
 

 

  
Abstract—Protein-protein interactions (PPI) play a crucial role in 

many biological processes such as cell signalling, transcription, 
translation, replication, signal transduction, and drug targeting, etc. 
Structural information about protein-protein interaction is essential for 
understanding the molecular mechanisms of these processes.  
Structures of protein-protein complexes are still difficult to obtain by 
biophysical methods such as NMR and X-ray crystallography, and 
therefore protein-protein docking computation is considered an 
important approach for understanding protein-protein interactions. 
However, reliable prediction of the protein-protein complexes is still 
under way. In the past decades, several grid-based docking algorithms 
based on the Katchalski-Katzir scoring scheme were developed, e.g., 
FTDock, ZDOCK, HADDOCK, RosettaDock, HEX, etc. However, 
the success rate of protein-protein docking prediction is still far from 
ideal. In this work, we first propose a more practical measure for 
evaluating the success of protein-protein docking predictions,the rate 
of first success (RFS), which is similar to the concept of mean first 
passage time (MFPT). Accordingly, we have assessed the ZDOCK 
bound and unbound benchmarks 2.0 and 3.0. We also createda new 
benchmark set for protein-protein docking predictions, in which the 
complexes have experimentally determined binding affinity data. We 
performed free energy calculation based on the solution of non-linear 
Poisson-Boltzmann equation (nlPBE) to improve the binding mode 
prediction. We used the well-studied thebarnase-barstarsystem to 
validate the parameters for free energy calculations. 
Besides,thenlPBE-based free energy calculations were conducted for 
the badly predicted cases by ZDOCK and ZRANK. We found that 
direct molecular mechanics energetics cannot be used to discriminate 
the native binding pose from the decoys.Our results indicate that 
nlPBE-based calculations appeared to be one of the promising 
approaches for improving the success rate of binding pose predictions. 

 
Keywords—protein-protein docking,protein-protein interaction, 

molecular mechanics energetics, Poisson-Boltzmann calculations 

I. INTRODUCTION 

ETTER understanding of machinery of life is achieved by 
in-depth studies of proteins. Although the functions of 

individual proteins are important for understanding this 
machinery,  we usually also need to move up to a higher level, 
i.e., protein-protein interactions (PPI), which areindispensable 
in understanding almost all the cellular processes such as cell 
signaling, transcription, translation, replication, signal 
transduction, and drug targeting etc.  
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Structural information about protein-protein interaction is 

essential for understanding the molecular mechanisms of these 
processes.  However, structures of protein-protein complexes 
are still difficult to obtain by biophysical methods, such as 
NMR and X-ray crystallography. Therefore, computational 
protein-protein docking is considered as an importantapproach 
for elucidating protein-protein interactions. Another emerging 
field of biosciences is peptide-based drug designing or protein 
therapies. Engineered peptides could be used as inhibitor for 
some PPI. However, similar to protein-protein complexes, 
structural information of the protein-peptide complex is also 
sometimes difficult to obtain. Hence, it is preferred to carry out 
in-silico studies to reduce the efforts and optimize the 
biophysical studies.  

Althoughin-silico prediction of such protein-protein and 
protein-small-peptide interaction is still challenging, recent 
progress in protein-protein docking studies suggested several 
directions towards future research. In the past two decades, 
many grid-based docking algorithms were developed. These 
algorithms employ efficient search and scoring schemes such 
as Fast Fourier Transform (FFT)(e.g., the Katchalski-Katzir 
scheme [1]) for correlation function evaluation, Monte-Carlo 
methods, geometric hashing, etc.  Electrostatics, desolvation, 
and hydrophobic effect have been incorporated in several 
scoring functions. Despite of all the efforts, selecting the 
correct binding pose from the huge decoy data set, is still a big 
challenge.  

Nevertheless, there are many famous docking suites and 
algorithms that have shown significant progress in predicting 
near-native binding poses by making better use of biophysical 
and biochemical information in combination with 
bioinformatics. The information such as protein-protein 
interaction data bases, alanine scanning, conserved sequence 
data bases etc., in combination with machine learning 
approach, helps to identify hot-spots for protein-protein 
interactions. Subsequently, there are several issues directly or 
indirectly related to protein-protein docking, e.g., protein 
conformational flexibility[2], interfacial water molecules[3], 
atomic radii optimization [4], implicit versus explicit solvent 
and water dielectric constant[5], etc.,which make the route 
towards reliable docking predictions more curved and rugged. 
Hence, predicting correct bio-molecular complex is still a 
formidable task.  

