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Abstract—A method of modelling topography used in the
simulation of riverbeds is proposed in this paper which removes the
need for datapoints and measurements of a physical terrain. While
complex scans of the contours of a surface can be achieved with
other methods, this requires specialised tools which the proposed
method overcomes by using fractional Brownian motion (FBM) as
a basis to estimate the real surface within a 15% margin of error
while attempting to optimise algorithmic efficiency. This removes
the need for complex, expensive equipment and reduces resources
spent modelling bed topography. This method also accounts for the
change in topography over time due to erosion, sediment transport,
and other external factors which could affect the topography of the
ground by updating its parameters and generating a new bed. The
lattice Boltzmann method (LBM) is used to simulate both stationary
and steady flow cases in a side-by-side comparison over the generated
bed topography using the proposed method, and a test case taken from
an external source. The method, if successful, will be incorporated
into the current LBM program used in the testing phase, which will
allow an automatic generation of topography for the given situation
in future research, removing the need for bed data to be specified.

Keywords—Bed topography, FBM, LBM, shallow water,
simulations.

I. INTRODUCTION

SHALLOW water flows, such as rivers, streams and

even flash floods, are used to predict and simulate the

movement and behaviour of a fluid over time which informs

the best course of action for flash flood prevention measures,

property development, resource management and countless

other important factors. There are many areas of limitation,

however, and this paper focuses on a limitation which arises

when considering the topography of a surface such as a

riverbed.

Typically, a riverbed will be modelled by taking a series of

points at set intervals, or by using expensive and specialised

equipment to gather detailed data. However, this equipment

is not available to everyone and has its own limitations such

as areas where satellite imaging cannot penetrate; and using

a series of points is not an accurate representation of real

life topography. The task of overcoming this issue with the

constraints of making the new method widely available for use

without expensive or specialised equipment seemed, initially,

ambitious.
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An effective way to model a realistic structure would be

to take inspiration from the way in which large stretches

of topography are procedurally generated in video games.

Instead of using expensive equipment or estimated data,

a fractal-like structure is created using a generalization of

Brownian Motion known as FBM to form a non-linear,

realistic looking topography. In video games, however, there

is no need for this to represent a real section of topography,

so this is where the use in these cases ends. This is taken a

step further in this paper by including a series of constraints

and rules to control the FBM and contort the realistic looking

topography to become a suitable, accurate representation of a

real topography without the need for specialised equipment.
A major advantage of this method over set interval

estimation is that little pre-existing data about the area being

modelled are required. This is particularly useful for areas

in which it is difficult to gather accurate data, due either

to dangerous or inaccessible location or because of external

factors such as difficulties in satellite imagery penetrating

the area, layers of thick ice and sediment build up as

well as dynamic changes due to erosion, sediment and

particulate build up or geographical changes arising from

recent earthquakes or flash floods.

II. RELATED WORK

This paper will describe how FBM has been used to

generate bed topography. There have been other studies which

have similarly used FBM for natural phenomena. For example,

Mandelbrot sets out to show that the natural world can be

”efficiently and beautifully modelled by mathematical objects”

[1], which focuses on FBM as a primary source of doing

so. Nature and the natural world is chaotic. Its ingrained

characteristics are unpredictable and uncontrollable in ways

that are far more complex than this paper can explain. From the

way water moves and behaves to the geometry of mountains

or the patterns we find in trees, everything contains elements

of chaos and nonlinearity. So this led to the question; is there

more in common between Chaos and Natural Phenomena than

first thought? Many areas of research have implemented the

use of chaos theory and fractal geometry already, including

research into the behaviour of water. This idea is fascinating

and prompts thinking not just about the way water behaves but

how the surface the water interacts with affects the behaviour.

This began the development of a method which uses fractals to

more accurately model real world riverbeds to see the impact

this would have on the behaviour of water.
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In other work, the exact, properly adjusted fractal dimension

is shown to not inhibit results in any noticeable manner [2],

which is a property the method developed in this paper has

chosen to build upon.

The inception of FBM was by Andrei Kolmogorov [3],

who, at the time, was studying spiral curves in Hilbert space.

Recognising its usefulness and relevance to the study of

hydrology the use of FBM to model terrain was first proposed

by Benoit Mandelbrot [4] following the initial proposal, in

which he and Van Ness first coined the term ”Fractional

Brownian motion.” [5] It was in this paper that Mandelbrot

and Van Ness outlined the many important properties which

makes the study and use of fractals so unique and interesting.

Observing FBM fractals many scholars have noted the

striking resemblance to a mountainous horizon [6], and

considered how fractals could be used in the generation and

simulation of landscapes [7]. Further study has led to in depth

discussion of the fractal dimensions of the range of alternative

landscapes which can be generated from different fractal types.

