Search results for: Shear Strength.
1359 Effect of Ionic Strength on Mercury Adsorption on Contaminated Soil
Authors: G. Petruzzelli, F. Pedron, I. Rosellini, E. Tassi, F. Gorini, B. Pezzarossa, M. Barbafieri
Abstract:
Mercury adsorption on soil was investigated at different ionic strengths using Ca(NO3)2 as a background electrolyte. Results fitted the Langmuir equation and the adsorption isotherms reached a plateau at higher equilibrium concentrations. Increasing ionic strength decreased the sorption of mercury, due to the competition of Ca ions for the sorption sites in the soils. The influence of ionic strength was related to the mechanisms of heavy metal sorption by the soil. These results can be of practical importance both in the agriculture and contaminated soils since the solubility of mercury in soils are strictly dependent on the adsorption and release process.Keywords: Heavy metals, bioavailability, remediation, competitive sorption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24491358 Influence of Silica Fume on High Strength Lightweight Concrete
Authors: H. Katkhuda, B. Hanayneh, N. Shatarat
Abstract:
The main objective of this paper is to determine the isolated effect of silica fume on tensile, compressive and flexure strengths on high strength lightweight concrete. Many experiments were carried out by replacing cement with different percentages of silica fume at different constant water-binder ratio keeping other mix design variables constant. The silica fume was replaced by 0%, 5%, 10%, 15%, 20% and 25% for a water-binder ratios ranging from 0.26 to 0.42. For all mixes, split tensile, compressive and flexure strengths were determined at 28 days. The results showed that the tensile, compressive and flexure strengths increased with silica fume incorporation but the optimum replacement percentage is not constant because it depends on the water–cementitious material (w/cm) ratio of the mix. Based on the results, a relationship between split tensile, compressive and flexure strengths of silica fume concrete was developed using statistical methods.Keywords: Silica fume, Lightweight, High strength concrete, and Strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37551357 Evaluation of Soil Stiffness and Strength for Quality Control of Compacted Earthwork
Authors: A. Sawangsuriya, T. B. Edil
Abstract:
Microstructure and fabric of soils play an important role on structural properties e.g. stiffness and strength of compacted earthwork. Traditional quality control monitoring based on moisturedensity tests neither reflects the variability of soil microstructure nor provides a direct assessment of structural property, which is the ultimate objective of the earthwork quality control. Since stiffness and strength are sensitive to soil microstructure and fabric, any independent test methods that provide simple, rapid, and direct measurement of stiffness and strength are anticipated to provide an effective assessment of compacted earthen materials’ uniformity. In this study, the soil stiffness gauge (SSG) and the dynamic cone penetrometer (DCP) were respectively utilized to measure and monitor the stiffness and strength in companion with traditional moisture-density measurements of various earthen materials used in Thailand road construction projects. The practical earthwork quality control criteria are presented herein in order to assure proper earthwork quality control and uniform structural property of compacted earthworks.Keywords: Dynamic cone penetrometer, moisture content, relative compaction, soil stiffness gauge, structural property.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23281356 Utilization of Agro-Industrial Waste in Metal Matrix Composites: Towards Sustainability
Authors: L. Lancaster, M. H. Lung, D. Sujan
Abstract:
The application of agro-industrial waste in Aluminum Metal Matrix Composites has been getting more attention as they can reinforce particles in metal matrix which enhance the strength properties of the composites. In addition, by applying these agroindustrial wastes in useful way not only save the manufacturing cost of products but also reduce the pollutions on environment. This paper represents a literature review on a range of industrial wastes and their utilization in metal matrix composites. The paper describes the synthesis methods of agro-industrial waste filled metal matrix composite materials and their mechanical, wear, corrosion, and physical properties. It also highlights the current application and future potential of agro-industrial waste reinforced composites in aerospace, automotive and other construction industries.Keywords: Bond layer, Interfacial shear stress, Bi-layered assembly, Thermal mismatch, Flip Chip Ball Grid Array.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45871355 Experimental Study on Strength and Durability Properties of Bio-Self-Cured Fly Ash Based Concrete under Aggressive Environments
Authors: R. Malathy
Abstract:
High performance concrete is not only characterized by its high strength, workability, and durability but also by its smartness in performance without human care since the first day. If the concrete can cure on its own without external curing without compromising its strength and durability, then it is said to be high performance self-curing concrete. In this paper, an attempt is made on the performance study of internally cured concrete using biomaterials, namely Spinacea pleracea and Calatropis gigantea as self-curing agents, and it is compared with the performance of concrete with existing self-cure chemical, namely polyethylene glycol. The present paper focuses on workability, strength, and durability study on M20, M30, and M40 grade concretes replacing 30% of fly ash for cement. The optimum dosage of Spinacea pleracea, Calatropis gigantea, and polyethylene glycol was taken as 0.6%, 0.24%, and 0.3% by weight of cement from the earlier research studies. From the slump tests performed, it was found that there is a minimum variation between conventional concrete and self-cured concrete. The strength activity index is determined by keeping compressive strength of conventionally cured concrete for 28 days as unity and observed that, for self-cured concrete, it is more than 1 after 28 days and more than 1.15 after 56 days because of secondary reaction of fly ash. The performance study of concretes in aggressive environment like acid attack, sea water attack, and chloride attack was made, and the results are positive and encouraging in bio-self-cured concretes which are ecofriendly, cost effective, and high performance materials.
