reasons for hospital admission due to

alcohol are more frequent, thus dominant due to their more

likely variance. BR was facilitated by PCA when the services

were represented in a PC’s sub-space. For example, services

(‘S11-Gender-All‘) and (’S9-TypeOfTenure-All‘) predict

(S2)’s services in rows #3 and #4 in Table III using the

same data packs (as in row #3). Other factors span more

clusters, like (S12), that concern patients and services that are

linked to GPs, which can be more diversified since GP visits

can be for different reasons. Not all interesting cases are

illustrated in figures or tables due to space limitations. PCA

looks mainly for independent data (PCs that are orthogonal),

while BR looks for data with shared components or common

components and uses them as predictors, according to [31].

PCA suggests, as in Table II, that the services pack (S20)

has all the PCs, which is also confirmed in Table II, where

it can be seen that in many combinations, the pack (S20)

is a popular service. It can be seen that BR in Fig. 5 and

6 rather support smoking-related services as being more

likely taken in the same years, and PCA rather focuses on

alcohol-related services that are quite variant in their usage

year patterns. This makes them good PCs. It can be seen in

Fig. 6 that given the high odds of having no records for any

service (HSc = 0), the odds of having a zero value (that is,

the upper part of the curves in Fig. 5 (a)) are higher than

the odds of having higher (non-zero) values (illustrated by

the right panel in Fig. 5 (b)). As discussed, every time a

new year is considered, new models are developed for all

three Bayesian distributions. These odds are defined by the

time-evolution of the above-mentioned distributions. The

left panel in Fig. 5 shows that the likelihood (plot) for zero

attendance is below (P = 1/2), while the prior (in the second

plot) is normalized, and, as discussed, does not depend on

the observed data. The posterior that is shown in the plot is

slightly shifted to the upper probabilities considering that the

posterior is an update of the prior due to the presence of data

as in (6). The results revealed that BR and CC can link up to

about four services, while works on LR and AMRA methods

were referenced for qualitative (context) comparisons. In
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a b

Fig. 6 The 3 Bayesian distributions (“LKL”, ”PRIOR”, ”POST”)

regards to the accuracy and sensitivity of the prediction it was

found that data-driven BR is more biased (higher chances)

towards zero or non-zero attendances and that model-based

(ND, BD) BR versions were not as good at predicting zero

but could cover (predict) more cases (not in the data at

hand). Model-based approaches under BR better tracked no

zero-zero changes with respect to data-driven ones. This can

be useful in a progressively accurate classification/prediction

schema that narrows down the event space into progressively

narrower bands. Also, BR/BD cannot work well on common

years (only non-zero record years and no changes) unless

the examined period contains some transitions (years of

missing records followed by the first year of recording) that

are more suited for data-driven approaches (data observed,

then data not observed/missing). ND/BR-BD/BR methods

worked better on low dimensions (few years) either under

PCA or without since data driven needs (no model) need

longer strings of years with transitions more likely to happen.

PCA yielded the 11 best H&Sc factors, and CM defined five

main classes across the 39 years. The BR methods proved

that services are uncertain and may depend on factors such

as the year the data were recorded, according to [13]. Some

H&Sc factors were found to be widely attended, such as the

services related to the emergency department that are highly

cross-correlated with fewer attended H&Sc factors. The work

revealed that the services that are more common as predictors

are related to ‘Alcohol Admissions‘ as for example (S20) and

home-based services ((S11), (S12), (S14), etc.), confirming

that these are common reasons for getting admitted to a

hospital and that services may expand and differentiate once

a patient is originally admitted for one of these reasons.

Moreover, the HC system has grown around services offered

to the elderly or to home-based users, since many services in

those cohorts are offered from a distance and are BR-related.

Depending on the year at hand, though, the ‘....low birth
weight (weight < 2500g‘ is BR related to mental health

patients as per [32] and GPs workforce, who help patients

who were self-assessed as being well (SALSUS). Among

other findings, low birth weights are related to people who

are offered housing on a voluntary basis in care homes, and

both are related to patients that are registered with GPs and

live in adult-type care homes. These offered links across the

data that were not expected or clinically justified. The merits

of using BR is that it can offer out-of-the-box solutions that

may offer insight into hidden data relationships.