When considering the use of fractals for generating terrain

[8], we can see how modern video games already make use of

fractals to render realistic looking landscapes which attempt

to replicate certain natural phenomena and erosion [9], albeit

with artistic and gameplay concerns overriding realism - such

as in Skyrim, Minecraft, and other well known video games.

Fig. 1 FBM Generated Terrain Using Indigo Renderer [10]

Work by Milne used computerized fractal designs to

simulate ecological studies of foraging animals which he

predicted would enhance both the aesthetics of the studies and

the ecological relevance [11]. This method has similar values

to that of Milne’s work as the ultimate aim is to enhance work

in the field and allow for areas previously restricted to become

available.

III. GENERATION OF BED TOPOGRAPHY USING

FRACTIONAL BROWNIAN MOTION

A. Fractional Brownian Motion

The Fractional Brownian Motion (FBM) model is a popular

fractal regular stochastic process [12].

Brownian Motion can be described as a form of diffusion:

particles in a basin diffuse from an area of high concentration

to low concentration independent of one another. FBM is a

generalization of Brownian Motion which, unlike classical

Brownian Motion, the increments of FBM need not be

independent. This means that the previous data influence the

current data (e.g. if there is an increasing trend, the next

datapoint will likely also be increasing from the previous).

The aim of this method is to generate a fractal like

topography structure. This has already been utilised in

landscape design, games and cinema special effects [13] which

creates realistic, life-like surfaces. Taking inspiration from this

could optimise the way we model bed topography.

Fractional Brownian Motion (FBM) has three main

characteristic features:

1) It is a continuous Gaussian process,

2) It is self-similar,

3) It has stationary increments

A process X is called self-similar if there exists a positive

number H such that the finite-dimensional distributions of

{T−HX(Tt), t ≥ 0} do not depend on T . We denote by BH

the FBM with index of self similarity H . The stationarity of

the increments implies that E[ |BH(t)−BH(s)|2] = |t−s|2H ,

and this relation determines the covariance function [14].

E[ BH(s)BH(t)] =
1

2
(s2H + t2H − [ s− t] 2H), (1)

As the variance of the sum of N variables with variance

1 cannot exceed N2, the parameter H (known as the Hurst

parameter) is smaller than 1.

To introduce the sequence of increments GH(j) = BH(j)−
BH(j − 1), j = 1, 2, . . . , that constitute what is sometimes

called fractional Gaussian noise, we note that they are strongly

correlated (H �= 1
2 ). More precisely,

E[ GH(j)GH(j + k)] =
1

2
((k + 1)2H − 2k2H + (k − 1)2H)

∼
k→∞H(2H − 1)k2H−2

(2)

Observations of the process for H < 1
2 show the increments

being negatively correlated which corresponds to chaotic

behaviour, while H > 1
2 is positively correlated between the

increments which corresponds to a more disciplined behaviour

[14].

B. Generation of Topography

1) FBM in MATLAB: MATLAB has a built in FBM

algorithm which was first implemented in [15] and was then

adapted by [16] to overcome the abundance of high-frequency

components.

The algorithm builds a biorthoganal wavelet depending on

a given orthogonal one and is adapted to the Hurst parameter,

starting with the expression of the FBM process as a fractional

integral of the white noise process. The generated sample path

is then obtained by the reconstruction using the new wavelet

starting from a wavelet decomposition at a given level. Details’

coefficients are independent random Gaussian realizations and

approximation coefficients arising from a fractional ARIMA

[17] process [15]. The algorithm was then improved upon by

downsampling the obtained sample by a factor of 10. Two

internal parameters (δ = 10 the downsampling factor, and a

threshold prec = 1e−4) to evaluate series by truncated sums,

can be modified for extreme values of the Hurst parameter

[18].
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2) Evaluating the Hurst Parameters: Hurst parameters

describe the raggedness of the resultant motion. The smaller

the Hurst parameter, the more ragged the motion will become.

An appropriate Hurst parameter must be chosen for the method

to generate realistic bed topography.

Fig. 2 Plots of Hurst parameters from 0.1 to 0.9

The real bed topography chosen as a test case to test the

FBM generated topography against is topography from [19]

and shown in Fig. 3.

Fig. 3 Plot of Real Bed Topography from Test Case

Upon visual inspection, it appears that H = 0.9 bears the

closest resemblance to the Real bed topography, however, the

results comparing the spacing between the increments show

that H = 0.6 has the most similar increment spacing to the

Real bed topography.

