Search results for: Transport.
158 Numerical Analysis of Oil-Water Transport in Horizontal Pipes Using 1D Transient Mathematical Model of Thermal Two-Phase Flows
Authors: Evgeniy Burlutskiy
Abstract:
The paper presents a one-dimensional transient mathematical model of thermal oil-water two-phase emulsion flows in pipes. The set of the mass, momentum and enthalpy conservation equations for the continuous fluid and droplet phases are solved. Two friction correlations for the continuous fluid phase to wall friction are accounted for in the model and tested. The aerodynamic drag force between the continuous fluid phase and droplets is modeled, too. The density and viscosity of both phases are assumed to be constant due to adiabatic experimental conditions. The proposed mathematical model is validated on the experimental measurements of oil-water emulsion flows in horizontal pipe [1,2]. Numerical analysis on single- and two-phase oil-water flows in a pipe is presented in the paper. The continuous oil flow having water droplets is simulated. Predictions, which are performed by using the presented model, show excellent agreement with the experimental data if the water fraction is equal or less than 10%. Disagreement between simulations and measurements is increased if the water fraction is larger than 10%.Keywords: Mathematical model, Oil-Water, Pipe flows.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2288157 Hydrogen Rich Fuel Gas Production from 2- Propanol Using Pt/Al2O3 and Ni/Al2O3 Catalysts in Supercritical Water
Authors: Yağmur Karakuş, Fatih Aynacı, Ekin Kıpçak, Mesut Akgün
Abstract:
Hydrogen is an important chemical in many industries and it is expected to become one of the major fuels for energy generation in the future. Unfortunately, hydrogen does not exist in its elemental form in nature and therefore has to be produced from hydrocarbons, hydrogen-containing compounds or water. Above its critical point (374.8oC and 22.1MPa), water has lower density and viscosity, and a higher heat capacity than those of ambient water. Mass transfer in supercritical water (SCW) is enhanced due to its increased diffusivity and transport ability. The reduced dielectric constant makes supercritical water a better solvent for organic compounds and gases. Hence, due to the aforementioned desirable properties, there is a growing interest toward studies regarding the gasification of organic matter containing biomass or model biomass solutions in supercritical water. In this study, hydrogen and biofuel production by the catalytic gasification of 2-Propanol in supercritical conditions of water was investigated. Pt/Al2O3and Ni/Al2O3were the catalysts used in the gasification reactions. All of the experiments were performed under a constant pressure of 25MPa. The effects of five reaction temperatures (400, 450, 500, 550 and 600°C) and five reaction times (10, 15, 20, 25 and 30 s) on the gasification yield and flammable component content were investigated.Keywords: 2-Propanol, Gasification, Ni/Al2O3, Pt/Al2O3, Supercritical water.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2052156 Design of Walking Beam Pendle Axle Suspension System
Authors: K. Arunachalam, P. Mannar Jawahar
Abstract:
This paper deals with design of walking beam pendel axle suspension system. This axles and suspension systems are mainly required for transportation of heavy duty and Over Dimension Consignment (ODC) cargo, which is exceeding legal limit in terms of length, width and height. Presently, in Indian transportation industry, ODC movement growth rate has increased in transportation of bridge sections (pre-cast beams), transformers, heavy machineries, boilers, gas turbines, windmill blades etc. However, current Indian standard road transport vehicles are facing lot of service and maintenance issues due to non availability of suitable axle and suspension to carry the ODC cargoes. This in turn will lead to increased number of road accidents, bridge collapse and delayed deliveries, which finally result in higher operating cost. Understanding these requirements, this work was carried out. These axles and suspensions are designed for optimum self – weight with maximum payload carrying capacity with better road stability.
Keywords: Heavy duty trailer, Off–highway trucks, Over dimension cargo, Walking beam pendel axle suspension.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5622155 The Use of Fractional Brownian Motion in the Generation of Bed Topography for Bodies of Water Coupled with the Lattice Boltzmann Method
Authors: Elysia Barker, Jian Guo Zhou, Ling Qian, Steve Decent
Abstract:
A method of modelling topography used in the simulation of riverbeds is proposed in this paper which removes the need for datapoints and measurements of a physical terrain. While complex scans of the contours of a surface can be achieved with other methods, this requires specialised tools which the proposed method overcomes by using fractional Brownian motion (FBM) as a basis to estimate the real surface within a 15% margin of error while attempting to optimise algorithmic efficiency. This removes the need for complex, expensive equipment and reduces resources spent modelling bed topography. This method also accounts for the change in topography over time due to erosion, sediment transport, and other external factors which could affect the topography of the ground by updating its parameters and generating a new bed. The lattice Boltzmann method (LBM) is used to simulate both stationary and steady flow cases in a side-by-side comparison over the generated bed topography using the proposed method, and a test case taken from an external source. The method, if successful, will be incorporated into the current LBM program used in the testing phase, which will allow an automatic generation of topography for the given situation in future research, removing the need for bed data to be specified.
