{"title":"A Comparison Study of Electrical Characteristics in Conventional Multiple-gate Silicon Nanowire Transistors","authors":"Fatemeh Karimi, Morteza Fathipour, Hamdam Ghanatian, Vala Fathipour","volume":45,"journal":"International Journal of Nuclear and Quantum Engineering","pagesStart":1371,"pagesEnd":1375,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/497","abstract":"In this paper electrical characteristics of various kinds\r\nof multiple-gate silicon nanowire transistors (SNWT) with the\r\nchannel length equal to 7 nm are compared. A fully ballistic quantum\r\nmechanical transport approach based on NEGF was employed to\r\nanalyses electrical characteristics of rectangular and cylindrical\r\nsilicon nanowire transistors as well as a Double gate MOS FET. A\r\ndouble gate, triple gate, and gate all around nano wires were studied\r\nto investigate the impact of increasing the number of gates on the\r\ncontrol of the short channel effect which is important in nanoscale\r\ndevices. Also in the case of triple gate rectangular SNWT inserting\r\nextra gates on the bottom of device can improve the application of\r\ndevice. The results indicate that by using gate all around structures\r\nshort channel effects such as DIBL, subthreshold swing and delay\r\nreduces.","references":"[1] J. Wang, E. Polizzi and M. Lundstrom, \"A computational study of\r\nballistic silicon nanowire transistors,\" IEEE International Electron Dev.\r\nMeeting (IEDM), Tech.Digest, pp. 695-698, Dec. 8-10 2003.\r\n[2] J.Saint-Martin, A.Bournel, Philippe, \"Comparison of multiple-gate\r\nMOSFET architectures using Monte Carlo simulation,\"Dollfus Institut\r\nd'Electronique Fondamentale, UMR CNRS 8622, Universit\u00e9 Paris Sud,\r\nB\u251c\u00f3t. 220,F-91405 Orsay cedex, France.\r\n[3] NANOTCAD ViDES User-s Manual by G. Fiori and G. Iannaccone\r\nCopyright c 2004-2008, Gianluca Fiori, Giuseppe Iannaccone,\r\nUniversity of Pisa. www.NANOTCADVIDES.\r\n[4] Silvaco International, Atlas User-s Manual, 2008.\r\n[5] J.Wang, E. Polizzi, and M. Lundstrom IEDM Tech. Dig., 2003, pp.\r\n29.5.1-29.5.4\r\n[6] J.Wang, E. Polizzi, M. Lundstrom, A three-dimensional quantum\r\nsimulation of silicon nanowire transistors with the effective-mass\r\napproximation,J. Appl. Phys. 96 (2004) 2192-2203.\r\n[7] G. Fiori, and G. Iannaccone\" Three-Dimensional Simulation of One-\r\nDimensional Transport in Silicon Nanowire Transistors\" IEEE\r\nTRANSACTIONS ON NANOTECHNOLOGY, VOL. 6, NO. 5,\r\nSEPTEMBER 2007.\r\n[8] R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and P. Avouris, Appl.\r\nPhys. Lett. 73, 2447 ~1998.\r\n[9] A. Rahman, M. Lundstrom and A. W. Ghosh, \"Generalized effectivemass\r\napproach for n-type metal-oxide-semiconductor field-effect\r\ntransistors on arbitrary oriented wafers,\" J. Appl. Phys., vol. 97, pp.\r\n053702.1-053702.12, Mar. 2005.\r\n[10] R. Venugopal et al., \"Simulating quantum transport in Nanoscale\r\ntransistors: Real versus mode-space approaches,\" J. App. Phys.,92, 3730\r\n(2002).\r\n[11] S. H. Zaidi, A. K. Sharma, R. Marquardt, S. L. Lucero and P. M.\r\nVarangis, \"Multiple nanowire field-effect transistors,\" Proc of the 2001\r\n1st IEEE Conference on Nanotechnology, pp. 189-194, Oct. 2001.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 45, 2010"}