Keywords: Biomaterials, Calatropis gigantea, polyethylene glycol, Spinacea oleracea, self-curing concrete.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28401354 Received Signal Strength Indicator Based Localization of Bluetooth Devices Using Trilateration: An Improved Method for the Visually Impaired People
Authors: Muhammad Irfan Aziz, Thomas Owens, Uzair Khaleeq uz Zaman
Abstract:
The instantaneous and spatial localization for visually impaired people in dynamically changing environments with unexpected hazards and obstacles, is the most demanding and challenging issue faced by the navigation systems today. Since Bluetooth cannot utilize techniques like Time Difference of Arrival (TDOA) and Time of Arrival (TOA), it uses received signal strength indicator (RSSI) to measure Receive Signal Strength (RSS). The measurements using RSSI can be improved significantly by improving the existing methodologies related to RSSI. Therefore, the current paper focuses on proposing an improved method using trilateration for localization of Bluetooth devices for visually impaired people. To validate the method, class 2 Bluetooth devices were used along with the development of a software. Experiments were then conducted to obtain surface plots that showed the signal interferences and other environmental effects. Finally, the results obtained show the surface plots for all Bluetooth modules used along with the strong and weak points depicted as per the color codes in red, yellow and blue. It was concluded that the suggested improved method of measuring RSS using trilateration helped to not only measure signal strength affectively but also highlighted how the signal strength can be influenced by atmospheric conditions such as noise, reflections, etc.
Keywords: Bluetooth, indoor/outdoor localization, received signal strength indicator, visually impaired.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7841353 Effect of Polymer Molecular Structures on Properties of Dental Cement Restoratives
Authors: Dong Xie, Jun Zhao, Yiming Weng
Abstract:
The objective of this study was to synthesize and characterize the poly(alkenoic acid)s with different molecular structures, use these polymers to formulate a dental cement restorative, and study the effect of molecular structures on reaction kinetics, viscosity, and mechanical strengths of the formed polymers and cement restoratives. In this study, poly(alkenoic acid)s with different molecular structures were synthesized. The purified polymers were formulated with commercial Fuji II LC glass fillers to form the experimental cement restoratives. The reaction kinetics was studied via 1HNMR spectroscopy. The formed restoratives were evaluated using compressive strength, diametral tensile strength, flexural strength, hardness and wear-resistance tests. Specimens were conditioned in distilled water at 37oC for 24 h prior to testing. Fuji II LC restorative was used as control. The results show that the higher the arm number and initiator concentration, the faster the reaction was. It was also found that the higher the arm number and branching that the polymer had, the lower the viscosity of the polymer in water and the lower the mechanical strengths of the formed restorative. The experimental restoratives were 31-53% in compressive strength, 37- 55% in compressive modulus, 80-126% in diametral tensile strength, 76-94% in flexural strength, 4-21% in fracture toughness and 53-96% in hardness higher than Fuji II LC. For wear test, the experimental restoratives were only 5.4-13% of abrasive and 6.4-12% of attritional wear depths of Fuji II LC in each wear cycle. The aging study also showed that all the experimental restoratives increased their strength continuously during 30 days, unlike Fuji II LC. It is concluded that polymer molecular structures have significant and positive impact on mechanical properties of dental cement restoratives.Keywords: Poly(alkenoic acid)s, molecular structures, dental cement, mechanical strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14881352 Effect of Transverse Reinforcement on the Behavior of Tension Lap splice in High-Strength Reinforced Concrete Beams
Authors: Ahmed H. Abdel-Kareem, Hala. Abousafa, Omia S. El-Hadidi
Abstract:
The results of an experimental program conducted on seventeen simply supported concrete beams to study the effect of transverse reinforcement on the behavior of lap splice of steel reinforcement in tension zones in high strength concrete beams, are presented. The parameters included in the experimental program were the concrete compressive strength, the lap splice length, the amount of transverse reinforcement provided within the splice region, and the shape of transverse reinforcement around spliced bars. The experimental results showed that the displacement ductility increased and the mode of failure changed from splitting bond failure to flexural failure when the amount of transverse reinforcement in splice region increased, and the compressive strength increased up to 100 MPa. The presence of transverse reinforcement around spliced bars had pronounced effect on increasing the ultimate load, the ultimate deflection, and the displacement ductility. The prediction of maximum steel stresses for spliced bars using ACI 318-05 building code was compared with the experimental results. The comparison showed that the effect of transverse reinforcement around spliced bars has to be considered into the design equations for lap splice length in high strength concrete beams.