Keywords: Bed topography, FBM, LBM, shallow water, simulations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 306154 Generalized Mathematical Description and Simulation of Grid-Tied Thyristor Converters
Authors: V. S. Klimash, Ye Min Thu
Abstract:
Thyristor rectifiers, inverters grid-tied, and AC voltage regulators are widely used in industry, and on electrified transport, they have a lot in common both in the power circuit and in the control system. They have a common mathematical structure and switching processes. At the same time, the rectifier, but the inverter units and thyristor regulators of alternating voltage are considered separately both theoretically and practically. They are written about in different books as completely different devices. The aim of this work is to combine them into one class based on the unity of the equations describing electromagnetic processes, and then, to show this unity on the mathematical model and experimental setup. Based on research from mathematics to the product, a conclusion is made about the methodology for the rapid conduct of research and experimental design work, preparation for production and serial production of converters with a unified bundle. In recent years, there has been a transition from thyristor circuits and transistor in modular design. Showing the example of thyristor rectifiers and AC voltage regulators, we can conclude that there is a unity of mathematical structures and grid-tied thyristor converters.Keywords: Direct current, alternating current, rectifier, AC voltage regulator, generalized mathematical model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1009153 A New Computational Tool for Noise Prediction of Rotating Surfaces (FACT)
Authors: Ana Vieira, Fernando Lau, João Pedro Mortágua, Luís Cruz, Rui Santos
Abstract:
The air transport impact on environment is more than ever a limitative obstacle to the aeronautical industry continuous growth. Over the last decades, considerable effort has been carried out in order to obtain quieter aircraft solutions, whether by changing the original design or investigating more silent maneuvers. The noise propagated by rotating surfaces is one of the most important sources of annoyance, being present in most aerial vehicles. Bearing this is mind, CEIIA developed a new computational chain for noise prediction with in-house software tools to obtain solutions in relatively short time without using excessive computer resources. This work is based on the new acoustic tool, which aims to predict the rotor noise generated during steady and maneuvering flight, making use of the flexibility of the C language and the advantages of GPU programming in terms of velocity. The acoustic tool is based in the Formulation 1A of Farassat, capable of predicting two important types of noise: the loading and thickness noise. The present work describes the most important features of the acoustic tool, presenting its most relevant results and framework analyses for helicopters and UAV quadrotors.
Keywords: Rotor noise, acoustic tool, GPU Programming, UAV noise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2058152 Gyrotactic Microorganisms Mixed Convection Nanofluid Flow along an Isothermal Vertical Wedge in Porous Media
Authors: A. Mahdy
Abstract:
The main objective of the present article is to explore the state of mixed convection nanofluid flow of gyrotactic microorganisms from an isothermal vertical wedge in porous medium. In our pioneering investigation, the easiest possible boundary conditions have been employed, in other words when the temperature, the nanofluid and motile microorganisms’ density have been considered to be constant on the wedge wall. Adding motile microorganisms to the nanofluid tends to enhance microscale mixing, mass transfer, and improve the nanofluid stability. Upon the Oberbeck–Boussinesq approximation and non-similarity transmutation, the paradigm of nonlinear equations are obtained and tackled numerically by using the R.K. Gill and shooting methods to obtain the dimensionless velocity, temperature, nanoparticle concentration and motile microorganisms density together with the reduced Sherwood, Nusselt, and numbers. Bioconvection parameters have strong effect upon the motile microorganism, heat, and volume fraction of nanoparticle transport rates. In the case when bioconvection is neglected, the obtained computations were found in very good agreement with the previous published data.
