%0 Journal Article
	%A M. D. Haneef and  R. B. Randall and  Z. Peng
	%D 2015
	%J International Journal of Mechanical and Mechatronics Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 107, 2015
	%T Dynamic Simulation of IC Engine Bearings for Fault Detection and Wear Prediction
	%U https://publications.waset.org/pdf/10003253
	%V 107
	%X Journal bearings used in IC engines are prone to premature
failures and are likely to fail earlier than the rated life due to
highly impulsive and unstable operating conditions and frequent
starts/stops. Vibration signature extraction and wear debris analysis
techniques are prevalent in industry for condition monitoring of
rotary machinery. However, both techniques involve a great deal of
technical expertise, time, and cost. Limited literature is available on
the application of these techniques for fault detection in reciprocating
machinery, due to the complex nature of impact forces that
confounds the extraction of fault signals for vibration-based analysis
and wear prediction. In present study, a simulation model was developed to investigate
the bearing wear behaviour, resulting because of different operating
conditions, to complement the vibration analysis. In current
simulation, the dynamics of the engine was established first, based on
which the hydrodynamic journal bearing forces were evaluated by
numerical solution of the Reynold’s equation. In addition, the
essential outputs of interest in this study, critical to determine wear
rates are the tangential velocity and oil film thickness between the
journals and bearing sleeve, which if not maintained appropriately,
have a detrimental effect on the bearing performance. Archard’s wear prediction model was used in the simulation to
calculate the wear rate of bearings with specific location information
as all determinative parameters were obtained with reference to crank
rotation. Oil film thickness obtained from the model was used as a
criterion to determine if the lubrication is sufficient to prevent contact
between the journal and bearing thus causing accelerated wear. A
limiting value of 1 μm was used as the minimum oil film thickness
needed to prevent contact. The increased wear rate with growing
severity of operating conditions is analogous and comparable to the
rise in amplitude of the squared envelope of the referenced vibration
signals. Thus on one hand, the developed model demonstrated its
capability to explain wear behaviour and on the other hand it also
helps to establish a co-relation between wear based and vibration
based analysis. Therefore, the model provides a cost effective and
quick approach to predict the impending wear in IC engine bearings
under various operating conditions.
	%P 1993 - 2002