Search results for: single layer
2184 A Single-Period Inventory Problem with Resalable Returns: A Fuzzy Stochastic Approach
Authors: Oshmita Dey, Debjani Chakraborty
Abstract:
In this paper, a single period inventory model with resalable returns has been analyzed in an imprecise and uncertain mixed environment. Demand has been introduced as a fuzzy random variable. In this model, a single order is placed before the start of the selling season. The customer, for a full refund, may return purchased products within a certain time interval. Returned products are resalable, provided they arrive back before the end of the selling season and are found to be undamaged. Products remaining at the end of the season are salvaged. All demands not met directly are lost. The probabilities that a sold product is returned and that a returned product is resalable, both imprecise in a real situation, have been assumed to be fuzzy in nature.
Keywords: Fuzzy random variable, Modified graded meanintegration, Internet mail order, Inventory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15282183 Optimization of Thermopile Sensor Performance of Polycrystalline Silicon Film
Authors: Li Long, Thomas Ortlepp
Abstract:
A theoretical model for the optimization of thermopile sensor performance is developed for thermoelectric-based infrared radiation detection. It is shown that the performance of polycrystalline silicon film thermopile sensor can be optimized according to the thermoelectric quality factor, sensor layer structure factor and sensor layout shape factor. Based on the properties of electrons, phonons, grain boundaries and their interactions, the thermoelectric quality factor of polycrystalline silicon is analyzed with the relaxation time approximation of Boltzmann transport equation. The model includes the effects of grain structure, grain boundary trap properties and doping concentration. The layer structure factor of sensor is analyzed with respect to infrared absorption coefficient. The effect of layout design is characterized with the shape factor, which is calculated for different sensor designs. Double layer polycrystalline silicon thermopile infrared sensors on suspended support membrane have been designed and fabricated with a CMOS-compatible process. The theoretical approach is confirmed with measurement results.
Keywords: Polycrystalline silicon film, relaxation time approximation, specific detectivity, thermal conductivity, thermopile infrared sensor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2312182 A Single-Phase Register File with Complementary Pass-Transistor Adiabatic Logic
Authors: Jianping Hu, Xiaolei Sheng
Abstract:
This paper introduces an adiabatic register file based on two-phase CPAL (Complementary Pass-Transistor Adiabatic Logic circuits) with power-gating scheme, which can operate on a single-phase power clock. A 32×32 single-phase adiabatic register file with power-gating scheme has been implemented with TSMC 0.18μm CMOS technology. All the circuits except for the storage cells employ two-phase CPAL circuits, and the storage cell is based on the conventional memory one. The two-phase non-overlap power-clock generator with power-gating scheme is used to supply the proposed adiabatic register file. Full-custom layouts are drawn. The energy and functional simulations have been performed using the net-list extracted from their layouts. Compared with the traditional static CMOS register file, HSPICE simulations show that the proposed adiabatic register file can work very well, and it attains about 73% energy savings at 100 MHz.Keywords: Low power, Register file, Complementarypass-transistor logic, Adiabatic logic, Single-phase power clock.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19652181 Design and Characteristics of New Test Facility for Flat Plate Boundary Layer Research
Authors: N. Patten, T. M. Young, P. Griffin
Abstract:
Preliminary results for a new flat plate test facility are presented here in the form of Computational Fluid Dynamics (CFD), flow visualisation, pressure measurements and thermal anemometry. The results from the CFD and flow visualisation show the effectiveness of the plate design, with the trailing edge flap anchoring the stagnation point on the working surface and reducing the extent of the leading edge separation. The flow visualization technique demonstrates the two-dimensionality of the flow in the location where the thermal anemometry measurements are obtained. Measurements of the boundary layer mean velocity profiles compare favourably with the Blasius solution, thereby allowing for comparison of future measurements with the wealth of data available on zero pressure gradient Blasius flows. Results for the skin friction, boundary layer thickness, frictional velocity and wall shear stress are shown to agree well with the Blasius theory, with a maximum experimental deviation from theory of 5%. Two turbulence generating grids have been designed and characterized and it is shown that the turbulence decay downstream of both grids agrees with established correlations. It is also demonstrated that there is little dependence of turbulence on the freestream velocity.Keywords: CFD, Flow Visualisation, Thermal Anemometry, Turbulence Grids.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17732180 Design of a Mould System for Horizontal Continuous Casting of Bilayer Aluminium Strips
Authors: Ch. Nerl, M. Wimmer, P. Hofer, E. Kaschnitz
Abstract:
The present article deals with a composite casting process that allows to produce bilayer AlSn6-Al strips based on the technique of horizontal continuous casting. In the first part experimental investigations on the production of a single layer AlSn6 strip are described. Afterwards essential results of basic compound casting trials using simple test specimen are presented to define the thermal conditions required for a metallurgical compound between the alloy AlSn6 and pure aluminium. Subsequently, numerical analyses are described. A finite element model was used to examine a continuous composite casting process. As a result of the simulations the main influencing parameters concerning the thermal conditions within the composite casting region could be pointed out. Finally, basic guidance is given for the design of an appropriate composite mould system.