Keywords: Bioconvection, wedge, gyrotactic microorganisms, porous media, nanofluid, mixed.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1538151 Sediment Patterns from Fluid-Bed Interactions: A Direct Numerical Simulations Study on Fluvial Turbulent Flows
Authors: Nadim Zgheib, Sivaramakrishnan Balachandar
Abstract:
We present results on the initial formation of ripples from an initially flattened erodible bed. We use direct numerical simulations (DNS) of turbulent open channel flow over a fixed sinusoidal bed coupled with hydrodynamic stability analysis. We use the direct forcing immersed boundary method to account for the presence of the sediment bed. The resolved flow provides the bed shear stress and consequently the sediment transport rate, which is needed in the stability analysis of the Exner equation. The approach is different from traditional linear stability analysis in the sense that the phase lag between the bed topology, and the sediment flux is obtained from the DNS. We ran 11 simulations at a fixed shear Reynolds number of 180, but for different sediment bed wavelengths. The analysis allows us to sweep a large range of physical and modelling parameters to predict their effects on linear growth. The Froude number appears to be the critical controlling parameter in the early linear development of ripples, in contrast with the dominant role of particle Reynolds number during the equilibrium stage.Keywords: Direct numerical simulation, immersed boundary method, sediment-bed interactions, turbulent multiphase flow, linear stability analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 673150 Streamwise Conduction of Nanofluidic Flow in Microchannels
Authors: Yew Mun Hung, Ching Sze Lim, Tiew Wei Ting, Ningqun Guo
Abstract:
The effect of streamwise conduction on the thermal characteristics of forced convection for nanofluidic flow in rectangular microchannel heat sinks under isothermal wall has been investigated. By applying the fin approach, models with and without streamwise conduction term in the energy equation were developed for hydrodynamically and thermally fully-developed flow. These two models were solved to obtain closed form analytical solutions for the nanofluid and solid wall temperature distributions and the analysis emphasized details of the variations induced by the streamwise conduction on the nanofluid heat transport characteristics. The effects of the Peclet number, nanoparticle volume fraction, thermal conductivity ratio on the thermal characteristics of forced convection in microchannel heat sinks are analyzed. Due to the anomalous increase in the effective thermal conductivity of nanofluid compared to its base fluid, the effect of streamwise conduction is expected to be more significant. This study reveals the significance of the effect of streamwise conduction under certain conditions of which the streamwise conduction should not be neglected in the forced convective heat transfer analysis of microchannel heat sinks.Keywords: fin approach, microchannel heat sink, nanofluid, streamwise conduction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740149 Numerical and Experimental Analysis of Temperature Distribution and Electric Field in a Natural Rubber Glove during Microwave Heating
Authors: U. Narumitbowonkul, P. Keangin, P. Rattanadecho
Abstract:
The characteristics of temperature distribution and electric field in a natural rubber glove (NRG) using microwave energy during microwave heating process are investigated numerically and experimentally. A three-dimensional model of NRG and microwave oven are considered in this work. The influences of position, heating time and rotation angle of NRG on temperature distribution and electric field are presented in details. The coupled equations of electromagnetic wave propagation and heat transfer are solved using the finite element method (FEM). The numerical model is validated with an experimental study at a frequency of 2.45 GHz. The results show that the numerical results closely match the experimental results. Furthermore, it is found that the temperature distribution and electric field increases with increasing heating time. The hot spot zone appears in NRG at the tip of middle finger while the maximum temperature occurs in case of rotation angle of NRG = 60 degree. This investigation provides the essential aspects for a fundamental understanding of heat transport of NRG using microwave energy in industry.
Keywords: Electric field, Finite element method, Microwave energy, Natural rubber glove.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2191148 New Approach for Minimizing Wavelength Fragmentation in Wavelength-Routed WDM Networks
Authors: Sami Baraketi, Jean-Marie Garcia, Olivier Brun
Abstract:
Wavelength Division Multiplexing (WDM) is the dominant transport technology used in numerous high capacity backbone networks, based on optical infrastructures. Given the importance of costs (CapEx and OpEx) associated to these networks, resource management is becoming increasingly important, especially how the optical circuits, called “lightpaths”, are routed throughout the network. This requires the use of efficient algorithms which provide routing strategies with the lowest cost. We focus on the lightpath routing and wavelength assignment problem, known as the RWA problem, while optimizing wavelength fragmentation over the network. Wavelength fragmentation poses a serious challenge for network operators since it leads to the misuse of the wavelength spectrum, and then to the refusal of new lightpath requests. In this paper, we first establish a new Integer Linear Program (ILP) for the problem based on a node-link formulation. This formulation is based on a multilayer approach where the original network is decomposed into several network layers, each corresponding to a wavelength. Furthermore, we propose an efficient heuristic for the problem based on a greedy algorithm followed by a post-treatment procedure. The obtained results show that the optimal solution is often reached. We also compare our results with those of other RWA heuristic methods
Keywords: WDM, lightpath, RWA, wavelength fragmentation, optimization, linear programming, heuristic
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1871147 An Assessment of Ozone Levels in Typical Urban Areas in the Malaysian Peninsular
Authors: Negar Banan, Mohd Talib Latif, Liew Juneng
Abstract:
Air quality studies were carried out in the towns of Putrajaya, Petaling Jaya and Nilai in the Malaysian Peninsular. In this study, the variations of Ozone (O3) concentrations over a four year period (2008-2011) were investigated using data obtained from the Malaysian Department of the Environment (DOE). This study aims to identify and describe the daily and monthly variations of O3 concentrations at the monitoring sites mentioned. The SPPS program (Statistical Package for the Social Science) was used to analyze this data in order to obtain the variations of O3 and also to clarify the relationship between the stations. The findings of the study revealed that the highest concentration of O3 occurred during the midday and afternoon (between 13:00-15:00 hrs). The comparison between stations also showed that highest O3 concentrations were recorded in Putrajaya. The comparisons of average and maximum concentrations of O3 for the three stations showed that the strongest significant correlation was recorded in the Petaling Jaya station with the value R2= 0.667. Results from this study indicate that in the urban areas of Peninsular Malaysia, the concentration of O3 depends on the concentration of NOx. Furthermore, HYSPLIT back trajectories (-72h) indicated that air-mass transport patterns can also influence the O3 concentration in the areas studied.Keywords: Ozone, Precursors, Urban, HYSPLIT trajectory analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1733146 Economic Evaluations Using Genetic Algorithms to Determine the Territorial Impact Caused by High Speed Railways
Authors: Gianluigi De Mare, Tony Leopoldo Luigi Lenza, Rino Conte
Abstract:
The evolution of technology and construction techniques has enabled the upgrading of transport networks. In particular, the high-speed rail networks allow convoys to peak at above 300 km/h. These structures, however, often significantly impact the surrounding environment. Among the effects of greater importance are the ones provoked by the soundwave connected to train transit. The wave propagation affects the quality of life in areas surrounding the tracks, often for several hundred metres. There are substantial damages to properties (buildings and land), in terms of market depreciation. The present study, integrating expertise in acoustics, computering and evaluation fields, outlines a useful model to select project paths so as to minimize the noise impact and reduce the causes of possible litigation. It also facilitates the rational selection of initiatives to contain the environmental damage to the already existing railway tracks. The research is developed with reference to the Italian regulatory framework (usually more stringent than European and international standards) and refers to a case study concerning the high speed network in Italy.