Keywords: Ductility, high strength concrete, tension lap splice, transverse reinforcement, steel stresses.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47121351 Thermal and Mechanical Properties of Basalt Fibre Reinforced Concrete
Authors: Tumadhir M., Borhan
Abstract:
In this study, the thermal and mechanical properties of basalt fibre reinforced concrete were investigated. The volume fractions of basalt fibre of (0.1, 0.2, 0.3, and 0.5% by total mix volume) were used. Properties such as heat transfer, compressive and splitting tensile strengths were examined. Results indicated that the strength increases with increase the fibre content till 0.3% then there is a slight reduction when 0.5% fibre used. Lower amount of heat conducted through the thickness of concrete specimens than the conventional concrete was also recorded.Keywords: Chopped basalt fibre, Compressive strength, Splitting tensile strength, Heat transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 59171350 Comparison of Eurocodes EN310 and EN789 in Determining the Bending Strength and Modulus of Elasticity of Red Seraya Plywood Panel
Authors: S.F. Tsen, M. Zamin Jumaat
Abstract:
The characteristic bending strength (MOR) and mean modulus of elasticity (MOE) of tropical hardwood red seraya (Shorea spp.) plywood were determined using European Standard EN310 and EN789. The thickness of the test specimen was 4.0mm, 7.0mm, 9.0mm, 12.0mm and 15.0mm. The experiment found that the MOR of red seraya plywood in EN310 is about 12% to 20% and 7% to 24% higher than EN789 whereas MOE were about 28% to 41% and 30% to 36% lower than those obtained from EN 789 for test specimens parallel and perpendicular to the grain direction. The linear regression shows that MOR and MOE for EN789 is about 0.8 times less and 1.5 times more than EN310. The experiment also found that the MOR and MOE of EN310 and EN789 also depend on the wood species that used in the experiment.Keywords: Bending strength, Modulus of elasticity, EN310, EN789
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43351349 Studies on the Blended Concrete Prepared with Tannery Effluent
Authors: K. Nirmalkumar
Abstract:
There is a acute water problem especially in the dry season in and around Perundurai (Erode district, Tamil Nadu, India) where there are more number of tannery units. Hence an attempt was made to use the waste water from tannery industry for construction purpose. The mechanical properties such as compressive strength, tensile strength, flexural strength etc were studied by casting various concrete specimens in form of cube, cylinders and beams etc and were found to be satisfactory. Hence some special properties such as chloride attack, sulphate attack and chemical attack are considered and comparatively studied with the conventional potable water. In this experimental study the results of specimens prepared by using treated and untreated tannery effluent were compared with the concrete specimens prepared by using potable water. It was observed that the concrete had some reduction in strength while subjected to chloride attack, sulphate attack and chemical attack. So admixtures were selected and optimized in suitable proportion to counter act the adverse effects and the results were found to be satisfactory.Keywords: Calcium nitrite, concrete, fly ash.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19951348 Cladding of Al and Cu by Differential Speed Rolling
Authors: Tae Yun Chung, Jungho Moon, Tae Kwon Ha
Abstract:
Al/Cu clad sheet has been fabricated by using differential speed rolling (DSR) process, which caused severe shear deformation between Al and Cu plate to easily bond to each other. Rolling was carried out at 100 and 150oC with speed ratios from 1.4 to 2.2, in which the total thickness reduction was in the range between 14 and 46%. Interfacial microstructure and mechanical properties of Al/Cu clad were investigated by scanning electron microscope equipped with energy dispersive X-ray detector, and tension tests. The DSR process was very effective to provide a good interface for atoms diffusion during subsequent annealing. The strength of bonding was higher with the increasing speed ratio. Post heat treatment enhanced the mechanical properties of clad sheet by forming intermetallic compounds in the interface area.