From the above data collected from Fig 2, a program was

created to find the average distance between the increments

on 100 different versions of each of the Hurst parameter

graphs then compared against the average spacing between

the real topography to find the Hurst parameter which is most

appropriate.

TABLE I
INCREMENTAL DIFFERENCES OF TEST CASE AGAINST HURST

PARAMETERS

x Real H=0.1 H=0.2 H=0.3 H=0.4 H=0.5 H=0.6 H=0.7 H=0.8 H=0.9
1 0.02820 0.09558 0.07227 0.05359 0.03792 0.03291 0.02451 0.02316 0.02064 0.02245
2 0.02820 0.09115 0.07142 0.05198 0.04133 0.03135 0.02584 0.02169 0.01956 0.01818
3 0.02820 0.09051 0.07240 0.05070 0.04213 0.03137 0.02573 0.02223 0.01825 0.01877
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.
97 0.02820 0.09989 0.07215 0.05451 0.03905 0.03226 0.02561 0.02229 0.02192 0.01780
98 0.02820 0.09917 0.06992 0.05429 0.03923 0.03183 0.02551 0.02165 0.01975 0.01858
99 0.02820 0.09425 0.06665 0.05218 0.03940 0.03110 0.02532 0.02182 0.01938 0.02114
100 0.02820 0.09415 0.06853 0.05385 0.04008 0.03021 0.02651 0.02216 0.01998 0.01954
Avg 0.02820 0.09511 0.06947 0.05230 0.03995 0.03155 0.02563 0.02173 0.01977 0.01953

To further support the decision to use H = 0.6 over

H = 0.9, a program was created to determine the percentage

difference between the Real bed and the FBM bed and the

run time was noted down. For the purposes of testing the

percentage difference against time taken of the different Hurst

parameters, the fully developed method was not used as this

was to decide the most appropriate Hurst parameter in the

development.

Di = 100
∣
∣
∣

|Fi−Ri|
(Fi+Ri)/2

∣
∣
∣ , i = 1, 2, . . . , n (3)

where Fi is the FBM generated bed; Ri is the Real bed; Di

is the percentage difference between the corresponding data

points; and n being the number of data points. In this case,

n = 62 as the Real bed topography has only 62 data points

to compare against.

Fig. 4 Percentage Similarity Against Time Taken To Run

Table I shows the results of comparing both the time taken

and the average differences between using H = 0.6 and H =
0.9.

The method caps the percentage at a certain point which

forces the program to restart if a bed is generated at a

difference greater than the cap. This early stage algorithm

used to decide the most appropriate Hurst parameter employs

a Brute Force technique to judge which option will optimise

time taken for improvements in the more developed method.

It can be observed that as the cap is decreased, the program

takes longer to run. However, H = 0.6 remains faster and

more efficient throughout the tests.

Each of the Hurst parameters was tested 10 times at different

caps and an average was found. H = 0.6 is seen to be twice

as fast as H = 0.9 until the final cap, in which there is only

11 seconds difference.

C. FBM Bed Topography Program

The FBM generated bed topography program was written

in MATLAB using the built in FBM command which this

method utilises and builds upon. There are two different routes

the method can take:

1) Route A: Bed topography of the area currently exists,

(Rexists = 1)
2) Route B: Bed topography of the area does not exist,

(Rexists = 0)

A parameter Rexists is used and set to either 0 or 1
depending on whether data for the area in question exist. If

data exist, the data are manually uploaded to a data file. If
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the data file contains information, the parameter Rexists = 1
which allows the program to follow Route A. Conversely, if

the data file is empty, the parameter is set to 0 and therefore

follows Route B.

1) Route A: Data from the real bed topography are

used and reduced to sea level which overcomes issues in

boundary conditions when using the LBM: Rsl = datafile−
datafilemin, where Rsl is the real data reduced to sea

level; datafile is the real data read from the data file; and

datafilemin is the minimum value read from the data file.

Further parameters are defined from the data file such as:

minmax = Rsl
max−Rsl

min, ai = mean(
|Rsl

i −Rsl
i+1|

|minmax| ), rtrend =

∇(Rsl), nr = number of datapoints, where minmax is

the maximum difference between the peak and trough of the

existing data at sea level; ai is the mean difference between

the individual datapoints (for ease of reading, this will be

referred to as ai despite being a fixed parameter); rtrend is the

inclination of the bed (the gradient of the line of best fit); and

nr is the number of datapoints in the data file. Additionally, the

Hurst parameter, H is calculated using the program described

for (3) and Table I.