Keywords: Impact, compensation for financial loss, depreciation of property, railway network design, genetic algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1764145 RADAR Imaging to Develop an Enhanced Fog Vision System for Collision Avoidance
Authors: Saswata Chakraborty, R.P.Chatterjee, S. Majumder, Anup Kr. Bhattacharjee
Abstract:
The scattering effect of light in fog improves the difficulty in visibility thus introducing disturbances in transport facilities in urban or industrial areas causing fatal accidents or public harassments, therefore, developing an enhanced fog vision system with radio wave to improvise the way outs of these severe problems is really a big challenge for researchers. Series of experimental studies already been done and more are in progress to know the weather effect on radio frequencies for different ranges. According to Rayleigh scattering Law, the propagating wavelength should be greater than the diameter of the particle present in the penetrating medium. Direct wave RF signal thus have high chance of failure to work in such weather for detection of any object. Therefore an extensive study was required to find suitable region in the RF band that can help us in detecting objects with proper shape. This paper produces some results on object detection using 912 MHz band with successful detection of the persistence of any object coming under the trajectory of a vehicle navigating in indoor and outdoor environment. The developed images are finally transformed to video signal to enable continuous monitoring.Keywords: RADAR Imaging, Fog vision system, Objectdetection, Jpeg to Mpeg conversion
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2879144 Performance Improvement in Internally Finned Tube by Shape Optimization
Authors: Kyoungwoo Park, Byeong Sam Kim, Hyo-Jae Lim, Ji Won Han, Park Kyoun Oh, Juhee Lee, Keun-Yeol Yu
Abstract:
Predictions of flow and heat transfer characteristics and shape optimization in internally finned circular tubes have been performed on three-dimensional periodically fully developed turbulent flow and thermal fields. For a trapezoidal fin profile, the effects of fin height h, upper fin widths d1, lower fin widths d2, and helix angle of fin ? on transport phenomena are investigated for the condition of fin number of N = 30. The CFD and mathematical optimization technique are coupled in order to optimize the shape of internally finned tube. The optimal solutions of the design variables (i.e., upper and lower fin widths, fin height and helix angle) are numerically obtained by minimizing the pressure loss and maximizing the heat transfer rate, simultaneously, for the limiting conditions of d1 = 0.5~1.5 mm, d2 = 0.5~1.5 mm, h= 0.5~1.5mm, ? = 10~30 degrees. The fully developed flow and thermal fields are predicted using the finite volume method and the optimization is carried out by means of the multi-objective genetic algorithm that is widely used in the constrained nonlinear optimization problem.Keywords: Computational fluid dynamics, Genetic algorithm, Internally finned tube with helix angle, Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2450143 InAlGaN Quaternary Multi-Quantum Wells UVLaser Diode Performance and Characterization
Authors: S. M. Thahab, H. Abu Hassan, Z. Hassan
Abstract:
The InAlGaN alloy has only recently began receiving serious attention into its growth and application. High quality InGaN films have led to the development of light emitting diodes (LEDs) and blue laser diodes (LDs). The quaternary InAlGaN however, represents a more versatile material since the bandgap and lattice constant can be independently varied. We report an ultraviolet (UV) quaternary InAlGaN multi-quantum wells (MQWs) LD study by using the simulation program of Integrated System Engineering (ISE TCAD). Advanced physical models of semiconductor properties were used in order to obtain an optimized structure. The device performance which is affected by piezoelectric and thermal effects was studied via drift-diffusion model for carrier transport, optical gain and loss. The optical performance of the UV LD with different numbers of quantum wells was numerically investigated. The main peak of the emission wavelength for double quantum wells (DQWs) was shifted from 358 to 355.8 nm when the forward current was increased. Preliminary simulated results indicated that better output performance and lower threshold current could be obtained when the quantum number is four, with output power of 130 mW and threshold current of 140 mA.Keywords: Nitride semiconductors, InAlGaN quaternary, UVLD, numerical simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1936142 Technological Deep Assessment of Automotive Parts Manufacturers Case of Iranian Manufacturers
Authors: Manouchehre Ansari, Mahmoud Dehghan Nayeri, Reza Yousefi Zenouz
Abstract:
In order to develop any strategy, it is essential to first identify opportunities, threats, weak and strong points. Assessment of technology level provides the possibility of concentrating on weak and strong points. The results of technology assessment have a direct effect on decision making process in the field of technology transfer or expansion of internal research capabilities so it has a critical role in technology management. This paper presents a conceptual model to analyze the technology capability of a company as a whole and in four main aspects of technology. This model was tested on 10 automotive parts manufacturers in IRAN. Using this model, capability level of manufacturers was investigated in four fields of managing aspects, hard aspects, human aspects, and information and knowledge aspects. Results show that these firms concentrate on hard aspect of technology while others aspects are poor and need to be supported more. So this industry should develop other aspects of technology as well as hard aspect to have effective and efficient use of its technology. These paper findings are useful for the technology planning and management in automotive part manufactures in IRAN and other Industries which are technology followers and transport their needed technologies.Keywords: Technology, Technological evaluation, TechnologyMaturity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1737141 Quantum Modelling of AgHMoO4, CsHMoO4 and AgCsMoO4 Chemistry in the Field of Nuclear Power Plant Safety
Authors: Mohamad Saab, Sidi Souvi
Abstract:
In a major nuclear accident, the released fission products (FPs) and the structural materials are likely to influence the transport of iodine in the reactor coolant system (RCS) of a pressurized water reactor (PWR). So far, the thermodynamic data on cesium and silver species used to estimate the magnitude of FP release show some discrepancies, data are scarce and not reliable. For this reason, it is crucial to review the thermodynamic values related to cesium and silver materials. To this end, we have used state-of-the-art quantum chemical methods to compute the formation enthalpies and entropies of AgHMoO₄, CsHMoO₄, and AgCsMoO₄ in the gas phase. Different quantum chemical methods have been investigated (DFT and CCSD(T)) in order to predict the geometrical parameters and the energetics including the correlation energy. The geometries were optimized with TPSSh-5%HF method, followed by a single point calculation of the total electronic energies using the CCSD(T) wave function method. We thus propose with a final uncertainty of about 2 kJmol⁻¹ standard enthalpies of formation of AgHMoO₄, CsHMoO₄, and AgCsMoO₄.
Keywords: ASTEC, Accident Source Term Evaluation Code, quantum chemical methods, severe nuclear accident, thermochemical database.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 821140 MIMCA: A Modelling and Simulation Approach in Support of the Design and Construction of Manufacturing Control Systems Using Modular Petri net
Authors: S. Ariffin, K. Hasnan, R.H. Weston
Abstract:
A new generation of manufacturing machines so-called MIMCA (modular and integrated machine control architecture) capable of handling much increased complexity in manufacturing control-systems is presented. Requirement for more flexible and effective control systems for manufacturing machine systems is investigated and dimensioned-which highlights a need for improved means of coordinating and monitoring production machinery and equipment used to- transport material. The MIMCA supports simulation based on machine modeling, was conceived by the authors to address the issues. Essentially MIMCA comprises an organized unification of selected architectural frameworks and modeling methods, which include: NISTRCS, UMC and Colored Timed Petri nets (CTPN). The unification has been achieved; to support the design and construction of hierarchical and distributed machine control which realized the concurrent operation of reusable and distributed machine control components; ability to handle growing complexity; and support requirements for real- time control systems. Thus MIMCA enables mapping between 'what a machine should do' and 'how the machine does it' in a well-defined but flexible way designed to facilitate reconfiguration of machine systems.Keywords: Machine control, architectures, Petri nets, modularity, modeling, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1587139 Deformation and Crystallization in a 7075-T651 Friction Stir Weld
Authors: C. S. Paglia
Abstract:
The deformation and the crystallization in a 7075-T651 friction stir weld, in particular for regions directly in contact with the mechanical action of the rotating probe, have been investigated by means of optical microscopy. The investigation enabled to identify regions of the weld differently affected by the deformation caused by the welding process. The highly deformed grains in the horizontal direction close to the plate margin were indicative of shear movements along the horizontal plane, while highly deformed grains along the plate margin in the vertical direction were indicative of vertical shear movements of opposite directions, which superimposed the shear movement along the horizontal plane. The vertical shear movements were not homogeneous through the plate thickness. The microstructure indicated that after the probe passes, the grain growth may take place under static conditions. The small grains microstructure of the nugget region, formed after the main dynamic recrystallization process, develops to an equiaxed microstructure. A material transport influenced by the rotating shoulder was also observed from the trailing to the advancing side of the weld.