It can be seen in Fig. 6 that given the high odds of having

no records for any service (HSc = 0) the odds of having a

zero value (that is, the upper part of the curves in Fig. 6 (a))

are higher than the odds of having higher (non-zero) values

(illustrated by the right panel in Fig. 6 (b)). As discussed, every

time a new year is considered, new models are developed for

all three Bayesian distributions. These odds are defined by

the time-evolution of the above-mentioned distributions. The

left panel in Fig. 6 shows that the likelihood (plot) for zero

attendance is below (P = 1/2) while the prior (in the second

plot) is normalized, and, as discussed, does not depend on the

observed data. It is based on the ND model, which counts the

increased occurrences of missing data for that service. The

posterior that is shown in the plot is slightly shifted to the

upper probabilities considering that the posterior is an update

of the prior due to the presence of data as in (6). Considering

the BR method, the ”POST” is a better-informed probability

and represents what is expected when we try to predict. With

BR, we had three factors involved, the Bayesian likelihood,

the prior, and the posterior, while with LR and AR, we could

have as many as four (for confident predictions). The BR did

not offer the numerical accuracy of the LR or AR as it only

checked zero padding, But it was more robust to detect zeros

even if one factor’s past samples did not have many zeros. The

BR can be tailored (adjusted), though, to model any ”event” as

a ”success” or a failure, and it is not limited to yielding exact

values as the LR or AR are. This partially offered the previous
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TABLE II
H&SCACRONYMS AND DATES GROUPS

Full Description Acronyms Years number

of

attributes

Alcohol use among young people S1 1998-2010 3

Headcount of General Practice Workforce S3 2008-2019 1

Living Arrangements for Home Care Clients S5 2005-2009 2

Number of single Rooms in care homes S7 2007-2017 2

Home care services S9 2005-2009 2

Mental wellbeing by tenure, household type, age, sex, disability S11 2014-2017 4

Number of care homes by type of provision S13 2007-2017 6

Places in care homes with en-suite facilities S15 2007-2017 2

% of children classed healthy weight, overweight, obese,severely obese at

Primary 1 review

S17 2001-2019 2

Drug use among 13 and 15 year olds in Scotland S19 2002-2015 1

HCArrangements S21 2002-2015 3

Repeated emergency admissions S2 1998-2010 1

Number of home care clients by care type or disability S4 2005-2009 2

Intensive Home Care S6 2002-2011 1

Drug Related Hospital Discharge S8 1996-2018 1

Number[percent], low birthweight ( < 2500g) babies (single births) S10 2000-2019 2

Number of general practices (GPs) with registered patients S12 2007-2019 1

Occupancy rate in care homes by type of provision S14 2007-2017 2

Body mass index (BMI) distribution of primary 1 education children S16 2001-2019 1

Delayed discharges: monthly census S18 2016-2020 2

Alcohol-related admissions (stays) or discharges S20 1981-2019 20

Health care clients S22 2016-2019 2

H&Sc services groups(as parts of linear prediction equations) comprising a target(first service) and its predictors (left services)

in their full names, their acronyms(inside parentheses as (‘S.A.Z‘) triplets, their dates of recording and the numbers of

characteristics(attributes) that accompany them ]

TABLE III
BEST HSC FACTORS USING PCA

Factor name PC(%) Factor name PC(%) Factor name PC(%)
Smoking prevalence in young people(SALSUS) . Age. 13 69 Smoking behaviour and self rated health(SALSUS) .Gender. Female 14 Smoking behaviour and self rated health(SALSUS) . Self assessed

general health . Fair

6.46

Smoking prevalence in young people(SALSUS) . Age. 13 5.07 Smoking behaviour and self rated health(SALSUS) .Gender. Male 3.01 Smoking behaviour and self rated health(SALSUS) . Smoking

behaviour . Non Smoker

0.7

Smoking prevalence in young people(SALSUS). Age.All 0.59 Smoking behaviour and self rated health(SALSUS) . Self assessed

general health . Very good

0.32 Smoking behaviour and self rated health(SALSUS) . Smoking

behaviour

0.29

Smoking behaviour and self rated health(SALSUS) .Gender. All 0.11 Smoking behaviour and self rated health(SALSUS) . Self assessed

general health . Bad

0.45

The factors are represented by triplets {X.Y.Z} The dominant services are ‘Smoking prevalence and deprivation(SALSUS)‘ and ‘Alcohol-related admissions (stays) or discharges”‘) T2 .

robustness in capturing zeros (no records) in one factor series

when there were no past zeros, provided that the other two

predicting factors would likely have zeros.