Keywords: Aluminium alloys, composite casting, compound casting, continuous casting, numerical simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31602179 Spectral Investigation for Boundary Layer Flow over a Permeable Wall in the Presence of Transverse Magnetic Field
Authors: Saeed Sarabadan, Mehran Nikarya, Kouroah Parand
Abstract:
The magnetohydrodynamic (MHD) Falkner-Skan equations appear in study of laminar boundary layers flow over a wedge in presence of a transverse magnetic field. The partial differential equations of boundary layer problems in presence of a transverse magnetic field are reduced to MHD Falkner-Skan equation by similarity solution methods. This is a nonlinear ordinary differential equation. In this paper, we solve this equation via spectral collocation method based on Bessel functions of the first kind. In this approach, we reduce the solution of the nonlinear MHD Falkner-Skan equation to a solution of a nonlinear algebraic equations system. Then, the resulting system is solved by Newton method. We discuss obtained solution by studying the behavior of boundary layer flow in terms of skin friction, velocity, various amounts of magnetic field and angle of wedge. Finally, the results are compared with other methods mentioned in literature. We can conclude that the presented method has better accuracy than others.Keywords: MHD Falkner-Skan, nonlinear ODE, spectral collocation method, Bessel functions, skin friction, velocity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11702178 The Heat and Mass Transfer Phenomena in Vacuum Membrane Distillation for Desalination
Authors: Bhausaheb L. Pangarkar, M. G. Sane, Saroj B. Parjane, Rajendra M. Abhang, Mahendra Guddad
Abstract:
Vacuum membrane distillation (VMD) process can be used for water purification or the desalination of salt water. The process simply consists of a flat sheet hydrophobic micro porous PTFE membrane and diaphragm vacuum pump without a condenser for the water recovery or trap. The feed was used aqueous NaCl solution. The VMD experiments were performed to evaluate the heat and mass transfer coefficient of the boundary layer in a membrane module. The only operating parameters are feed inlet temperature, and feed flow rate were investigated. The permeate flux was strongly affected by the feed inlet temperature, feed flow rate, and boundary layer heat transfer coefficient. Since lowering the temperature polarization coefficient is essential enhance the process performance considerable and maximizing the heat transfer coefficient for maximizes the mass flux of distillate water. In this paper, the results of VMD experiments are used to measure the boundary layer heat transfer coefficient, and the experimental results are used to reevaluate the empirical constants in the Dittus- Boelter equation.Keywords: Desalination, heat and mass transfer coefficient, temperature polarization, membrane distillation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25742177 Artificial Neural Network Approach for Short Term Load Forecasting for Illam Region
Authors: Mohsen Hayati, Yazdan Shirvany
Abstract:
In this paper, the application of neural networks to study the design of short-term load forecasting (STLF) Systems for Illam state located in west of Iran was explored. One important architecture of neural networks named Multi-Layer Perceptron (MLP) to model STLF systems was used. Our study based on MLP was trained and tested using three years (2004-2006) data. The results show that MLP network has the minimum forecasting error and can be considered as a good method to model the STLF systems.Keywords: Artificial neural networks, Forecasting, Multi-layer perceptron.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27762176 Quantum Dot Cellular Automata Based Effective Design of Combinational and Sequential Logical Structures
Authors: Hema Sandhya Jagarlamudi, Mousumi Saha, Pavan Kumar Jagarlamudi
Abstract:
The use of Quantum dots is a promising emerging Technology for implementing digital system at the nano level. It is effecient for attractive features such as faster speed , smaller size and low power consumption than transistor technology. In this paper, various Combinational and sequential logical structures - HALF ADDER, SR Latch and Flip-Flop, D Flip-Flop preceding NAND, NOR, XOR,XNOR are discussed based on QCA design, with comparatively less number of cells and area. By applying these layouts, the hardware requirements for a QCA design can be reduced. These structures are designed and simulated using QCA Designer Tool. By taking full advantage of the unique features of this technology, we are able to create complete circuits on a single layer of QCA. Such Devices are expected to function with ultra low power Consumption and very high speeds.Keywords: QCA, QCA Designer, Clock, Majority Gate
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26202175 Boundary Effect on the Onset of Marangoni Convection with Internal Heat Generation
Authors: Norihan Md Arifin, Norfifah Bachok
Abstract:
The onset of Marangoni convection in a horizontal fluid layer with internal heat generation overlying a solid layer heated from below is studied. The upper free surface of a fluid is nondeformable and the bottom boundary are rigid and no-slip. The resulting eigenvalue problem is solved exactly. The critical values of the Marangoni numbers for the onset of Marangoni convection are calculated and the latter is found to be critically dependent on the internal heating, depth ratio and conductivity ratio. The effects of the thermal conductivity and the thickness of the solid plate on the onset of convective instability with internal heating are studied in detail.Keywords: Linear stability, Marangoni convection, Internal Heatgeneration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14752174 Modeling of Single-Particle Impact in Abrasive Water Jet Machining
Authors: S. Y. Ahmadi-Brooghani, H. Hassanzadeh, P. Kahhal
Abstract:
This work presents a study on the abrasive water jet (AWJ) machining. An explicit finite element analysis (FEA) of single abrasive particle impact on stainless steel 1.4304 (AISI 304) is conducted. The abrasive water jet machining is modeled by FEA software ABAQUS/CAE. Shapes of craters in FEM simulation results were used and compared with the previous experimental and FEM works by means of crater sphericity. The influence of impact angle and particle velocity was observed. Adaptive mesh domain is used to model the impact zone. Results are in good agreement with those obtained from the experimental and FEM simulation. The crater-s depth is also obtained for different impact angle and abrasive particle velocities.Keywords: Abrasive water jet machining, Adaptive meshcontrol, Explicit finite elements analysis, Single-particle impact.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28332173 Study of Temperature Distribution in Coolant Channel of Nuclear Power with Fuel Cylinder Element Using Fluent Software
Authors: Elham Zamiri
Abstract:
In this research, we have focused on numeral simulation of a fuel rod in order to examine distribution of heat temperature in components of fuel rod by Fluent software by providing steady state, single phase fluid flow, frequency heat flux in a fuel rod in nuclear reactor to numeral simulation. Results of examining different layers of a fuel rod consist of fuel layer, gap, pod, and fluid cooling flow, also examining thermal properties and fluids such as heat transition rate and pressure drop. The obtained results through analytical method and results of other sources have been compared and have appropriate correspondence. Results show that using heavy water as cooling fluid along with few layers of gas and pod have the ability of reducing the temperature from above 300 ◦C to 70 ◦C. This investigation is developable for any geometry and material used in the nuclear reactor.Keywords: Nuclear fuel fission, numberal simulation, fuel rod, reactor, fluent software.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7142172 Inversion Layer Effective Mobility Model for Pocket Implanted Nano Scale n-MOSFET
Authors: Muhibul Haque Bhuyan, Quazi D. M. Khosru
Abstract:
Carriers scattering in the inversion channel of n- MOSFET dominates the drain current. This paper presents an effective electron mobility model for the pocket implanted nano scale n-MOSFET. The model is developed by using two linear pocket profiles at the source and drain edges. The channel is divided into three regions at source, drain and central part of the channel region. The total number of inversion layer charges is found for these three regions by numerical integration from source to drain ends and the number of depletion layer charges is found by using the effective doping concentration including pocket doping effects. These two charges are then used to find the effective normal electric field, which is used to find the effective mobility model incorporating the three scattering mechanisms, such as, Coulomb, phonon and surface roughness scatterings as well as the ballistic phenomena for the pocket implanted nano-scale n-MOSFET. The simulation results show that the derived mobility model produces the same results as found in the literatures.Keywords: Linear Pocket Profile, Pocket Implanted n-MOSFET, Effective Electric Field and Effective Mobility Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19102171 Dempster-Shafer Information Filtering in Multi-Modality Wireless Sensor Networks
Authors: D.M. Weeraddana, K.S. Walgama, E.C. Kulasekere
Abstract:
A framework to estimate the state of dynamically varying environment where data are generated from heterogeneous sources possessing partial knowledge about the environment is presented. This is entirely derived within Dempster-Shafer and Evidence Filtering frameworks. The belief about the current state is expressed as belief and plausibility functions. An addition to Single Input Single Output Evidence Filter, Multiple Input Single Output Evidence Filtering approach is introduced. Variety of applications such as situational estimation of an emergency environment can be developed within the framework successfully. Fire propagation scenario is used to justify the proposed framework, simulation results are presented.