The protein-protein docking procedure could be usually 
divided into two parts, rigid body docking and flexible docking. 
Most of the docking suites employ rigid body docking 
procedure as a first step. In rigid body docking, the protein is 
considered as non-flexible rigid body. The protein’s 
coordinates are discretized into a three dimensionalCartesian 
grid. The grid cells are sorted out based on whether they 
belongto the surface or the core of a protein. Further, surface 
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grid cells of protein and ligand are used to score the degree of 
overlap between them for different orientations and relative 
positions[1]-[6]. This procedure involves translational and 
rotational search. The search is very slow and therefore 
accelerated by well-known Fast Fourier Transform (FFT) 
technique [1] to accelerate the translational search. The 
methods of predicting near-native complex vary depending 
upon various strategies. On the other hand, in the flexible 
docking part, the flexibility of side chain, backbone, etc., were 
also taken care in various ways. Well-known software that 
implements varieties of these strategies 
includesFTDock[7],[8],[9]; HADDOCK[10],[11][12]; 
ICM[13];RosettaDock, [14], [15], [16];HEX[17], [18],[19], 
[20];ZDOCK[21], [22],[23], [24], [25]; etc. 

FTDock (Fourier Transform Dock) is the docking algorithm 
that uses simplified grid representation[7]-[9]. It implements 
the Fourier correlation theory based on 
Katchalski-Katziralgorithm[1] plus an electrostatics function 
amenable to Fourier correlation. It outputs multiple predictions 
that can be screened using biochemical information. 
Furthermore, RPScore (Residue-level Pair potential Score) 
uses a single distance constraint empirically derived pair 
potential to screen the output from FTDock. The algorithms are 
fully embedded in 3D-DOCK docking suite. As an extension to 
this approach, MultiDock (Multiple copy side-chain refinement 
Dock) is also available to improve quality of prediction. 

HADDOCK (High Ambiguity Driven protein-protein 
Docking) approach makes use of biochemical and/or 
biophysical interaction data such as, for example, chemical 
shift perturbation data obtained from NMR titration 
experiments or mutagenesis data. The information on the 
interacting residues is introduced as ambiguous interaction 
restraints (AIRs) to drive the docking. The predicted complex 
structures are ranked according to their intermolecular energy, 
i.e., sum of electrostatic, van der Waals, and AIR energy terms. 
Thus, this approach demonstrates the usefulness of AIR. 
However, new version HADDOCK2.0 has been modified to 
support docking of proteins, DNA,RNA, oligosaccharides, and 
small ligand, up to a total of six separate molecules (or 
domains) per docking. The new version allows the inclusion of 
anisotropy restraints from NMR (both residual dipolar 
couplings and relaxation data) and supports solvated docking, 
that is, allowing the explicit inclusion of interfacial water 
molecules in the docking process[10]. 

ICM is another software suite that is facilitated with many 
tools. The basic algorithm includes ODA (Optimal Docking 
Areas) method that predicts protein-protein interaction sites on 
protein surfaces. This calculation involves desolvation 
energy.It identifies optimal surface patches with the lowest 
docking desolvation energy values as calculated by atomic 
solvation parameters (ASP) derived from octanol/water transfer 
experiments and adjusted for protein-protein docking. First, 
correct solution with lowest energy confirmation is found by 
docking rigid ligand (all-atom) molecule to a set of soft 
receptor. The potentials are pre-calculated on a 0.5 Å grid from 
realistic solvent-corrected force-field energies. The inclusion 
ofthe induced changes, as well as the optimization of the 

interface side-chains of up to 400 best solutions, take place in 
second step.The third step is the filtering step, in which 
information available from the experiment is implemented. 
However, the algorithm is less successful if the backbone 
undergoes large scale rearrangements [13]. 

RosettaDock is the software suite that provides online server 
facility for protein-protein docking. The docking algorithm 
mimics the physical process of docking, i.e., it contains a 
low-resolution recognition stage and a high-resolution binding 
stage. The high-resolution refinement simultaneously 
optimizes the rigid-body displacement and the side-chain 
conformations. In this suite the Rosetta techniques were 
adapted and expanded for docking problems. The algorithm 
includes a fast search using low-resolution potentials followed 
by an atomic-scale refinement step incorporating simultaneous 
optimization of side-chain positions and rigid-body 
displacement. The process mimics the steps involved in a 
diffusional encounter between two macromolecules, although 
the treatment is certainly not a rigorous physical simulation. 
Scoring functions include both physical and physically inspired 
statistical potentials derived from structures in the Protein Data 
Bank (PDB)[26]. Small-perturbation studies are employed to 
examine the quality of the scoring function [27]-[28]. 