VII. CONCLUSION

The paper discussed how we can relate H&Sc service

attendance using prediction to form service cohorts and

evaluated several methods. The dependence of these

relationships on classification as well as on service settings

was studied using LR, AR, and, Bayesian statistics. All three

approaches defined relationships that linked the demands of

the services and formed groups. CM provided basic knowledge

as to how we can limit the closest domain space for prediction

for LR and ARMA. The results revealed that LR or ARMA

linearity holds for up to about four services and that LR

works better than ARMA in regard to the accuracy of the

prediction. Also, BR’s zero or non-zero attendance odds are

better supported (have higher posteriors to be real zeros or

non-zero events) with respect to LR/ARMA where there is

an error. BR better tracks no zero-zero changes with respect

to LR. This robustness comes at the price of BR (BD

method) being limited to deciding on ranges and not exactly

predicted attendances for the factors. This can be useful in

a progressively accurate classification/prediction schema that

narrows down the event space into progressively narrower

bands. Also, BR cannot work well on common years (only

non-zero record years) unless the examined period contains

some transitions (years of missing records followed by the first

year of recording) that are more suited for linear relationships.

LR methods worked better on low dimensions (few or selected

years). AR models proved less successful with respect to LR,

as seen in the high RMSE, MAE, and MRE errors obtained.

The first groupings were found based on CC or CM and

were further explored using LR and ARMA, which changed

over the years. PCA yielded the 11 best H&Sc factors, and

CM defined five main classes across the 39 years. The LR

methods proved that services are uncertain and may depend

on factors such as the year the data were recorded in as per

[13]. Some H&Sc factors were found to be widely attended,

such as the emergency department related ones, and highly

cross-correlated with fewer H&Sc factors. The work revealed

that the services that are more common as predictors for other

services are related to ‘Alcohol Admissions‘ as for example

(S20) and home-based services (various services: (S11), (S12),

(S14), etc.), and confirmed that these are common reasons for

getting admitted to a hospital and that services may expand

and differentiate once a patient is originally admitted for

one of these reasons. Moreover, the HC system has grown

around services offered to the elderly or to home-based users,

as seen by the plethora of services offered from a distance

and their participation in more service groupings. The high

specialization of services offered to alcohol-related patients

was confirmed by the high linear confidence attached to such

H&Sc factors as low birth weights and services related to

alcohol. Depending on the year at hand, though, the ‘....low

birth weight (weight < 2500g)‘ class can also be regressed

(linearly related) with mental health patients as discussed by

[32]. It was also found that GPs workforce could be related

to patients who were self-assessed as being well (SALSUS).

Among other findings, low birth weights are related to the
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TABLE IV
LINEAR SETS AND BAYESIAN SETS AS ILLUSTRATED IN THE RELATIONSHIPS DIAGRAM OF FIG. 4