Keywords: Dempster-Shafer Belief theory, Evidence Filtering, Evidence Fusion, Sensor Modalities, Wireless Sensor Networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22362170 Development of Piezoelectric Gas Micro Pumps with the PDMS Check Valve Design
Authors: Chiang-Ho Cheng, An-Shik Yang, Hong-Yih Cheng, Ming-Yu Lai
Abstract:
This paper presents the design and fabrication of a novel piezoelectric actuator for a gas micro pump with check valve having the advantages of miniature size, light weight and low power consumption. The micro pump is designed to have eight major components, namely a stainless steel upper cover layer, a piezoelectric actuator, a stainless steel diaphragm, a PDMS chamber layer, two stainless steel channel layers with two valve seats, a PDMS check valve layer with two cantilever-type check valves and an acrylic substrate. A prototype of the gas micro pump, with a size of 52 mm × 50 mm × 5.0 mm, is fabricated by precise manufacturing. This device is designed to pump gases with the capability of performing the self-priming and bubble-tolerant work mode by maximizing the stroke volume of the membrane as well as the compression ratio via minimization of the dead volume of the micro pump chamber and channel. By experiment apparatus setup, we can get the real-time values of the flow rate of micro pump and the displacement of the piezoelectric actuator, simultaneously. The gas micro pump obtained higher output performance under the sinusoidal waveform of 250 Vpp. The micro pump achieved the maximum pumping rates of 1185 ml/min and back pressure of 7.14 kPa at the corresponding frequency of 120 and 50 Hz.Keywords: PDMS, Check valve, Micro pump, Piezoelectric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20262169 Study of Real Gas Behavior in a Single-Stage Gas Gun
Authors: A. Moradi, S. Khodadadiyan
Abstract:
In this paper, one-dimensional analysis of flow in a single-stage gas gun is conducted. The compressible inviscid flow equations are numerically solved by the second-order Roe TVD method, by using moving boundaries. For investigation of real gas effect the Noble-Able equation is applied. The numerical results are compared with the experimental data to validate the numerical scheme. The results show that with using the Noble-Able equation, the muzzle velocity decreases.Keywords: Gas gun, Roe, projectile, muzzle velocity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23102168 A Critics Study of Neural Networks Applied to ion-Exchange Process
Authors: John Kabuba, Antoine Mulaba-Bafubiandi, Kim Battle
Abstract:
This paper presents a critical study about the application of Neural Networks to ion-exchange process. Ionexchange is a complex non-linear process involving many factors influencing the ions uptake mechanisms from the pregnant solution. The following step includes the elution. Published data presents empirical isotherm equations with definite shortcomings resulting in unreliable predictions. Although Neural Network simulation technique encounters a number of disadvantages including its “black box", and a limited ability to explicitly identify possible causal relationships, it has the advantage to implicitly handle complex nonlinear relationships between dependent and independent variables. In the present paper, the Neural Network model based on the back-propagation algorithm Levenberg-Marquardt was developed using a three layer approach with a tangent sigmoid transfer function (tansig) at hidden layer with 11 neurons and linear transfer function (purelin) at out layer. The above mentioned approach has been used to test the effectiveness in simulating ion exchange processes. The modeling results showed that there is an excellent agreement between the experimental data and the predicted values of copper ions removed from aqueous solutions.Keywords: Copper, ion-exchange process, neural networks, simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16312167 The Effect of Bath Composition for Hot-Dip Aluminizing of AISI 4140 Steel
Authors: Aptullah Karakaş, Murat Baydoğan
Abstract:
In the HDA process, Al or Al-Si molten baths are mostly used. However, in this study, three different Al alloys such as Al4043 (Al-Mg), Al5356 (Al-Si) and Al7020 (Al-Zn) were used as the molten bath in order to see their effects on morphological and mechanical properties of the resulting aluminide layers. AISI 4140 low alloyed steel was used as the substrate. Parameters of the HDA process were bath composition, bath temperature, and dipping time. These parameters were considered within a Taguchi L9 orthogonal array. After the HDA process and subsequent diffusion annealing, coating thickness measurement, microstructural analysis and hardness measurement of the aluminide layers were conducted. The optimum process parameters were evaluated according to coating morphology such as cracks, Kirkendall porosity and hardness of the coatings. According to the results, smooth and clean aluminide layer with less Kirkendall porosity and cracks were observed on the sample, which was aluminized in the molten Al7020 bath at 700 C for 10 minutes, and subsequently diffusion annealed at 750 C. Hardness of the aluminide layer was in between 1100-1300 hardness of Vickers (HV) and the coating thickness was approximately 400 µm. The results were promising such that a hard and thick aluminide layer with less Kirkendall porosity and cracks could be formed. It is therefore, concluded that Al7020 bath may be used in the HDA process of AISI 4140 steel substrate.