2) Route B: Route B offers the user of the method the

option to manually input data for the desired topography where

no data exist (Rexists = 0). The only required knowledge

is the inclination of the desired bed, and an approximation

of the roughness of the terrain. The following data are an

example used when attempting to replicate the test case

without using its raw data aside from the previously mentioned

known information (inclination and roughness of the plane):

minmax = 0.6, ai = 0.25, nr = 62, rtrend = −1,
H = 0.55,

To summarise, the minmax value suggests a gentle

slope, and the rtrend value is negative indicating declination.

Additionally the ai value shows only a slight deviation

between points which indicates that the surface is not rough,

and the H is the optimal Hurst parameter - as found from the

previous section in which the Hurst parameter for the test case

was analysed. This will be used as a standard for this method.

D. The Algorithm

There are four stages to the algorithm of the method which

alters and manipulates the generated dataset, conforming it

to an appropriate and accurate representation of the desired

topography. The stages are described below:

1) Stage 1: This is the shortest stage in the algorithm

which generates an initial FBM base using the defined Hurst

parameters specified in either Route A or Route B. This

initial bed contains ten times the amount of datapoints as

the parameter nr specifies. Each point is then reduced by a

factor of ten to resemble the minute changes in topography

since MATLAB produces a large scale FBM which requires

reduction to a more appropriate scale.

The dataset generated will be referred to using the parameter

fbm.

2) Stage 2: This stage orients the generated dataset in the

correct inclination specified by rtrend.

If the orientation of the generated data matches with that of

rtrend, the stage is complete. However, if the orientation does

not match, the dataset is reversed. This results in an inclining

dataset becoming a declining dataset and vice versa.

3) Stage 3: To ensure that the roughness of the plane does

not exceed that of the approximate or real roughness, the

algorithm compares the incremental values of the generated

dataset to the ai parameter.

∀i ∈ nr · 10, |fbmi − fbmi+1|
|fbmmax − fbmmin| ≤ ai (4)

If an increment exceeds the threshold value, ai, the fbmi+1

datapoint is increased or reduced accordingly so it falls

within the acceptable range. This process is repeated for each

individual datapoint.

4) Stage 4: The final stage, similarly to Stage 3,

examines the generated data according to the threshold value,

minmaxhigh = minmax + 0.25%, which provides a basis

for steepness of the gradient of the line of best fit.

The datapoints are tested to ensure that there is never a gap

exceeding the minmaxhigh value to avoid a steeper gradient

than required. This may be a defined parameter known only

due to the fact that the elevation (metres above sea level

(MSL)) is known/estimated at both the beginning and end of

the desired section of topography (Route B), or calculated from

real data (Route A).

If there is an instance which exceeds the minmaxhigh

threshold, the line of best fit is altered and the individual

datapoints are adjusted accordingly, remaining the same

distance from the line, thus reducing the steepness. Likewise, a

minimum threshold is automatically generated to ensure there

is no zero gradient which is adjusted in the same way. This

parameter is known as minmaxlow = minmax− 0.25%.

The minmax ± 0.25% allows for a slight margin of error

which has proven to be invaluable in optimising runtime of

the program.

E. Testing Method

To test both the Real and the FBM generated bed

topographies, a program running the LBM was used [20],

and adapted for more complex boundary conditions with an

updated elastic collision scheme [21], and simulations were

taken after 1, 10, 100 and 500 time steps with both a stationary

flow case and a steady flow case using initial velocity and

discharge, respectively, as u0 = 0.2 and Q0 = 2.2.

IV. RESULTS AND DISCUSSION

The test case was used as a basis for comparison with the

generated bed using the FBM method developed in this paper.

For the purposes of testing the extremes of the method, no bed

data of the test case were entered into the datafile. Instead,

the parameters mentioned in Route B were used, which forced

the method to assume no real data exist, yet the test case was

attempted to be replicated by using parameters loosely fitting

that of the test case.
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Fig. 7 FBM (a) Against Test Case (b) For a Steady Flow Case after 500
Time Steps

Fig. 5 Comparison of the Test Case (Blue) against the FBM Bed (Red)

It can be seen that, while there is slight deviation around

the beginning and end of the generated bed, the method has

replicated the test case to a satisfactory degree, with the

difference between the generated bed and the test case being

only 14.8%.

Fig. 6 FBM (a) Against Test Case (b) For a Steady Flow Case after 1 Time
Step

Fig. 6 shows side by side comparisons of the FBM generated

bed, and the test case at its initial state after only one time

step. A graph of the depth, discharge, and velocity vectors,

respectively, for each of the time steps has been plotted. The

FBM generated bed graphs are shown along the top row whilst

the Real bed is shown along the bottom.
Fig. 7 shows side by side comparisons of the FBM generated

bed, and the test case at its initial state after five hundred time

steps.

