Prediction of the Total Decay Heat from Fast Neutron Fission of 235U and 239Pu
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Prediction of the Total Decay Heat from Fast Neutron Fission of 235U and 239Pu

Authors: Sherif. S. Nafee, Ameer. K. Al-Ramady, Salem. A. Shaheen

Abstract:

The analytical prediction of the decay heat results from the fast neutron fission of actinides was initiated under a project, 10-MAT1134-3, funded by king Abdulaziz City of Science and Technology (KASCT), Long-Term Comprehensive National Plan for Science, Technology and Innovations, managed by a team from King Abdulaziz University (KAU), Saudi Arabia, and supervised by Argonne National Laboratory (ANL) has collaborated with KAU's team to assist in the computational analysis. In this paper, the numerical solution of coupled linear differential equations that describe the decays and buildups of minor fission product MFA, has been used to predict the total decay heat and its components from the fast neutron fission of 235U and 239Pu. The reliability of the present approach is illustrated via systematic comparisons with the measurements reported by the University of Tokyo, in YAYOI reactor.

Keywords: Decay heat, fast neutron fission, and Numerical Solution of Linear Differential Equations.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1061772

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1497

References:


[1] P. Reiter, T. L. Khoo, I. Ahmad, A. V. Afanasjev, A. Heinz, T. Lauritsen, C. J. Lister, D. Seweryniak, P. Bhattacharyya, P. A. Butler, M. P. Carpenter, A. J. Chewter, J. A. Cizewski, C. N. Davids, J. P. Greene, P. T. Greenlees, K. Helariutta, R.-D. Herzberg, R. V. F. Janssens, G. D. Jones, R. Julin, H. Kankaanp├ñ├ñ, H. Kettunen, F. G. Kondev, P. Kuusiniemi, M. Leino, S. Siem, A. A. Sonzogni, J. Uusitalo, and I. Wiedenhöver, " Structure of the Odd-A, Shell-Stabilized Nucleus 253 102No," Phys. Rev. Lett. Vol. 95, pp. 032501/1-4, 2005.
[2] D. Seweryniak, N. Davids, C. Robinson, J. Woods, B. Blank et al, "Particle-core coupling in the transitional proton emitters 145, 146, 147Tm," Eur. Phys. J, vol. A25, Supplement 1, pp. 159, 2005. C. L. Duke, P. G. Hansen, O. B. Nielsen, G. Rudstam, "Strengthfunction phenomena in electron-capture beta decay," ISOLDE COLLABORATION, CERN Geneva, Switzerland,. Nucl. Phys., vol. A151, pp. 609, 1970.
[3] R. C. Greenwood, R.G. Helmer, M. H. Putnam, K. D. Watts, "Measurement of β−-decay intensity distributions of several fissionproduct isotopes using a total absorption ╬│-ray spectrometer," Nucl. Instr. and Meth. vol. A390, pp. 95. 1997.
[4] J. A. Hardy, L. C. Carraz, B. Jonson, P. G. Hansen, P.G., "The essential decay of pandemonium: A demonstration of errors in complex betadecay schemes," Phys. Lett., vol. B71, pp. 307, 1977.
[5] T. Yoshida, R. Najasima, J. Nucl. Sci. and Technol., vol 18, pp. 393, 1981.
[6] O. Masahico, K. Shin-Chi, M. Katsufomi, N. Takashi, M. Toshiaki, "Analysis of Curium Isotopes in Mixed Oxide Fuel Irradiated in Fast Reactor," J. Nucl. Sci. Tech., vol. 38, pp. 912, 2001.
[7] S. Nafee, A. Al-Ramady and S. Shaheen, "Decay Heat Contribution Analyses of Curium Isotopes in the Mixed Oxide Nuclear Fuel," World Academy of Science, Engineering and Technology J., vol 68, pp. 2238, 2012.
[8] L. F. Shampine, "Numerical Solution of Ordinary Differential Equations," Chapman and Hall, New York, 1994.
[9] L. F. Shampine and M. W. Reichelt, Journal on Scientific Computing, vol 18, 1997, pp. 1.
[10] K. E. Brenan, S. L. Campbell, and L. R. Petzold, "Numerical Solution of Initial Value Problems in Differential-Algebraic Equations," SIAM, Philadelphia, 1996.
[11] P. Bogacki and L. F. Shampine, "A 3(2) pair of Runge - Kutta formulas,"Applied Mathematics Letters, vol 2, 1989.
[12] Ngoc Son, P., and Jun-ichi, K., 2007. Application Program for Fission Product Decay Heat Calculations, JAEA-Data/ Code.