Keywords: Aluminum alloys, coating, hot-dip aluminizing, microstructure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 892166 Gas-Solid Nitrocarburizing of Steels: Kinetic Modeling and Experimental Validation
Authors: L. Torchane
Abstract:
The study is devoted to define the optimal conditions for the nitriding of pure iron at atmospheric pressure by using NH3- Ar-C3H8 gas mixtures. After studying the mechanisms of phase formation and mass transfer at the gas-solid interface, a mathematical model is developed in order to predict the nitrogen transfer rate in the solid, the ε-carbonitride layer growth rate and the nitrogen and carbon concentration profiles. In order to validate the model and to show its possibilities, it is compared with thermogravimetric experiments, analyses and metallurgical observations (X-ray diffraction, optical microscopy and electron microprobe analysis). Results obtained allow us to demonstrate the sound correlation between the experimental results and the theoretical predictions.
Keywords: Gaseous Nitrocarburizing, Kinetic Model, Diffusion, Layer Growth Kinetic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21812165 Transient Analysis of a Single-Server Queue with Batch Arrivals Using Modeling and Functions Akin to the Modified Bessel Functions
Authors: Vitalice K. Oduol
Abstract:
The paper considers a single-server queue with fixedsize batch Poisson arrivals and exponential service times, a model that is useful for a buffer that accepts messages arriving as fixed size batches of packets and releases them one packet at time. Transient performance measures for queues have long been recognized as being complementary to the steady-state analysis. The focus of the paper is on the use of the functions that arise in the analysis of the transient behaviour of the queuing system. The paper exploits practical modelling to obtain a solution to the integral equation encountered in the analysis. Results obtained indicate that under heavy load conditions, there is significant disparity in the statistics between the transient and steady state values.Keywords: batch arrivals, modelling, single-server queue, time-varying probabilities, transient analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15312164 Bandwidth and Delay Aware Routing Protocol with Scheduling Algorithm for Multi Hop Mobile Ad Hoc Networks
Authors: Y. Harold Robinson, E. Golden Julie, S. Balaji
Abstract:
The scheduling based routing scheme is presented in this paper to avoid link failure. The main objective of this system is to introduce a cross-layer protocol framework that integrates routing with priority-based traffic management and distributed transmission scheduling. The reservation scheme is based on ID. The presented scheme guarantees that bandwidth reserved time slot is used by another packet in which end-to-end reservation is achieved. The Bandwidth and Delay Aware Routing Protocol with Scheduling Algorithm is presented to allocate channels efficiently. The experimental results show that the presented schemes performed well in various parameters compared to existing methods.Keywords: Integrated routing, scheduling, MAC layer, IEEE 802.11.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11852163 Simulation and Analytical Investigation of Different Combination of Single Phase Power Transformers
Authors: M. Salih Taci, N. Tayebi, I. Bozkır
Abstract:
In this paper, the equivalent circuit of the ideal single-phase power transformer with its appropriate voltage current measurement was presented. The calculated values of the voltages and currents of the different connections single phase normal transformer and the results of the simulation process are compared. As it can be seen, the calculated results are the same as the simulated results. This paper includes eight possible different transformer connections. Depending on the desired voltage level, step-down and step-up application transformer is considered. Modelling and analysis of a system consisting of an equivalent source, transformer (primary and secondary), and loads are performed to investigate the combinations. The obtained values are simulated in PSpice environment and then how the currents, voltages and phase angle are distributed between them is explained based on calculation.