Linear/Bayesian groups of H&Scs Er1 LR0
LR1

LR12

PR0
PR1
PR2

Er2
Er3

Er2 AR0
AR1
AR2

Er2
Er3

POST.D

POST.ND

POST.BD

PRIOR.D

PRIOR.ND

PRIOR..BD

LKL.D

LKL.ND

LKL.BD

AVEPOST

(1) 1,2,3 0.6 4 1 0.02

0.006

-2E-4

0.993

0.013

0.040

0

1

8. 8 5 2 -2.7E-3

-2.7E-3

8E16

0

1

0.06

1E-5

0.447

0.005

3E-16

0.302

0.103

5.4E-37

1.11E-7

0. 0 8 7

(2) 4,5,6 0.9 4 5 25264

40.6

184

0.04

0.001

0.049

0

1

67609 0. 9 3

-7.3E3

37797

230

4

0.594

417E-27

0.253

0.35

735E-39

0.105

0.077

0.7187

3.5E-178

0. 087

(3) 12,13,14 0.334 -13.6

0.042

0. 263

0.366

0.002

0.026

0

1

7.61 -0.3

0. 9 9

0.195

230

4

0.421

417E-27

0. 2 5 3

0 .35

735E-39

0. 1 0 5

0.7187

3.5E-178

3E-6

0. 2 1 2

(5) 15,16,17 0. 0 6 6 26445

-7.62

0. 973

0.002

0.331

0. 247

2

1

4.37 0.89

-1.5E-1

59E-2

22380

0

0.488

4.7E-4

0. 0 2 6

0.5

6.3E-12

0. 0 7 5

7.40E-6

0 . 9 7 4

3E-69

0. 0 3 5

(7) 18,19,23 0.049 1.654

-6.53

-0.0 0 2

0.5964

0.25

0.46

0.608

1

2.1E-9 0.962

-0.061

-0.041

10309

0

0.5

3E-38

0.026

0.32

8E-42

0.075

0.974

3E-69

0.043

0. 212

(8)21,10,22 0. 389 0.923

-1E-4

5E-4

0.005

0.604

3.5E-5

0.6

1

2.1E-8 0.962

-0.061

-0.041

1.193

1

0.5

1.7E-32

1.7E-32

0.321

1.2E-35

0.075

0.64

2E-09

0.758

0.196

(8)21,10,22 0. 389 0.923

-1E-4

5E-4

0.005

0.604

3.5E-5

0.6

1

2.1E-8 0.962

-0.061

-0.0 4 1

1.193

1

0.5

1.7E-32

0.026

0.321

1.2E-35

0.075

0.64

2E-09

0.758

0.196

(9) 24,25,20 0.013 34.5 9

-7.37

-3E-4

0.24

0.604

0. 977

1

7.6

0. 989 0.195

1E-23

-0. 3 2

3.9

0

0.053

3.4E-4

0.0263

0.083

1.4E-9

0.118

0.641

1E-12

1E-12

0.321

(12) 33,34,35 0.998 24. 2

0.406

-0.139

0.615

0.675

1E-23

0.45

0.83

2E-14 1

-0.03

-0.03

-0.03

0

0.5

1.3E-12

0.221

0.346

2.5E-20

0.121

0.692

1.9E-137

0.171

0.488

The relationships use the IDs defined in figure 4

people who are offered housing on a voluntary basis in care

homes, and both are linearly related to the patients that are

registered with GPs and live in adult-type care homes. These

may offer links across the data that were not expected or even

justified. The merits of using ML are that it can offer out

of the box solutions that may offer insight into hidden data

relationships.

ETHICAL APPROVAL

There are is no animal experimentation in the manuscript

and no needed to be obtained. No studies on humans were

carried out.

DATA AVAILABILITY

The data used in this work were made freely available

on-line by PHS as an open database. The link is provided

in the references.

FUNDING

The author received no specific financial support for the

authorship and/or publication of this article. The author during

the works of this paper was funded by an Abertay University,

Dundee stipend.

AUTHORS CONTRIBUTIONS

The author is the only writer of the manuscript and

carried out all the research. Other help or contributions are

acknowledged as well as the data used.

REFERENCES

[1] ByXu., HRISTINA PASHOVA† AND PATRICK J. HEAGERTY (2017),
Comparing Healthcare Utilization Patterns Via Global Differences in the
Endorsement of Current Procedural Terminology Codes , The annals
of applied statistics, Vol. 11, no. 3, 1349–1374, doi: 10.1214/17 −
aoas1028

[2] Simon Bottery . https : //www.kingsfund.org.uk/about −
us/whos− who/simon− bottery?page = 2 . The King’s Fund

[3] Public Health Scotland (2020) . Data and intelligence. A – Z
Subject Index. https : //www.isdscotland.org/A − to − Z −
index/index.asp

[4] Scottish Government (2019). Statistics Service Health and Social Care
Data . https : //statistics.gov.scot/datahome

[5] Vittorio Lippi (2019). Incremental Principal Component Analysis: Exact
implementation and continuity corrections.arXiv: 1901:07922v2; stat:ML;
13May2019. https : //arxiv.org/pdf/1901.07922.pdf