Keywords: Aluminum/Copper clad sheet, Differential speed rolling, Interface microstructure, Annealing, Tensile test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23501347 Effect of Carbon-Free Fly Ash and Ground Granulated Blast-Furnace Slag on Compressive Strength of Mortar under Different Curing Conditions
Authors: Abdul Khaliq Amiri, Shigeyuki Date
Abstract:
This study investigates the effect of using carbon-free fly ash (CfFA) and ground granulated blast-furnace slag (GGBFS) on the compressive strength of mortar. The CfFA used in this investigation is high-quality fly ash and the carbon content is 1.0% or less. In this study, three types of blends with a 30% water-binder ratio (w/b) were prepared: control, binary and ternary blends. The Control blend contained only Ordinary Portland Cement (OPC), in binary and ternary blends OPC was partially replaced with CfFA and GGBFS at different substitution rates. Mortar specimens were cured for 1 day, 7 days and 28 days under two curing conditions: steam curing and water curing. The steam cured specimens were exposed to two different pre-curing times (1.5 h and 2.5 h) and one steam curing duration (6 h) at 45 °C. The test results showed that water cured specimens revealed higher compressive strength than steam cured specimens at later ages. An increase in CfFA and GGBFS contents caused a decrease in the compressive strength of mortar. Ternary mixes exhibited better compressive strength than binary mixes containing CfFA with the same replacement ratio of mineral admixtures.Keywords: Carbon-free fly ash, compressive strength, ground granulated blast-furnace slag, steam curing, water curing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4481346 Oil Palm Shell Ash - Cement Mortar Mixture and Modification of Mechanical Properties
Authors: Abdoullah Namdar, Fadzil Mat Yahaya
Abstract:
The waste agriculture materials cause environment pollution, recycle of these materials help sustainable development. This study focused on the impact of used oil palm shell ash on the compressive and flexural strengths of cement mortar. Two different cement mortar mixes have been designed to investigate the impact of oil palm shell ash on strengths of cement mortar. Quantity of 4% oil palm shell ash has been replaced in cement mortar. The main objective of this paper is, to modify mechanical properties of cement mortar by replacement of oil palm ash in it at early age of 7 days. The results have been revealed optimum quantity of oil palm ash for replacement in cement mortar. The deflection, load to failure, time to failure of compressive strength and flexural strength of all specimens have significantly been improved. The stress-strain behavior has been indicated ability of modified cement mortar in control stress path and strain. The micro property of cement paste has not been investigated.
Keywords: Minerals, additive, flexural strength, compressive strength, modulus of elasticity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27171345 Aging and Mechanical Behavior of Be-Treated 7075 Aluminum Alloys
Authors: Mahmoud M. Tash, S. Alkahtani
Abstract:
The present study was undertaken to investigate the effect of pre-aging and aging parameters (time and temperature) on the mechanical properties of Al-Mg-Zn (7075) alloys. Ultimate tensile strength, 0.5% offset yield strength and % elongation measurements were carried out on specimens prepared from cast and heat treated 7075 alloys. Aging treatments were carried out for the as solution treated (SHT) specimens (after quenching in warm water). The specimens were aged at different conditions; Natural aging was carried out at room temperature for different periods of time. Double aging was performed for SHT conditions (pre-aged at different time and temperature followed by high temperature aging). Ultimate tensile strength, yield strength and % elongation as a function of different pre-aging and aging parameters are analyzed to acquire an understanding of the effects of these variables and their interactions on the mechanical properties of Be-treated 7075 alloys.
Keywords: Duplex Aging Treatment, Mechanical Properties, Al-Mg-Zn (7075) alloys.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 57301344 Nonlinear Slow Shear Alfven Waves in Electron- Positron-Ion Plasma Including Full Ion Dynamics
Authors: B. Ghosh, H. Sahoo, K. K. Mondal
Abstract:
Propagation of arbitrary amplitude nonlinear Alfven waves has been investigated in low but finite β electron-positron-ion plasma including full ion dynamics. Using Sagdeev pseudopotential method an energy integral equation has been derived. The Sagdeev potential has been calculated for different plasma parameters and it has been shown that inclusion of ion parallel motion along the magnetic field changes the nature of slow shear Alfven wave solitons from dip type to hump type. The effects of positron concentration, plasma-β and obliqueness of the wave propagation on the solitary wave structure have also been examined.Keywords: Alfven waves, Sagdeev potential, Solitary waves.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19511343 Replacing Fibre Reinforced Concrete with Bitumen Asphalt in Airports
Authors: Y. Mohammadi, H. M. Ghasemzadeh, T. B. Talari, M. A. Ghorbani
Abstract:
Concrete pavement has superior durability and longer structural life than asphalt pavement. Concrete pavement requires less maintenance compared to asphalt pavement which requires maintenance and major rehabilitation. Use of the concrete pavement has been grown over the past decade in developing countries. Fibre reinforced concrete (FRC) has been successfully used in design of concrete pavement in past decade. In this research, the effect of fibre volume fraction in modulus of rupture, load-deflection, equivalent flexural strength (fe,3) and the equivalent flexural strength ratio (Re,3) has been used in different fibre volume fraction. Crimped-type flat steel fibre of size 50 x 2.0 x 0.6 mm was used with 1.0%, 1.5% and 2.0% volume fraction. Beam specimens of size 500 x 100 x 100 mm were used for flexural as well as with JCI method for analysis flexural toughness, equivalent flexural strength. It was obtained as the 2% fibre volume fractions; reduce 45% of the concrete pavement thickness.Keywords: Concrete pavement, Equivalent flexural strength, Fibre, Load-deflection curves.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24571342 Post Elevated Temperature Effect on the Strength and Microstructure of Thin High Performance Cementitious Composites (THPCC)
Authors: A. Q. Sobia, A. Shyzleen, M. S. Hamidah, I. Azmi, S. F. A. Rafeeqi, S. Ahmad
Abstract:
Reinforced Concrete (RC) structures strengthened with fiber reinforced polymer (FRP) lack in thermal resistance under elevated temperatures in the event of fire. This phenomenon led to the lining of strengthened concrete with thin high performance cementitious composites (THPCC) to protect the substrate against elevated temperature. Elevated temperature effects on THPCC, based on different cementitious materials have been studied in the past but high-alumina cement (HAC)-based THPCC have not been well characterized. This research study will focus on the THPCC based on HAC replaced by 60%, 70%, 80% and 85% of ground granulated blast furnace slag (GGBS). Samples were evaluated by the measurement of their mechanical strength (28 & 56 days of curing) after exposed to 400°C, 600°C and 28°C of room temperature for comparison and corroborated by their microstructure study. Results showed that among all mixtures, the mix containing only HAC showed the highest compressive strength after exposed to 600°C as compared to other mixtures. However, the tensile strength of THPCC made of HAC and 60% GGBS content was comparable to the THPCC with HAC only after exposed to 600°C. Field emission scanning electron microscopy (FESEM) images of THPCC accompanying Energy Dispersive X-ray (EDX) microanalysis revealed that the microstructure deteriorated considerably after exposure to elevated temperatures which led to the decrease in mechanical strength.Keywords: Ground granulated blast furnace slag, high aluminacement, microstructure at elevated temperature and residual strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23771341 Effect of Strength Class of Concrete and Curing Conditions on Capillary Water Absorption of Self-Compacting and Conventional Concrete
Authors: Emine Ebru Demirci, Remzi Sahin
Abstract:
The purpose of this study is to compare Self Compacting Concrete (SCC) and Conventional Concrete (CC) in terms of their capillary water absorption. During the comparison of SCC and CC, the effects of two different factors were also investigated: concrete strength class and curing condition. In the study, both SCC and CC were produced in three different concrete classes (C25, C50 and C70) and the other parameter (i.e. curing condition) was determined as two levels: moisture and air curing. It was observed that, for both curing environments and all strength classes of concrete, SCCs had lower capillary water absorption values than that of CCs. It was also detected that, for both SCC and CC, capillary water absorption values of samples kept in moisture curing were significantly lower than that of samples stored in air curing. Additionally, it was determined that capillary water absorption values for both SCC and CC decrease with increasing strength class of concrete for both curing environments.
Keywords: Capillary water absorption, curing condition, reinforced concrete beam, self-compacting concrete.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34291340 An Antibacterial Dental Restorative Containing 3,4-Dichlorocrotonolactone: Synthesis, Formulation and Evaluation
Authors: Dong Xie, Leah Howard, Yiming Weng
Abstract:
The objective of this study was to synthesize and characterize 5-acryloyloxy-3,4-dichlorocrotonolactone (a furanone derivative), use this derivative to modify a dental restorative, and study the effect of the derivative on the antibacterial activity and compressive strength of the formed restorative. In this study, a furanone derivative was synthesized, characterized, and used to formulate a dental restorative. Compressive strength (CS) and S. mutans viability were used to evaluate the mechanical strength and antibacterial activity of the formed restorative. The fabricated restorative specimens were photocured and conditioned in distilled water at 37oC for 24 h, followed by direct testing for CS or/and incubating with S. mutans for 48 h for antibacterial testing. The results show that the modified dental restorative showed a significant antibacterial activity without substantially decreasing the mechanical strengths. With addition of the antibacterial derivative up to 30%, the restorative kept its original CS nearly unchanged but showed a significant antibacterial activity with 68% reduction in the S. mutans viability. Furthermore, the antibacterial function of the modified restorative was not affected by human saliva. The aging study also indicates that the modified restorative may have a long-lasting antibacterial function. It is concluded that this experimental antibacterial restorative may potentially be developed into a clinically attractive dental filling restorative due to its high mechanical strength and antibacterial function.