HEX software suite handles the docking problem in a little 
different way.  FFT based algorithms can speed up the 
calculationstremendously. However, it is not readily feasible to 
incorporate the prior knowledge about complex and focus on 
them. HEX uses closed-form 6 D Spherical Polar Fourier (SPF) 
correlation expressions, from which arbitrary 
multi-dimensionalmulti-propertymulti-resolution FFT 
correlations can be generated. The approach is demonstrated by 
calculating 1D, 3D and 5D rotationalcorrelations of 3D shape 
and electrostatic expansions up topolynomial order L=30 on a 2 
GB personal computer. The SPF approach provides a natural 
way to define one or two simple angular constraints with which 
to focus docking searches around known or hypothesized 
binding sites. This accelerates the calculation and can 
significantly reduce the number of false-positive predictions. 
The approach provides a practicaland fast tool for rigid body 
protein-protein docking, especiallywhen prior knowledge about 
one or both binding sites is available. With online HexServer 
facility, recently, HEX have implemented Graphical Processing 
Unit (GPU) version to accelerate the calculations[17]. 

ZDOCK is oneof the successful suites that has shown great 
prediction abilities in Critical Assessment of PRedicted 
Interactions (CAPRI) [29].ZDOCK uses a fast Fourier 
transform to search all possible binding modes for the proteins, 
evaluating based on shape complementarity, desolvation 
energy, and electrostatics. The top 2000 predictions from 
ZDOCK are then given to RDOCK where they are minimized 
by CHARMM to improve the energies and eliminate clashes, 
and then the electrostatic and desolvation energies are 
recomputed by RDOCK (in a more detailed fashion than the 
calculations performed by ZDOCK). However, RDOCK 
approach is very time consuming as it involves molecular 
force-field based energy minimization of macromolecules. In 
the new protocol of ZDOCK, the rescoring scheme, ZRANK 
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[23]has been introduced. It utilizes detailed electrostatics, van 
der Waals, and desolvation to rescore initial-stage docking 
predictions.Weights for the scoring terms were optimized for a 
set of test cases, and this optimized function was then tested on 
an independent set of non-redundant cases[22]. 

Scoring functions bearing the information of binding affinity 
isgenerally more useful because they can be used to 
discriminate the binding complexes from non-binding 
complexes, especially when the shape complementarity is the 
only factor contributing to the binding.   Many research groups 
are concerned about experimental data to include in scoring 
functions. Dissociation constant or binding affinity is one of 
those experimental data’s that is considered as an important 
criterion for many new benchmarks [30]. However, poor 
correlation between experimental and calculated binding 
affinity indicates the need to improve the scoring functions 
[31]. It has been shown that the combination of rescoring and 
refinement significantly improves the protein docking 
performance [25].Also, molecular recognition and binding are 
the two main steps involved in protein complex formation. The 
recognition step must depend upon long range forces. 
Electrostatic complementarities are responsible for recognizing 
correct binding pose and the other factors such as short ranges 
van der Waals and hydrophobic interactions are involved 
stabilization of the formed complex. 

In this study, we first propose a new benchmark set, in which 
experimentally determined binding affinity data are available. 
Specifically, we have assessed the performance of ZDOCK and 
ZRANK benchmark on Benchmark 2.0 and 3.0 data sets,as 
well as our new benchmark data set. Further, we studies a new 
scoring scheme based on the solution of non-linear 
Poisson-Boltzmann equation.  We used the well-studied 
barnase-barstar complex to address some of the issues related to 
optimization ofthe parameters for free energy calculations. 