[6] Ian Litchfield (2019). Can pathways of patients with long-term conditions
in UK primary care? A study protocol. BMJ Open, 2018. https :
//bmjopen.bmj.com/content/8/12/e019947

[7] Dimitris Bertsimas, Colin Pawlowski, Ying Daisy Zhuo (2018) From
Predictive Methods to Missing Data Imputation: An Optimisation
Approach, Journal of Machine Learning Research 18 (2018) 1-39

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:17, No:8, 2023 

106International Scholarly and Scientific Research & Innovation 17(8) 2023 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s 

V
ol

:1
7,

 N
o:

8,
 2

02
3 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

21
7.

pd
f



[8] E.M. Mirkes (2018), T.J. Coats, J. Levesley, A.N. Gorban (2018).
From Predictive Methods to Missing Data Imputation: An Optimisation
Approach. Journal of Machine Learning Research, 18 (2018),1-39. http :
//dx.doi.org/10.1016/j.compbiomed.2016.06.004

[9] deRooij M. (2018). Transitional modelling of experimental longitudinal
data with missing values. Adv Data AnalClassif, 12,107–130. https :
//link.springer.com/article/10.1007/s11634− 015− 0226− 6

[10] Muge Capan (2020), Stephen Hoover, et al. (2019), Time Series
Analysis for Forecasting Hospital Census: Application to the Neonatal
Intensive Care Unit Multitask learning and benchmarking with clinical
time series data, Appl. Clin. Inform.. 2019,7(2):275–289. https :
//dx.doi.org/10.4338%2FACI − 2015− 09−RA− 0127

[11] Langton, J.M. (2018), Wong, S.T., Burge, F. et al. (2015), Population
segments as a tool for health care performance reporting: an exploratory
study in the Canadian province of British Columbia, BMC Fam
Pract,21-98(2020). https : //doi.org/10.1186/s12875 − 020 −
01141− w

[12] Vimal Mishra (2019), MD, MMCI, Shin-Ping Tu, MD, MPH, Joseph
Heim, PhD, Heather Masters, MD, Lindsey Hall, MPH, Ralph R. Clark,
MD, Alan W. Dow, MD (2019), Predicting the Future: Using Simulation
Modeling to Forecast Patient Flow on General Medicine Units, J. Hosp.
Med.,2019,1,9-15. doi:10.12788/jhm.3081

[13] Guersel, Gueney (2019), Healthcare, uncertainty, and
fuzzy logic. Digital Medicine, 2016,2,101-12. https :
//www : researchgate : net = publication =
310817255Healthcareuncertaintyandfuzzylogic

[14] Deborah A.Marshall, LinaBurgos-Liz et al. (2015), Applying
Dynamic Simulation Modeling Methods in Health Care Delivery
Research—The SIMULATE Checklist:Report of the ISPOR
Simulation Modeling Emerging Good Practices Task Force,
Value in Health, volume 18,Issue 2,March 2015,143-144.
https : //doi.org/10.1016/j.jval.2014.12.001

[15] D. Ben-Tovim, J. Filar, et al. (2019), Hospital Event
Simulation Model: Arrivals to Discharge, 21st International
Congress on Modelling and Simulation. Gold Coast,Australia.
https : //www.mssanz.org.au/modsim2015/H2/bentovim.pdf

[16] David J Spiegelhalter, Jonathan P Myles, David R Jones(1999) An
introduction to bayesian methods in health technology assessment , BMJ
1999; 319, doi: https://doi.org/10.1136/bmj.319.7208.508

[17] Anupreet Porwal, d Adrian E. Rafterya Comparing
methods for statistical inference with model uncertainty
, PNAS 2022 Vol. 119 No. 16 e2120737119, ttps :
//www.pnas.org/doi/pdf/10.1073/pnas.2120737119

[18] Gredell Devin (2019), Comparison of Machine Learning Algorithms
for Predictive Modeling of Beef Attributes Using Rapid Evaporative
Ionization Mass Spectrometry (REIMS), Data. Sci Rep.,9 5721 (2019).
https : //pubmed.ncbi.nlm.nih.gov/30952873/