Keywords: Antibacterial, dental filling restorative, compressive strength, S. mutans viability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19521339 Result Validation Analysis of Steel Testing Machines
Authors: Wasiu O. Ajagbe, Habeeb O. Hamzat, Waris A. Adebisi
Abstract:
Structural failures occur due to a number of reasons. These may include under design, poor workmanship, substandard materials, misleading laboratory tests and lots more. Reinforcing steel bar is an important construction material, hence its properties must be accurately known before being utilized in construction. Understanding this property involves carrying out mechanical tests prior to design and during construction to ascertain correlation using steel testing machine which is usually not readily available due to the location of project. This study was conducted to determine the reliability of reinforcing steel testing machines. Reconnaissance survey was conducted to identify laboratories where yield and ultimate tensile strengths tests can be carried out. Six laboratories were identified within Ibadan and environs. However, only four were functional at the time of the study. Three steel samples were tested for yield and tensile strengths, using a steel testing machine, at each of the four laboratories (LM, LO, LP and LS). The yield and tensile strength results obtained from the laboratories were compared with the manufacturer’s specification using a reliability analysis programme. Structured questionnaire was administered to the operators in each laboratory to consider their impact on the test results. The average value of manufacturers’ tensile strength and yield strength are 673.7 N/mm2 and 559.7 N/mm2 respectively. The tensile strength obtained from the four laboratories LM, LO, LP and LS are given as 579.4, 652.7, 646.0 and 649.9 N/mm2 respectively while their yield strengths respectively are 453.3, 597.0, 550.7 and 564.7 N/mm2. Minimum tensile to yield strength ratio is 1.08 for BS 4449: 2005 and 1.15 for ASTM A615. Tensile to yield strength ratio from the four laboratories are 1.28, 1.09, 1.17 and 1.15 for LM, LO, LP and LS respectively. The tensile to yield strength ratio shows that the result obtained from all the laboratories meet the code requirements used for the test. The result of the reliability test shows varying level of reliability between the manufacturers’ specification and the result obtained from the laboratories. Three of the laboratories; LO, LS and LP have high value of reliability with the manufacturer i.e. 0.798, 0.866 and 0.712 respectively. The fourth laboratory, LM has a reliability value of 0.100. Steel test should be carried out in a laboratory using the same code in which the structural design was carried out. More emphasis should be laid on the importance of code provisions.
Keywords: Reinforcing steel bars, reliability analysis, tensile strength, universal testing machine, yield strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7491338 Optimization of Hemp Fiber Reinforced Concrete for Mix Design Method
Authors: Zoe Chang, Max Williams, Gautham Das
Abstract:
The purpose of this study is to evaluate the incorporation of hemp fibers (HF) in concrete. Hemp fiber reinforced concrete (HFRC) is becoming more popular as an alternative for regular mix designs. This study was done to evaluate the compressive strength of HFRC regarding mix procedure. HF were obtained from the manufacturer and hand processed to ensure uniformity in width and length. The fibers were added to concrete as both wet and dry mix to investigate and optimize the mix design process. Results indicated that the dry mix had a compressive strength of 1157 psi compared to the wet mix of 985 psi. This dry mix compressive strength was within range of the standard mix compressive strength of 1533 psi. The statistical analysis revealed that the mix design process needs further optimization and uniformity concerning the addition of HF. Regression analysis revealed that the standard mix design had a coefficient of 0.9 as compared to the dry mix of 0.375 indicating a variation in the mixing process. While completing the dry mix, the addition of plain HF caused them to intertwine creating lumps and inconsistency. However, during the wet mixing process, combining water and HF before incorporation allows the fibers to uniformly disperse within the mix hence the regression analysis indicated a better coefficient of 0.55. This study concludes that HRFC is a viable alternative to regular mixes however more research surrounding its characteristics needs to be conducted.
Keywords: hemp fibers, hemp reinforced concrete, wet and dry, freeze thaw testing, compressive strength
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5571337 Experimental Study of Unconfined and Confined Isothermal Swirling Jets
Authors: Rohit Sharma, Fabio Cozzi
Abstract:
A 3C-2D PIV technique was applied to investigate the swirling flow generated by an axial plus tangential type swirl generator. This work is focused on the near-exit region of an isothermal swirling jet to characterize the effect of swirl on the flow field and to identify the large coherent structures both in unconfined and confined conditions for geometrical swirl number, Sg = 4.6. Effects of the Reynolds number on the flow structure were also studied. The experimental results show significant effects of the confinement on the mean velocity fields and its fluctuations. The size of the recirculation zone was significantly enlarged upon confinement compared to the free swirling jet. Increasing in the Reynolds number further enhanced the recirculation zone. The frequency characteristics have been measured with a capacitive microphone which indicates the presence of periodic oscillation related to the existence of precessing vortex core, PVC. Proper orthogonal decomposition of the jet velocity field was carried out, enabling the identification of coherent structures. The time coefficients of the first two most energetic POD modes were used to reconstruct the phase-averaged velocity field of the oscillatory motion in the swirling flow. The instantaneous minima of negative swirl strength values calculated from the instantaneous velocity field revealed the presence of two helical structures located in the inner and outer shear layers and this structure fade out at an axial location of approximately z/D = 1.5 for unconfined case and z/D = 1.2 for confined case. By phase averaging the instantaneous swirling strength maps, the 3D helical vortex structure was reconstructed.