II. METHODS 

A. ZDOCK and ZRANK assessment 

Benchmark 2.0 [32]and 3.0 [33]are used for assessment. The 
benchmarks were obtained from 
thehttp://zlab.umassmed.edu/zdock/benchmark.shtmlwebpage. 
The set consists of bound and unbound cases. Initially, the 
bound and unbound cases are separated out and the surfaces 
were marked using the mark_surf script. Some of the residues 
and ligands (non-protein molecules) were excluded. Further, 
ZDOCK is run in two sets. In the first set,the lower sampling 
density with resolution of 15⁰was used, whichyield 3600 top 
predictions. In second set, the higher density sampling with 
54000 predictions with resolution of 6⁰ were obtained only 
forbarnase-barstar case (PDB ID 1BRS). All the 3600 
predictions were re-ranked using ZRANK[23].In contrast to 
other assessment criteria, here we propose a more practical 
measure for the success of the docking predictions, the rate of 
first success (RFS), which is similar to the concept of mean first 
passage time (MFPT), and the quantity is normalized by the 
total number of predictions so that predictions with different 
density of sampling can be compared. This measure was 
proposed in view of the fact that the top predictions of most 
protein-protein docking algorithms or ranking schemes are 
usually not to correct binding poses.  

The first rate of success would indicate the average number 
of experiments (mutagenesis, chemical-crosslinking, etc.,) 
needs to be conducted in order to find out the correct 
protein-protein binding pose.   Here, thepredicted complexes 
were scanned from the top in the 3600 ranked prediction 
listuntil the root-mean-squared prediction (RMSD)is smaller 
than the defined threshold (in this study 3.0 Å). Plots were 
made using matplotlib module of python. For benchmark 3.0, 
the plots for ZDOCK and ZRANK bound and unbound cases 
appears to be a single red line, in fact, red and blue lines are 
overlapping.  

B. A new benchmark for protein-protein docking 

A newbenchmark set for protein-protein docking prediction, 
with binding affinity information, designated as PPIbind, was 
extracted from thePDBbind[34] with the three criteria: First, 
only two chains are present in the protein-protein complex.  
Second, no small molecule or chemical compound is present in 
the complex. Third, there should only be one biological 
assembly in this PDB entry.A total of 62 complexes were 
included in thePPIbindbenchmark set. Fig.1 shows the 
distribution of binding affinity of 1371 protein-protein 
complexes out of 1441 from PDBbind(released on September 
22, 2011) and the 62 complexes in PPIbind having Kd/K i values. 
It can be seen that the binding free energy distribution of 
PPIbind stays in the central region of the binding affinity 
distribution of PDBbind, which indicates that PPIbind, 
although a much smaller dataset, can well represent diverse 
protein-protein interactions.  

 
Fig. 1 Distribution of binding free energies of the 1371 protein-protein 
complexes from PDBbind data set (released on September 22, 2011) 

and PPIbind. The unit of the x-axis is kcal/mol 

C. AMBER Energetics 

 
∆���� � ����,�	
����  ����,������	�  ����,������  

∆���� � ����,�	
����  ����,������	�  ����,������ 
 
The amber energies were obtained from 0 step MD 

simulations using AMBER Molecular Dynamics package [35]. 

D. APBS Energetics 

The adaptive Poisson-Boltzmann solver(APBS) is used to 
calculate the electrostatic contribution of free energies[36]. In 
general, calculating binding free energies divides the binding 
process up into desolvation and Coulombic components: 
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Where ∆∆�	���  is the solvation energy and 
electrostatic energy of complex formation (refer Fig. 4 for more 
details).  

E. Barnase-Barstar analysis 

The barnase-barstar protein complex (PDB ID: 1BRS)
used for in depth studies. The biological unit was obtained from 
the Protein Data Bank [26]. 

III.  RESULTS AND DISCUSSIONS

A. Assessment of Various Benchmarks 

Predicting correct binding pose in protein
indeed a big challenge. In order to address this problem, we 
performed critical assessment of the benchmarks using 
well-known ZDOCK software suite and 
re-ranking scheme. We used benchmark 2.0 and 3.0 as well as 
our own Kd based benchmark from PDB
assessment.  

The assessments onZDOCK benchmark 2.0 and 3.0
carries out as described in the Methods. The data set
bound and unbound cases. In benchmark 2.0 there are 84 sets of 
complexes [32] whereas in benchmark 3.0 there are 40 
complexes more in addition to 2.0 [33]
complexes were used for the assessment. 

Initially, the surface of the ligand and the receptors were 
marked and subjected to ZDOCK. Total of 3600 predictions 
were obtained and the RMSD (root-mean
calculated from the native complex. As mentioned in 
the rate of first success was recorded for each case. Further, the 
predictions were re-ranked using ZRANK scheme and the new 
rate was determined for each data set.  