Keywords: AA7075-T651, friction stir welding, deformation, crystallization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 704138 Hydrogen and Biofuel Production from 2-Propanol Over Ru/Al2O3 Catalyst in Supercritical Water
Authors: Ekin Kıpçak, Yağmur Karakuş, Mesut Akgün
Abstract:
Hydrogen is an important chemical in many industries and it is expected to become one of the major fuels for energy generation in the future. Unfortunately, hydrogen does not exist in its elemental form in nature and therefore has to be produced from hydrocarbons, hydrogen-containing compounds or water.
Above its critical point (374.8oC and 22.1MPa), water has lower density and viscosity, and a higher heat capacity than those of ambient water. Mass transfer in supercritical water (SCW) is enhanced due to its increased diffusivity and transport ability. The reduced dielectric constant makes supercritical water a better solvent for organic compounds and gases. Hence, due to the aforementioned desirable properties, there is a growing interest toward studies regarding the gasification of organic matter containing biomass or model biomass solutions in supercritical water.
In this study, hydrogen and biofuel production by the catalytic gasification of 2-Propanol in supercritical conditions of water was investigated. Ru/Al2O3 was the catalyst used in the gasification reactions. All of the experiments were performed under a constant pressure of 25 MPa. The effects of five reaction temperatures (400, 450, 500, 550 and 600oC) and five reaction times (10, 15, 20, 25 and 30 s) on the gasification yield and flammable component content were investigated.
Keywords: 2-Propanol, Gasification, Ru/Al2O3, Supercritical water.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2131137 Automated Vehicle Traffic Control Tower: A Solution to Support the Next Level Automation
Authors: Xiaoyun Zhao, Rami Darwish, Anna Pernestål
Abstract:
Automated vehicles (AVs) have the potential to enhance road capacity, improving road safety and traffic efficiency. Research and development on AVs have been going on for many years. However, when the complicated traffic rules and real situations interacted, AVs fail to make decisions on contradicting situations, and are not able to have control in all conditions due to highly dynamic driving scenarios. This limits AVs’ usage and restricts the full potential benefits that they can bring. Furthermore, regulations, infrastructure development, and public acceptance cannot keep up at the same pace as technology breakthroughs. Facing these challenges, this paper proposes automated vehicle traffic control tower (AVTCT) acting as a safe, efficient and integrated solution for AV control. It introduces a concept of AVTCT for control, management, decision-making, communication and interaction with various aspects in transportation. With the prototype demonstrations and simulations, AVTCT has the potential to overcome the control challenges with AVs and can facilitate AV reaching their full potential. Possible functionalities, benefits as well as challenges of AVTCT are discussed, which set the foundation for the conceptual model, simulation and real application of AVTCT.
Keywords: Automated vehicle, connectivity and automation, intelligent transport system, traffic control, traffic safety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1073136 An Automatic Pipeline Monitoring System Based on PCA and SVM
Abstract:
This paper proposes a novel system for monitoring the health of underground pipelines. Some of these pipelines transport dangerous contents and any damage incurred might have catastrophic consequences. However, most of these damage are unintentional and usually a result of surrounding construction activities. In order to prevent these potential damages, monitoring systems are indispensable. This paper focuses on acoustically recognizing road cutters since they prelude most construction activities in modern cities. Acoustic recognition can be easily achieved by installing a distributed computing sensor network along the pipelines and using smart sensors to “listen" for potential threat; if there is a real threat, raise some form of alarm. For efficient pipeline monitoring, a novel monitoring approach is proposed. Principal Component Analysis (PCA) was studied and applied. Eigenvalues were regarded as the special signature that could characterize a sound sample, and were thus used for the feature vector for sound recognition. The denoising ability of PCA could make it robust to noise interference. One class SVM was used for classifier. On-site experiment results show that the proposed PCA and SVM based acoustic recognition system will be very effective with a low tendency for raising false alarms.Keywords: One class SVM, pipeline monitoring system, principal component analysis, sound recognition, third party damage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018135 Analysis of the Communication Methods of an iCIM 3000 System within the Frame of Research Purpose
Authors: Radovan Holubek, Daynier Rolando Delgado Sobrino, Roman Ruzarovsky
Abstract:
Current trends in manufacturing are characterized by production broadening, innovation cycle shortening, and the products having a new shape, material and functions. The production strategy focused on time needed change from the traditional functional production structure to flexible manufacturing cells and lines. Production by automated manufacturing system (AMS) is one of the most important manufacturing philosophies in the last years. The main goals of the project we are involved in lies on building a laboratory in which will be located a flexible manufacturing system consisting of at least two production machines with NC control (milling machines, lathe). These machines will be linked to a transport system and they will be served by industrial robots. Within this flexible manufacturing system a station for the quality control consisting of a camera system and rack warehouse will be also located. The design, analysis and improvement of this manufacturing system, specially with a special focus on the communication among devices constitute the main aims of this paper. The key determining factors for the manufacturing system design are: the product, the production volume, the used machines, the disposable manpower, the disposable infrastructure and the legislative frame for the specific cases.Keywords: Paperless manufacturing, flexible manufacturing, robotized manufacturing, material flow, iCIM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1804134 Viscosity Reduction and Upgrading of Athabasca Oilsands Bitumen by Natural Zeolite Cracking