Keywords: Acoustic probes, 3C-2D particle image velocimetry, PIV, precessing vortex core, PVC, recirculation zone.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14251336 Effect of Addition the Dune Sand Powder on Development of Compressive Strength and Hydration of Cement Pastes
Authors: S. Guettala, B. Mezghiche
Abstract:
In this paper, the effect of addition the dune sand powder (DSP) on development of compressive strength and hydration of cement pastes was investigated as a function of water/binder ratio, was varied, on the one hand, the percentage of DSP and on the other, the fineness of DSP. In order to understand better the pozzolanic effect of dune sand powder in cement pastes, we followed the mixtures hydration (50% Pure Lime + 50% DSP) by X-ray diffraction. These mixtures the pastes present a hydraulic setting which is due to the formation of a C-S-H phase (calcium silicate hydrate). The latter is semi-crystallized. This study is a simplified approach to that of the mixtures (80% ordinary Portland cement + 20% DSP), in which the main reaction is the fixing of the lime coming from the cement hydration in the presence of DSP, to form calcium silicate hydrate semi-crystallized of second generation. The results proved that up to (20% DSP) as Portland cement replacement could be used with a fineness of 4000 cm²/g without affecting adversely the compressive strength. After 28 days, the compressive strength at 5, 10 and 15% DSP is superior to Portland cement, with an optimum effect for a percentage of the order of 5% to 10% irrespective of the w/b ratio and fineness of DSP.
Keywords: Ordinary Portland Cement, Pure Lime, Dune Sand Powder, Compressive Strength, Hydration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21141335 Experimental Studies of Spiral-Confined HSCFST Columns under Uni-Axial Compression
Authors: Mianheng Lai, Johnny Ching Ming Ho, Hoat Joen Pam
Abstract:
Concrete-filled-steel-tube (CFST) columns are becoming increasingly popular owing to the superior behavior contributed by the composite action. However, this composite action cannot be fully developed because of different dilation properties between steel tube and concrete. During initial compression, there will be de-bonding between the constitutive materials. As a result, the strength, initial stiffness and ductility of CFST columns reduce significantly. To resolve this problem, external confinement in the form of spirals is proposed to improve the interface bonding. In this paper, a total of 14CFST columns with high-strength as well as ultra-high-strength concrete in-filled were fabricated and tested under uni-axial compression. From the experimental results, it can be concluded that the proposed spirals can improve the strength, initial stiffness, ductility and the interface bonding condition of CFST columns by restraining the lateral expansion of steel tube and core concrete. Moreover, the failure modes of confined core concrete change due to the strong confinement provided by spirals.
Keywords: Concrete-filled-steel-tube, confinement, failure mode, high-strength concrete, spirals.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22291334 Impact of Fly Ash-Based Geopolymer Modification on the High-Temperature Properties of Bitumen
Authors: Burak Yigit Katanalp, Murat Tastan, Perviz Ahmedzade, Çigdem Canbay Turkyilmaz, Emrah Turkyilmaz
Abstract:
This study evaluated the mechanical and rheological performance of fly ash-based geopolymer at high temperatures. A series of laboratory tests were conducted on neat bitumen and three modified bitumen samples, which incorporated fly ash-based geopolymer at various percentages. Low-calcium fly ash was used as the alumina-silica source. The dynamic shear rheometer and rotational viscometer were employed to determine high-temperature properties, while conventional tests such as penetration and softening point were used to evaluate the physical properties of bitumen. Short-term aging resistance of the samples was assessed using the rolling thin film oven. The results show that geopolymer has a compromising effect on bitumen properties, with improved stiffness, enhanced mechanical strength, and increased thermal susceptibility of the asphalt binder.