We used a stringent criterion to evaluate the correct binding 
pose. If the RMSD < 3.0 Å the complex is considered to be near 
native prediction. The plots for the rate of first success
show two curves, where the blue curve was the ranking by the 
ZDOCK score,and the red curveby the ZRANK
under the curve decides the extent of succe
the area under the curve, less the top ranked complexe
to scan, thus higher success rate. Less a
implies more scanning and more success. 

In bound cases the plots for benchmark 2.0 and 3.0
and (b), shows that the re-scoring scheme helps to improve the 
success rate. In the unbound cases, theplot
success shows the similar trend as that of the 
(c) and (d)). 
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is the solvation energy and ∆∆�	���  is the 
electrostatic energy of complex formation (refer Fig. 4 for more 

(PDB ID: 1BRS)was 
biological unit was obtained from 

ISCUSSIONS 

Predicting correct binding pose in protein-protein docking is 
ed a big challenge. In order to address this problem, we 

performed critical assessment of the benchmarks using the 
known ZDOCK software suite and the ZRANK 

ranking scheme. We used benchmark 2.0 and 3.0 as well as 
hmark from PDBbinddataset for the 

benchmark 2.0 and 3.0 setswere 
ethods. The data sets have 

bound and unbound cases. In benchmark 2.0 there are 84 sets of 
whereas in benchmark 3.0 there are 40 

]. Thus total of 124 

Initially, the surface of the ligand and the receptors were 
marked and subjected to ZDOCK. Total of 3600 predictions 

mean-square-deviation) is 
e complex. As mentioned in Methods, 

was recorded for each case. Further, the 
ZRANK scheme and the new 

a stringent criterion to evaluate the correct binding 
x is considered to be near 

for the rate of first success(Fig. 2) 
curve was the ranking by the 

ZRANK score. The area 
tent of success of docking. Larger 
the top ranked complexes needed 

. Less area under the curve 
 

In bound cases the plots for benchmark 2.0 and 3.0,Fig. 2, (a) 
scoring scheme helps to improve the 

plot of the rate of first 
the bound case (Fig 2. 

Fig. 2 Comparison of the rate of first 
data set:  ZDOCK and ZRANK comparison for bound (a) 2.0
and unbound (c) 2.0, (d) 3.0 benchmarks.

cases, the red and blue lines are almost perfectly overlap
 

On comparing the performance of Z
cases are difficult to rescore 
blue plots). Same is with ZRANK, as the area under the curve 
in the unbound set is more than that of 
plots). In bound 2.0, ZRANK rescoring scheme appears to be
effective, which is not same in unbound cases, however. Both 
ZDOCK and ZRANK in benchmark 2.0 and 3.0 are 
overlapping suggesting that the re
ZDOCK prediction any more. 

B. Assessment on PPIbind 

Similar to above ZDOCK benchmark 2.
performed critical assessment for our benchmark. This 
benchmark is essentially a bound 
extracted from thePDBbind database 
mentioned in the Method section
provides a comprehensive collection of the experimentally 
measured binding affinity data for all types of 
complexes deposited in the Protein Data Bank (PDB). As
are interested only in protein-
we choose protein-protein binding affinity dataset. 
1441 entries were found according to out criterion
free energy distribution is shown in Fig. 
free energyvalues spans between
a large diversity in protein-protein interactions
is a significantly larger number than the number of complexes 
in ZDOCK benchmark sets, and it is often difficult to judge 
which biological unit of a given PDB entry represents the true 
binding scenario.  On the other hand, in some protein
interactions, small chemical molecules could play some roles in 
facilitating or inhibiting the binding. Finally, to simplify the 
scenario for protein-protein docking, only binary complexes are 
considered.  Nevertheless, the 
of PPIbind overlaps with the central region of the binding free 
energy distribution of the protein
PDBbind.    

 
of the rate of first successwith ZDOCK benchmark 

data set:  ZDOCK and ZRANK comparison for bound (a) 2.0, (b) 3.0 
and unbound (c) 2.0, (d) 3.0 benchmarks. (In 3.0 bound and unbound 

es are almost perfectly overlapped) 

performance of ZDOCK, the unbound 
difficult to rescore than that of bound cases (Fig. 2, 

ame is with ZRANK, as the area under the curve 
is more than that of the bound set (Fig. 2 red 
, ZRANK rescoring scheme appears to be 

ffective, which is not same in unbound cases, however. Both 
ZDOCK and ZRANK in benchmark 2.0 and 3.0 are 
overlapping suggesting that the re-ranking is not improving the 

prediction any more.  