Keywords: Transformer, simulation, equivalent model, parallel series combinations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11142162 Efficiency Improvements of GaAs-based Solar Cells by Hydrothermally-deposited ZnO Nanostructure Array
Authors: Chun-Yuan Huang, Chiao-Yang Cheng, Chun-Yem Huang, Yan-Kuin Su, James Chin-Lung Fang
Abstract:
ZnO nanostructures including nanowires, nanorods, and nanoneedles were successfully deposited on GaAs substrates, respectively, by simple two-step chemical method for the first time. A ZnO seed layer was firstly pre-coated on the O2-plasma treated substrate by sol-gel process, followed by the nucleation of ZnO nanostructures through hydrothermal synthesis. Nanostructures with different average diameter (15-250 nm), length (0.9-1.8 μm), density (0.9-16×109 cm-2) were obtained via adjusting the growth time and concentration of precursors. From the reflectivity spectra, we concluded ordered and taper nanostructures were preferential for photovoltaic applications. ZnO nanoneedles with an average diameter of 106 nm, a moderate length of 2.4 μm, and the density of 7.2×109 cm-2 could be synthesized in the concentration of 0.04 M for 18 h. Integrated with the nanoneedle array, the power conversion efficiency of single junction solar cell was increased from 7.3 to 12.2%, corresponding to a 67% improvement.Keywords: Anti-reflection, Chemical synthesis, Solar cells, ZnO nanostructures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19432161 Microstrip Slot Antenna for Triple Band Application in Wireless Communication
Authors: Biplab Bag
Abstract:
In this paper, the design of a coaxial feed single layer rectangular microstrip patch antenna for three different wireless communication band applications is presented. The proposed antenna is designed by using substrate Roger RT/duroid 5880 having permittivity of about 2.2 and tangent loss of 0.0009. The characteristics of the substrate are designed and to evaluate the performance of modeled antenna using HFSS v.11 EM simulator, from Ansoft. The proposed antenna has small in size and operates at 2.25GHz, 3.76GHz and 5.23GHz suitable for mobile satellite service (MSS) network, WiMAX and WLAN applications. The dimension of the patch and slots are optimized to obtain these desired functional frequency ranges. The simulation results with frequency response, radiation pattern and return loss, VSWR, Input Impedance are presented with appropriate table and graph.
Keywords: Microstrip, Tangent Loss, MSS, WiMAX, WLAN, Radiation Pattern, Return Loss, VSWR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31162160 Neural Network Based Approach for Face Detection cum Face Recognition
Authors: Kesari Verma, Aniruddha S. Thoke, Pritam Singh
Abstract:
Automatic face detection is a complex problem in image processing. Many methods exist to solve this problem such as template matching, Fisher Linear Discriminate, Neural Networks, SVM, and MRC. Success has been achieved with each method to varying degrees and complexities. In proposed algorithm we used upright, frontal faces for single gray scale images with decent resolution and under good lighting condition. In the field of face recognition technique the single face is matched with single face from the training dataset. The author proposed a neural network based face detection algorithm from the photographs as well as if any test data appears it check from the online scanned training dataset. Experimental result shows that the algorithm detected up to 95% accuracy for any image.Keywords: Face Detection, Face Recognition, NN Approach, PCA Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23012159 Simulation and Design of Single Fed Circularly Polarized Triangular Microstrip Antenna with Wide Band Tuning Stub
Authors: R. Irani, A. Ghavidel, F. Hodjat Kashani
Abstract:
Recently, several designs of single fed circularly polarized microstrip antennas have been studied. Relatively, a few designs for achieving circular polarization using triangular microstrip antenna are available. Typically existing design of single fed circularly polarized triangular microstrip antennas include the use of equilateral triangular patch with a slit or a horizontal slot on the patch or addition a narrow band stub on the edge or a vertex of triangular patch. In other word, with using a narrow band tune stub on middle of an edge of triangle causes of facility to compensate the possible fabrication error and substrate materials with easier adjusting the tuner stub length. Even though disadvantages of this method is very long of stub (approximate 1/3 length of triangle edge). In this paper, instead of narrow band stub, a wide band stub has been applied, therefore the length of stub by this method has been decreased around 1/10 edge of triangle in addition changing the aperture angle of stub, provides more facility for designing and producing circular polarization wave.Keywords: Circular polarization, Microstrip antenna, single feed, wide band stub.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20082158 Extracting Single Trial Visual Evoked Potentials using Selective Eigen-Rate Principal Components