TABLE II
PERCENTAGE DIFFERENCE OF WATER DEPTH, FLUID DISCHARGE, AND

VELOCITY OF THE TEST CASE AGAINST THE FBM GENERATED BED

Time Steps Difference Discharge Difference Depth Difference Velocity
1 6.85811% 5.95213% 10.26145%
10 5.90483% 5.41447% 22.12619%
100 4.85524% 8.06631% 24.46693%
500 3.39998% 9.63622% 26.57885%

It can be seen that the difference between the discharge

is 3.4%, which is promising for the method. Ideally, the

differences should be below 5%, however below 10% is also

acceptable. The differences in depth are below 10% which

is, again, promising for the method, however, this can be

improved upon. The greatest difference is with the velocity

vectors, which show a larger difference of 26.6% which needs

to be improved upon.

Overall, the method is showing promising results, which is

ideal for the continuation of research into this area. Although

there is a large difference between the velocity vectors, this

is to be expected as small changes in the bed topography can

have a profound impact on the behaviour of the fluid. Further

investigation will be done surrounding this by exploring more

complex flow cases and using different test cases. Satellite

imaging could be used to gain real time data which may

be able to justify the differences in velocity and even aid in

deciding whether the FBM generated bed is more true to life

than the test case.

The method can be improved upon further by reducing

the percentage difference between the FBM and Real beds

in the beginning. The method can be optimised further by

exploring more Hurst parameters (e.g. H = 0.65) as this may

allow for faster runtimes and more accurate and closely related

topographies.

APPENDIX

Fig. 8 FBM (a) Against Test Case (b) For a Stationary Flow Case after 1
Time Step
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TABLE III
TIME TAKEN FOR PERCENTAGE DIFFERENCE CAP OF HURST

PARAMETERS

H=0.6 H=0.9

Cap Difference Time Taken Difference Time Taken
30% 26.356% 0.286747 20.558% 0.261346
30% 22.575% 0.146702 26.991% 0.118507
30% 29.425% 0.173842 28.135% 0.256904
30% 24.703% 0.172994 27.523% 0.270883
30% 26.907% 0.077948 22.014% 0.080453
30% 22.585% 0.093736 25.834% 0.901332
30% 21.664% 0.162416 25.357% 0.163796
30% 27.680% 0.217382 28.036% 0.765894
30% 23.464% 0.118588 28.796% 0.345014
30% 26.541% 0.201329 23.487% 0.183214
Average: 25.190% 0.1651684 25.673% 0.3347343

25% 22.104% 0.86736 24.044% 1.163692
25% 21.165% 0.161918 34.956% 0.272502
25% 23.686% 0.500552 20.632% 0.95775
25% 23.112% 0.181758 22.222% 0.445708
25% 20.997% 0.334041 21.703% 0.222179
25% 21.598% 0.170566 23.583% 1.763985
25% 22.692% 0.304982 24.526% 0.462329
25% 23.899% 0.173144 23.772% 0.970558
25% 23.283% 0.18609 23.036% 0.134203
25% 24.346% 0.244692 21.684% 0.265622
Average: 22.688% 0.3125103 24.016% 0.6658528

20% 18.913% 7.175192 17.984% 32.084597
20% 19.905% 0.269781 19.456% 2.584064
20% 19.562% 2.956529 19.709% 3.894293
20% 19.893% 0.77 16.506% 11.510269
20% 18.130% 3.966869 18.444% 7.236277
20% 19.560% 0.227337 19.341% 3.272515
20% 18.664% 10.901815 19.853% 9.160692
20% 19.502% 3.784419 18.417% 7.030988
20% 19.973% 11.12417 19.058% 4.760391
20% 19.140% 3.164217 19.488% 24.44816
Average: 19.324% 4.4340329 18.826% 10.5982246

17% 15.515% 217.53632 16.793% 1288.468401
17% 16.648% 82.281101 16.888% 367.974248
17% 16.924% 163.420519 15.296% 123.172032
17% 16.750% 1445.372839 16.091% 167.115428
17% 16.757% 810.586996 16.044% 214.569284
17% 16.068% 385.363203 16.761% 104.435453
17% 16.857% 106.741403 16.549% 538.433169
17% 16.447% 242.214792 16.836% 356.098545
17% 15.612% 537.96851 16.208% 654.015499
17% 16.958% 14.414493 16.529% 300.426337
Average: 16.454% 400.5900176 16.400% 411.4708396

Fig. 9 FBM (a) Against Test Case (b) For a Stationary Flow Case after 500
Time Steps
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