Authors: Abu S.M. Junaid, Wei Wang, Christopher Street, Moshfiqur Rahman, Matt Gersbach, Sarah Zhou, William McCaffrey, Steven M. Kuznicki
Abstract:
Oilsands bitumen is an extremely important source of energy for North America. However, due to the presence of large molecules such as asphaltenes, the density and viscosity of the bitumen recovered from these sands are much higher than those of conventional crude oil. As a result the extracted bitumen has to be diluted with expensive solvents, or thermochemically upgraded in large, capital-intensive conventional upgrading facilities prior to pipeline transport. This study demonstrates that globally abundant natural zeolites such as clinoptilolite from Saint Clouds, New Mexico and Ca-chabazite from Bowie, Arizona can be used as very effective reagents for cracking and visbreaking of oilsands bitumen. Natural zeolite cracked oilsands bitumen products are highly recoverable (up to ~ 83%) using light hydrocarbons such as pentane, which indicates substantial conversion of heavier fractions to lighter components. The resultant liquid products are much less viscous, and have lighter product distribution compared to those produced from pure thermal treatment. These natural minerals impart similar effect on industrially extracted Athabasca bitumen.Keywords: Natural Zeolites, Oilsands Bitumen, Cracking, Viscosity Reduction, Upgrading.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2856133 Porous Particles Drying in a Vertical Upward Pneumatic Conveying Dryer
Authors: Samy M. El-Behery, W. A. El-Askary, K. A. Ibrahim, Mofreh H. Hamed
Abstract:
A steady two-phase flow model has been developed to simulate the drying process of porous particle in a pneumatic conveying dryer. The model takes into account the momentum, heat and mass transfer between the continuous phase and the dispersed phase. A single particle model was employed to calculate the evaporation rate. In this model the pore structure is simplified to allow the dominant evaporation mechanism to be readily identified at all points within the duct. The predominant mechanism at any time depends upon the pressure, temperature and the diameter of pore from which evaporating is occurring. The model was validated against experimental studies of pneumatic transport at low and high speeds as well as pneumatic drying. The effects of operating conditions on the dryer parameters are studied numerically. The present results show that the drying rate is enhanced as the inlet gas temperature and the gas flow rate increase and as the solid mass flow rate deceases. The present results also demonstrate the necessity of measuring the inlet gas velocity or the solid concentration in any experimental analysis.
Keywords: Two-phase, gas-solid, pneumatic drying, pneumatic conveying, heat and mass transfer
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3268132 A Comparison Study of Electrical Characteristics in Conventional Multiple-gate Silicon Nanowire Transistors
Authors: Fatemeh Karimi, Morteza Fathipour, Hamdam Ghanatian, Vala Fathipour
Abstract:
In this paper electrical characteristics of various kinds of multiple-gate silicon nanowire transistors (SNWT) with the channel length equal to 7 nm are compared. A fully ballistic quantum mechanical transport approach based on NEGF was employed to analyses electrical characteristics of rectangular and cylindrical silicon nanowire transistors as well as a Double gate MOS FET. A double gate, triple gate, and gate all around nano wires were studied to investigate the impact of increasing the number of gates on the control of the short channel effect which is important in nanoscale devices. Also in the case of triple gate rectangular SNWT inserting extra gates on the bottom of device can improve the application of device. The results indicate that by using gate all around structures short channel effects such as DIBL, subthreshold swing and delay reduces.Keywords: SNWT (silicon nanowire transistor), non equilibriumGreen's function (NEGF), double gate (DG), triple gate (TG), multiple gate, cylindrical nano wire (CW), rectangular nano wire(RW), Poisson_ Schrödinger solver, drain induced barrier lowering(DIBL).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2081131 Novel Intrinsic Conducting Polymer Current Limiting Device (CLD) for Surge Protection
Authors: Noor H Jabarullah
Abstract:
In the past many uneconomic solutions for limitation and interruption of short-circuit currents in low power applications have been introduced, especially polymer switch based on the positive temperature coefficient of resistance (PCTR) concept. However there are many limitations in the active material, which consists of conductive fillers. This paper presents a significantly improved and simplified approach that replaces the existing current limiters with faster switching elements. Its elegance lies in the remarkable simplicity and low-cost processes of producing the device using polyaniline (PANI) doped with methane-sulfonic acid (MSA). Samples characterized as lying in the metallic and critical regimes of metal insulator transition have been studied by means of electrical performance in the voltage range from 1V to 5 V under different environmental conditions. Moisture presence is shown to increase the resistivity and also improved its current limiting performance. Additionally, the device has also been studied for electrical resistivity in the temperature range 77 K-300 K. The temperature dependence of the electrical conductivity gives evidence for a transport mechanism based on variable range hopping in three dimensions.