[19] Bebbington E, Furniss, D . (2015), Linear regression analysis of
Hospital Episode Statistics predicts a large increase in demand for
elective hand surgery in England, J. Plast. Reconstr. Aesthet. Surg, 2015,
Feb,68(2),243-51. doi:10.1016/j.bjps.2014.10.011

[20] Uematsu, H., Yamashita, K., Kunisawa, S., Otsubo, T., &
Imanaka, Y. (2017), Prediction of pneumonia hospitalization
in adults using health checkup data, PloS one,12(6),e0180159.
https : //doi.org/10.1371/journal.pone.0180159

[21] Juang WC, Huang SJ, Huang FD, Cheng PW, Wann SR. (2017),
Application of time series analysis in modelling and forecasting
emergency department visits in a medical centre in Southern Taiwan, BMJ
Open, 2017, Dec 1,7(11),e018628. DOI: 10.1136/bmjopen − 2017 −
018628

[22] Harutyunyan, H., Khachatrian, H., Kale, D.C. et al. (2019), Multitask
learning and benchmarking with clinical time series data, Sci
.Data,6,96(2019).https : //doi.org/10.1038/s41597−019−0103−9

[23] Shivapratap Gopakumar (2016), Truyen Tran, Wei Luo, Dinh Phung,
JMIR Medical Informatics 4(3):e25 . DOI: 10.2196/medinform.5650
.

[24] Bui C., Pham N., Vo A., Tran A., Nguyen A., Le T. (2017), Time Series
Forecasting for Healthcare Diagnosis and Prognostics with the Focus on
Cardiovascular Diseases, Vo Van T.; Nguyen Le T.;

[25] Liew, B.X.W., Peolsson, A., Rugamer, D. et al. (2020), Clinical
predictive modelling of post-surgical recovery in individuals with cervical
radiculopathy: a machine learning approach, Sci.Rep,10,16782(2020).
https : //doi.org/10.1038/s41598− 020− 73740− 7

[26] Dunsmuir WT (2019), Dangers and uses of cross-correlation
in analyzing time series in perception, performance, movement,
and neuroscience: The importance of constructing transfer function

autoregressive models, Behav Res Methods,2016,Jun,48(2),783-802.
DOI:10.3758/s13428− 015− 0611− 2

[27] Yang, C., Delcher, C., Shenkman, E. et al. (2019), Expenditure variations
analysis using residuals for identifying high health care utilizers in a
state Medicaid program, BMC Med Inform Decis Mak, 19,131(2019).
https : //doi.org/10.1186/s12911/019/0870/4

[28] Daniel J. Morgan, Bill Bame, Paul Zimand, et al. (2019), Assessment of
Machine Learning vs Standard Prediction Rules for Predicting Hospital
Readmissions, JAMA Netw Open,2019,Mar,2

[29] Marno Verbeek, A Guide to Modern Econometrics, John
Wiley & Sons. DOI10.3917/rfs.593.0475. https :
//www.researchgate.net/publication/227488993
A Guide to Modern Econometrics

[30] Aitor Lewkowycz and Ethan S Dyer and Guy Gur-Ari and Jascha
Sohl-dickstein and Yasaman Bahri (2020) . The large learning
rate phase of deep learning, ICLR 2021 Conference . https :
//arxiv.org/abs/2003.02218

[31] Liu C, Zhang X, Nguyen TT, et al. (2021), Partial least
squares regression and principal component analysis: similarity and
differences between two popular variable reduction approaches, General
Psychiatry,2022; 35 : e100662(2021). doi: 10.1136/gpsych− 2021−
100662

[32] Lyall DM, Inskip HM, Mackay D, Deary IJ, McIntosh AM,
Hotopf M, Kendrick T, Pell JP, Smith DJ. Low birth weight and
features of neuroticism and mood disorder in 83545 participants of
the UK Biobank cohort . BJPsych Open. 2016 Jan 28,2(1):38-44.
DOI:10.1192/ bjpo.bp.115.002154. PMID : 27703752, PMCID :
PMC4995581

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:17, No:8, 2023 

107International Scholarly and Scientific Research & Innovation 17(8) 2023 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s 

V
ol

:1
7,

 N
o:

8,
 2

02
3 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

21
7.

pd
f