 

Similar to above ZDOCK benchmark 2.0 and 3.0, we 
performed critical assessment for our benchmark. This 

s essentially a bound benchmarkwith entries 
PDBbind database [34] and the three criteria 

mentioned in the Method section. Basically, PDBbind database 
provides a comprehensive collection of the experimentally 
measured binding affinity data for all types of bio-molecular 
complexes deposited in the Protein Data Bank (PDB). As we 

-protein interactions in this study, 
protein binding affinity dataset. There are 

were found according to out criterion. The binding 
distribution is shown in Fig. 1. Most of the binding 
values spans between -20 to -2 kcal/mol, suggesting 

protein interactions. However, 1441 
larger number than the number of complexes 

in ZDOCK benchmark sets, and it is often difficult to judge 
which biological unit of a given PDB entry represents the true 

On the other hand, in some protein-protein 
interactions, small chemical molecules could play some roles in 

or inhibiting the binding. Finally, to simplify the 
protein docking, only binary complexes are 

considered.  Nevertheless, the binding free energy distribution 
of PPIbind overlaps with the central region of the binding free 
energy distribution of the protein-protein interactions in 
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Fig. 3 The rate of first success of ZDOCK and ZRANK on
benchmark set, which can be considered an external test set

 
The PDB IDs were extracted from the PDB data bank 

on the criterion as described in Methods. The data
subdivided based on number of biological units available in the 
PDB data base. We found that out of 64 cases, one has 3;
have 2 and rest have one biological unit each. Each complex 
has experimentally determined Kd (dissociation constant) or 
Ki(inhibitor constant) values. The protein
were separated in to subunit according to chain ID.
subunit is treated as the receptor and the smaller treated as
ligand.  

We performed ZDOCK and ZRANK prediction and found 
that the plots of the rate of first successfollow
that of Benchmark 2.0 and 3.0 (Fig. 3). Similar to ZDOCK 
benchmarks, ZDOCK has larger area under the curve as 
compare to ZRANK suggesting that the ZRANK 
does not help to improve the prediction
definition.  

 

Fig. 4 Thermodynamic cycle for binding free energy 
whitebackground represents the vacuum environment, and the 

background represents the aqueous environment

C. AMBER and APBS based energetics 

From all above assessment, it has been clear that there is lots 
of scope to develop energy functions in order to predict correct 
binding poses. Although, ZRANK is performing on its level 
best, there is a need to design new scoring functions
perform better than the present one. On these grounds, we 
proceed with some basic tests to define new energ
used two approaches, the simple molecular mechanics 

 

 
The rate of first success of ZDOCK and ZRANK on thePPIbind 

benchmark set, which can be considered an external test set 

were extracted from the PDB data bank based 
on the criterion as described in Methods. The dataset is further 
ubdivided based on number of biological units available in the 

cases, one has 3; seven 
have 2 and rest have one biological unit each. Each complex 

(dissociation constant) or 
The protein-protein complexes 

were separated in to subunit according to chain ID. The larger 
receptor and the smaller treated as the 

K prediction and found 
follow similar pattern as 

). Similar to ZDOCK 
benchmarks, ZDOCK has larger area under the curve as 
compare to ZRANK suggesting that the ZRANK re-ranking 

improve the prediction according to RFS 

 
inding free energy calculations. The 

environment, and the blue 
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ve assessment, it has been clear that there is lots 
of scope to develop energy functions in order to predict correct 
binding poses. Although, ZRANK is performing on its level 

scoring functions that could 
han the present one. On these grounds, we 

proceed with some basic tests to define new energetics. We 
molecular mechanics 

energetics and a free energy model
of non-linear Poisson-Boltzmann equation
The aim of these studies is to check whether 
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The barnase-barstar system
complex [37]. The potential isosurface and solvent accessible 
surface area (SAS) is shown in Fig. 5. 
shows electrostatic complementarity. 
complex, having totalof 196 residues
binding affinity, i.e. Kd≈ 13 fM
system for energetic studies. 

We chose 10 top ranked predictions
far-native prediction for the energetic studies as shown
I. The native structure has lowest energy and as we move away 
from the native conformation (i.e. from native complex to 
complex 10) the energy increases. For the randomly chosen 
far-native conformation (complex 399119), the energy is found 
to be lowest in the table. Thus, in th
found that the AMBER energetics
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sampling) complexes were obtained.  

 
barstar biological subunit with chains A and D. 