Keywords: Conducting polymer, current limiter, intrinsic, moisture dependence, polyaniline, resettable, surge protection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2180130 Simulation of PM10 Source Apportionment at An Urban Site in Southern Taiwan by a Gaussian Trajectory Model
Authors: Chien-Lung Chen, Jeng-Lin Tsai, Feng-Chao Chung, Su-Ching Kuo, Kuo-Hsin Tseng, Pei-Hsuan Kuo, Li-Ying Hsieh, Ying I. Tsai
Abstract:
This study applied the Gaussian trajectory transfer-coefficient model (GTx) to simulate the particulate matter concentrations and the source apportionments at Nanzih Air Quality Monitoring Station in southern Taiwan from November 2007 to February 2008. The correlation coefficient between the observed and the calculated daily PM10 concentrations is 0.5 and the absolute bias of the PM10 concentrations is 24%. The simulated PM10 concentrations matched well with the observed data. Although the emission rate of PM10 was dominated by area sources (58%), the results of source apportionments indicated that the primary sources for PM10 at Nanzih Station were point sources (42%), area sources (20%) and then upwind boundary concentration (14%). The obvious difference of PM10 source apportionment between episode and non-episode days was upwind boundary concentrations which contributed to 20% and 11% PM10 sources, respectively. The gas-particle conversion of secondary aerosol and long range transport played crucial roles on the PM10 contribution to a receptor.Keywords: back trajectory model, particulate matter, sourceapportionment
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1598129 Auto Rickshaw Impacts with Pedestrians: A Computational Analysis of Post-Collision Kinematics and Injury Mechanics
Authors: A. J. Al-Graitti, G. A. Khalid, P. Berthelson, A. Mason-Jones, R. Prabhu, M. D. Jones
Abstract:
Motor vehicle related pedestrian road traffic collisions are a major road safety challenge, since they are a leading cause of death and serious injury worldwide, contributing to a third of the global disease burden. The auto rickshaw, which is a common form of urban transport in many developing countries, plays a major transport role, both as a vehicle for hire and for private use. The most common auto rickshaws are quite unlike ‘typical’ four-wheel motor vehicle, being typically characterised by three wheels, a non-tilting sheet-metal body or open frame construction, a canvas roof and side curtains, a small drivers’ cabin, handlebar controls and a passenger space at the rear. Given the propensity, in developing countries, for auto rickshaws to be used in mixed cityscapes, where pedestrians and vehicles share the roadway, the potential for auto rickshaw impacts with pedestrians is relatively high. Whilst auto rickshaws are used in some Western countries, their limited number and spatial separation from pedestrian walkways, as a result of city planning, has not resulted in significant accident statistics. Thus, auto rickshaws have not been subject to the vehicle impact related pedestrian crash kinematic analyses and/or injury mechanics assessment, typically associated with motor vehicle development in Western Europe, North America and Japan. This study presents a parametric analysis of auto rickshaw related pedestrian impacts by computational simulation, using a Finite Element model of an auto rickshaw and an LS-DYNA 50th percentile male Hybrid III Anthropometric Test Device (dummy). Parametric variables include auto rickshaw impact velocity, auto rickshaw impact region (front, centre or offset) and relative pedestrian impact position (front, side and rear). The output data of each impact simulation was correlated against reported injury metrics, Head Injury Criterion (front, side and rear), Neck injury Criterion (front, side and rear), Abbreviated Injury Scale and reported risk level and adds greater understanding to the issue of auto rickshaw related pedestrian injury risk. The parametric analyses suggest that pedestrians are subject to a relatively high risk of injury during impacts with an auto rickshaw at velocities of 20 km/h or greater, which during some of the impact simulations may even risk fatalities. The present study provides valuable evidence for informing a series of recommendations and guidelines for making the auto rickshaw safer during collisions with pedestrians. Whilst it is acknowledged that the present research findings are based in the field of safety engineering and may over represent injury risk, compared to “Real World” accidents, many of the simulated interactions produced injury response values significantly greater than current threshold curves and thus, justify their inclusion in the study. To reduce the injury risk level and increase the safety of the auto rickshaw, there should be a reduction in the velocity of the auto rickshaw and, or, consideration of engineering solutions, such as retro fitting injury mitigation technologies to those auto rickshaw contact regions which are the subject of the greatest risk of producing pedestrian injury.
Keywords: Auto Rickshaw, finite element analysis, injury risk level, LS-DYNA, pedestrian impact.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1319