Keywords: Bitumen, geopolymer, rutting, dynamic mechanical analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1741333 Study of the Effect of Seismic Behavior of Twin Tunnels Position on Each Other
Abstract:
Excavation of shallow tunnels such as subways in urban areas plays a significant role as a life line and investigation of the soil behavior against tunnel construction is one of the vital subjects studied in the geotechnical scope. Nowadays, urban tunnels are mostly drilled by T.B.Ms and changing the applied forces to tunnel lining is one of the most risky matters while drilling tunnels by these machines. Variation of soil cementation can change the behavior of these forces in the tunnel lining. Therefore, this article is designed to assess the impact of tunnel excavation in different soils and several amounts of cementation on applied loads to tunnel lining under static and dynamic loads. According to the obtained results, changing the cementation of soil will affect the applied loadings to the tunnel envelope significantly. It can be determined that axial force in tunnel lining decreases considerably when soil cementation increases. Also, bending moment and shear force in tunnel lining decreases as the soil cementation increases and causes bending and shear behavior of the segments to improve. Based on the dynamic analyses, as cohesion factor in soil increases, bending moment, axial and shear forces of segments decrease but lining behavior of the tunnel is the same as static state. The results show that decreasing the overburden applied to lining caused by cementation is different in two static and dynamic states.
Keywords: Tunnel, Soil cementation, Static, Dynamic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22241332 A Comparison between Russian and Western Approach for Deep Foundation Design
Authors: Saeed Delara, Kendra MacKay
Abstract:
Varying methodologies are considered for pile design for both Russian and Western approaches. Although both approaches rely on toe and side frictional resistances, different calculation methods are proposed to estimate pile capacity. The Western approach relies on compactness (internal friction angle) of soil for cohesionless soils and undrained shear strength for cohesive soils. The Russian approach relies on grain size for cohesionless soils and liquidity index for cohesive soils. Though most recommended methods in the Western approaches are relatively simple methods to predict pile settlement, the Russian approach provides a detailed method to estimate single pile and pile group settlement. Details to calculate pile axial capacity and settlement using the Russian and Western approaches are discussed and compared against field test results.
Keywords: Pile capacity, pile settlement, Russian approach, western approach.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8551331 Strength and Permeability Characteristics of Steel Fibre Reinforced Concrete
Authors: A. P. Singh
Abstract:
The results reported in this paper are the part of an extensive laboratory investigation undertaken to study the effects of fibre parameters on the permeability and strength characteristics of steel fibre reinforced concrete (SFRC). The effect of varying fibre content and curing age on the water permeability, compressive and split tensile strengths of SFRC was investigated using straight steel fibres having an aspect ratio of 65. Samples containing three different weight fractions of 1.0%, 2.0% and 4.0% were cast and tested for permeability and strength after 7, 14, 28 and 60 days of curing. Plain concrete samples were also cast and tested for reference purposes.
Permeability was observed to decrease significantly with the addition of steel fibres and continued to decrease with increasing fibre content and increasing curing age. An exponential relationship was observed between permeability and compressive and split tensile strengths for SFRC as well as PCC. To evaluate the effect of fibre content on the permeability and strength characteristics, the Analysis of Variance (ANOVA) statistical method was used. An a level (probability of error) of 0.05 was used for ANOVA test. Regression analysis was carried out to develop relationship between permeability, compressive strength and curing age.
Keywords: Permeability, grade of concrete, fibre shape, fibre content, curing age, steady state, Darcy’s law, method of penetration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30831330 Microstructure, Compressive Strength and Transport Properties of High Strength Self-Compacting Concretes Containing Natural Pumice and Zeolite
Authors: Kianoosh Samimi, Siham Kamali-Bernard, Ali Akbar Maghsoudi
Abstract:
Due to the difficult placement and vibration between reinforcements of reinforced concrete and the defects that it may cause, the use of self-compacting concrete (SCC) is becoming more widespread. Ordinary Portland Cement (OPC) is the most widely used binder in the construction industry. However, the manufacture of this cement results in a significant amount of CO2 being released, which is detrimental to the environment. Thus, an alternative to reduce the cost of SCC is the use of more economical and environmental mineral additives in partial or total substitution of Portland cement. Our study is in this context and aims to develop SCCs both economic and ecological. Two natural pozzolans such as pumice and zeolite are chosen in this research. This research tries to answer questions including the microstructure of the two types of natural pozzolan and their influence on the mechanical properties as well as on the transport property of SCC. Based on the findings of this study, the studied zeolite is a clinoptilolite that presents higher pozzolan activity compared to pumice. However, the use of zeolite decreases the compressive strength of SCC composites. On the contrary, the compressive strength in SCC containing of pumice increases at both early and long term ages with a remarkable increase at long term. A correlation is obtained between the compressive strength with permeable pore and capillary absorption. Also, the results concerning compressive strength and transport property are well justified by evaporable and non-evaporable water content measurement. This paper shows that the substitution of Portland cement by 15% of pumice or 10% of zeolite in HSSCC is suitable in all aspects.
Keywords: SCC, concrete, pumice, zeolite, durability, transport.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 885