(b) APBS generated potential isosurface and (c) SAS and surface 
potential 

em is awell-studied protein-protein 
. The potential isosurface and solvent accessible 

surface area (SAS) is shown in Fig. 5. The interface surface 
ectrostatic complementarity. 1BRS is a protein-protein 

196 residues, with remarkably high 
≈ 13 fM. This is an excellent complex 

 
ranked predictions by ZDOCK and one 

native prediction for the energetic studies as shown in Table 
I. The native structure has lowest energy and as we move away 
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native conformation (complex 399119), the energy is found 
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ound that the AMBER energetics, as a general trend,may be 
useful for distinguishing the conformations. Hence we 

for all 54000 predictions. On analyzing 
ound that there are huge number of 

energetically decoy poses do exists (Fig. 6). This suggests that 
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kcal/mol 

Native  -538.57  -603.09  -66.87

1 -513.82  -573.41  -51

2 -506.68 -591.04  -63.10 

3 -504.52 -602.79 -55.16

4 -494.50 -562.54 -61.63

5 -496.47 -588.27 -53.57

6 -527.24 -557.30 -52.17

7 -525.03 -580.24 -44.59

8 -528.12 -601.52 -68.37

9 -495.10 -578.43 -49.03

10 -550.46 -647.64 -46.93

39119 -26.31  -91.00  27.10

Fig. 6 AMBER Energetics. Energetically decoy data points
  
We also took another strategy based on the solution

non-linear Poisson-Boltzmann equation (
bythe APBS software suit[36]. We used this method to evaluate 
the binding free energy of the barnase-barstar
dissociation constant, the free energy is estimated to be 
RT ln (Kd) = -19.18 kcal/mol. However, for the native complex, 
the calculated free energy is still far away from the 
experimental value, as shown in Table 
calculations at 7 different dielectric constants and found that no 
calculation converges to the experimental values. Thus, 
straightforward to apply this approach for discriminating the 
decoys from the native poses and more investigations (different 
atom radii set for PB calculations, different
definitions, optimizing the contacts of interfaces, etc.) are 
needed.  

 
TABLE II 

APBS ENERGETICS FOR BARNASE-BARSTAR

DIELECTRIC CONSTANT ∆∆G (KCAL

 

66.87 -85.27 

1.00 -77.44 

63.10  -77.17 

55.16 -66.20 

61.63 -79.78 

53.57 -75.76 

52.17 -76.73 

44.59 -71.45 

68.37 -84.57 

49.03 -75.38 

46.93 -55.47 

27.10 8.76 
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based on the solutions of 
Boltzmann equation (nPBE), calculated 

We used this method to evaluate 
arstar system. From the 

the free energy is estimated to be ∆GRT = 
. However, for the native complex, 

far away from the 
Table II. We performed 

ferent dielectric constants and found that no 
e experimental values. Thus, it is not 

for discriminating the 
decoys from the native poses and more investigations (different 

different molecular boundary 
optimizing the contacts of interfaces, etc.) are 

BARSTAR 
KCAL/MOL) 
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 The overall assessment of the ZDOCK and ZRANK help 
us to understand the challenge in prediction of correct binding 
pose and insilico identification of a
protein-protein interactions. 
energeticscan be considered as useful tool for ruling out many 
decoys.  More comprehensive free energy
non-linear Poisson-Boltzmann 
to invivo or invitro protein system, is still a big challenge.
worthwhile to note that recent study indicate the scope to 
achieve reliable electrostatics for 
altering the electrostatic properties of proteins

IV. CONCLUSION

The well-known docking suite, ZDOCK and the rescoring 
scheme, ZRANK, do not always generate correct binding 
modes of the protein-protein interacting partners, esp
unbound cases. APBS based free energy calculation based 
analysis for Barnase-Barstar model suggests the possible used 
of non-linear PBE based free energy calculati
scheme. The simple molecular mechanics energetics with the
AMBER force fieldmay be used to combine with
energetics for better prediction of binding poses
found that AMBER energetics shows
thus other criteria need to be introduced for better prediction
The difference between calculated and experimental binding 
energy, corresponds to lack of proper weighting factors as well 
as important free energetic components, such as entropic term, 
hydrophobic interaction term, etc. New data
experimental binding affinity or 
in improving theoretical predictions.
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