Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30184
InAlGaN Quaternary Multi-Quantum Wells UVLaser Diode Performance and Characterization

Authors: S. M. Thahab, H. Abu Hassan, Z. Hassan

Abstract:

The InAlGaN alloy has only recently began receiving serious attention into its growth and application. High quality InGaN films have led to the development of light emitting diodes (LEDs) and blue laser diodes (LDs). The quaternary InAlGaN however, represents a more versatile material since the bandgap and lattice constant can be independently varied. We report an ultraviolet (UV) quaternary InAlGaN multi-quantum wells (MQWs) LD study by using the simulation program of Integrated System Engineering (ISE TCAD). Advanced physical models of semiconductor properties were used in order to obtain an optimized structure. The device performance which is affected by piezoelectric and thermal effects was studied via drift-diffusion model for carrier transport, optical gain and loss. The optical performance of the UV LD with different numbers of quantum wells was numerically investigated. The main peak of the emission wavelength for double quantum wells (DQWs) was shifted from 358 to 355.8 nm when the forward current was increased. Preliminary simulated results indicated that better output performance and lower threshold current could be obtained when the quantum number is four, with output power of 130 mW and threshold current of 140 mA.

Keywords: Nitride semiconductors, InAlGaN quaternary, UVLD, numerical simulation.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1079012

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1558

References:


[1] T. Deguchi, K. Sekiguchi, A. Nakamura, T. Sota, R. Matsuo, S. Chichibu, and S. Nakamura, "Quantum-confined Stark effect in an AlGaN/GaN/AlGaN single quantum well structures," Jpn. J. Appl. Phys., vol. 38, pp. L914-L916, Aug. 1999.
[2] F. Bernardini, V. Fiorentini, and D. Vanderbilt, "Spontaneous polarization and piezoelectric constants of III-V nitrides," Phys. Rev. B, vol. 56, pp. R10 024-R10 027, Oct. 1997.
[3] M. Kariya, S. Nitta, S. Yamaguchi, H. Kato, T. Takeuchi, C. Wetzel, H. Amano, and I. Akasaki, "Structural properties of Al In N ternary alloys on GaN grown by metalorganic vapor phase epitaxy," Jpn. J. Appl. Phys., vol. 37, pp. L697-L699, June 1998.
[4] M. Kariya, S. Nitta, S. Yamaguchi, T. Kashima, H. Katoh, H. Amano, and I. Akasaki, "Structural characterization of Al In N lattice-matched to GaN," J. Cryst. Growth, vol. 209, pp. 419-423, Feb. 2000.
[5] S. Yamaguchi, M. Kariya, S. Nitta, H. Amano, and I. Akasaki, "Anomalous features in the optical properties of AlInN on GaN grown by metal organic vapor phase epitaxy," Appl. Phys. Lett., vol. 76, pp. 876-878, Feb. 2000.
[6] M. A. Khan, J. W. Yang, G. Simin, R. Gaska, M. S. Shur, H.-C. Zur Loye, G. Tamulaitis, A. Zukauskas, D. J. Smith, D. Chandrasekhar, and R. Bicknell Tassius, "Lattice and energy band engineering in 1161-1163, Feb. 2000.
[7] M. A. Khan, J. W. Yang, G. Simin, R. Gaska, M. S. Shur, and A. Bykhovsky, "Piezoelectric doping in AlInGaN/GaN heterostructures," Appl. Phys. Lett., vol. 75, pp. 2806-2808, Nov. 1999 .
[8] G. Tamulaitis, K. Kazlauskas, S. Jursenas, A. Zukauskas, M. A. Khan, J. W. Yang, J. Zhang, G. Simin, M. S. Shur, and R. Gaska, "Optical bandgap formation in AlInGaN alloys," Appl. Phys. Lett., vol. 77, pp. 2136-2138, Oct. 2000 .
[9] J. P. Zhang, J.W. Yang, G. Simin, M. Shatalov, M. A. Khan, M. S. Shur, and R. Gaska, "Enhanced luminescence in InGaN multiple quantum wells with quaternary AlInGaN barriers," Appl. Phys. Lett., vol. 77, pp. 2668-2670, Oct. 2000 .
[10] J. P. Zhang, E. Kuokstis, Q. Fareed, H. Wang, J. W. Yang, G. Simin, M. A. Khan, and R. Gaska and M. S. Shur, "Pulsed atomic layer epitaxy of quaternary AlInGaN layers," Appl. Phys. Lett., vol. 79, pp. 925-927, Aug. 2001 .
[11] J. Zhang,V. Adivarahan, H. M.Wang, Q. Fareed, E.Koukstis, A. Chitnis, M. Shatalov, J.W. Yang, G. Simin, M. A. Khan, M. Shur, and R. Gaska, "Quaternary AlInGaN multiple quantum wells for ultraviolet light emitting diodes," Jpn. J. Appl. Phys., vol. 40, pp. L921-L924, Sept. 2001
[12] .M. A. Khan, V. Adivarahan, J. P. Zhang, C. Chen, E. Kuokstis, A. Chitnis, M. Shatalov, J. W. Yang, and G. Simin, "Stripe geometry ultraviolet light emitting diodes at 305 nanometers using quaternary AlInGaN multiple quantum wells," Jpn. J. Appl. Phys., vol. 40, pp. L1308-L1310, Dec. 2001.
[13] J. Carrano, A. Khan, M. Kneissl and N. Johnson, "Progress in semiconductor UV optical sources benefits security and defense". Palo Alto Research Center and Pacific Scientific Instruments (s pi e-s oe m a g a z i n e) j u n e 2 003 .
[14] Integrated System Engineering (ISE TCAD) AG, Switzerland, http://www.synopsys.com.
[15] S. M. Thahab, H. Abu Hassan and Z. Hassan, "Performance and optical characteristic of InGaN MQWs laser diodes" Opt. Exp., 15, No.5, p.2380, Mar. 2007.
[16] P.Perlin, C.Kisielowshi, V.Iota, B.A.Weinstein, L.Mattos, N.A.Shapriro, J.Kruger, and E.R.Weber"InGaN/GaN quantum wells studied by high pressure, variable temperature, and excitation power spectroscopy", Appl.Phys.Lett., vol. 73, pp. 2778, Sep. 1998 .
[17] T.Takeuchi, S.Sota,M.Katsuragawa, M.Komori,H.Takeuchi, H.Amano, and I.Akasaki "Quantum-Confined Stark Effect due to Piezoelectric Fields in GaInN Strained Quantum Wells", Jpn.J.Appl.Phys., Part 2 vol. 36, pp. L382-L385, February (1997).
[18] T.Takeuchi, C.Wetzel,S.Yamaguchi,H.Sakai,H.Amano, and I.Akasaki, Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined Stark effect", Appl.Phys.Lett., vol. 73, p. 1691 Sep. 1998 .
[19] M.D.Nardelli, K.Rapcewicz, and J. Bernholc, Polarization field effects on the electron-hole recombination dynamics in In0.2Ga0.8N/In1-xGaxN multiple quantum wells", Appl.Phys.Lett., vol. 71, p.3135, Nov. 1997.