Authors: Samraj Andrews, Ramaswamy Palaniappan, Nidal Kamel
Abstract:
In single trial analysis, when using Principal Component Analysis (PCA) to extract Visual Evoked Potential (VEP) signals, the selection of principal components (PCs) is an important issue. We propose a new method here that selects only the appropriate PCs. We denote the method as selective eigen-rate (SER). In the method, the VEP is reconstructed based on the rate of the eigen-values of the PCs. When this technique is applied on emulated VEP signals added with background electroencephalogram (EEG), with a focus on extracting the evoked P3 parameter, it is found to be feasible. The improvement in signal to noise ratio (SNR) is superior to two other existing methods of PC selection: Kaiser (KSR) and Residual Power (RP). Though another PC selection method, Spectral Power Ratio (SPR) gives a comparable SNR with high noise factors (i.e. EEGs), SER give more impressive results in such cases. Next, we applied SER method to real VEP signals to analyse the P3 responses for matched and non-matched stimuli. The P3 parameters extracted through our proposed SER method showed higher P3 response for matched stimulus, which confirms to the existing neuroscience knowledge. Single trial PCA using KSR and RP methods failed to indicate any difference for the stimuli.Keywords: Electroencephalogram, P3, Single trial VEP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16412157 Numbers and Biomass of Bacteria and Fungi Obtained by the Direct Microscopic Count Method
Authors: Ayuko Itsuki, Sachiyo Aburatani
Abstract:
The soil ecology of the organic and mineral soil layers of laurel-leaved and Cryptomeria japonica forest in the Kasuga-yama Hill Primeval Forest (Nara, Japan) was assessed. The number of bacteria obtained by the dilution plate count method was less than 0.05% of those counted by the direct microscopic count. We therefore found that forest soil contains large numbers of non-culturable bacteria compared with agricultural soils. The numbers of bacteria and fungi obtained by both the dilution plate count and the direct microscopic count were larger in the deeper horizons (F and H) of the organic layer than in the mineral soil layer. This suggests that active microbial metabolism takes place in the organic layer. The numbers of bacteria and the length of fungal hyphae obtained by the direct count method were greater in the H horizon than in the F horizon. The direct microscopic count revealed numerous non-culturable bacteria and fungi in the soil. The ratio of fungal to bacterial biomass was lower in the laurel-leaved forest soil. The fungal biomass was therefore relatively low in the laurel-leaved forest soil due to differences in forest vegetation.Keywords: Bacterial number, Dilution plate count, Direct microscopic count, Forest soil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37712156 Fretting Fatigue behavior of Bolted Single Lap Joints of Aluminum Alloys
Authors: Hadi Rezghi Maleki, Babak Abazadeh
Abstract:
In this paper, the effect of bolt clamping force on the fatigue behavior of bolted single lap joints of aluminum alloy 2024- T3 have been studied using numerical finite element method. To do so, a three dimensional model according to the bolted single lap joint has been created and numerical analysis has been carried out using finite element based package. Then the stress distribution and also the slip amplitudes have been calculated in the critical regions and the outcome have been compared with the available experimental fatigue tests results. The numerical results show that in low applied clamping force, the fatigue failure of the specimens occur around the stress concentration location (the bolted hole edge) due to the tensile stresses and thus fatigue crack propagation, but with increase of the clamping force, the fatigue life increases and the cracks nucleate and propagate far from the hole edge because of fretting fatigue. In other words, with the further increase of clamping force value of the joint, the fatigue life reduces due to occurrence of the fretting fatigue in the critical location where the slip amplitude is within its critical occurs earlier.
Keywords: Fretting fatigue, bolted single lap joint, torque tightening, finite element method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25512155 Thermo-Mechanical Analysis of Dissimilar Al/Cu Foil Single Lap Joints Made by Composite Metal Foil Manufacturing
Authors: Javaid Butt, Habtom Mebrahtu, Hassan Shirvani
Abstract:
The paper presents an additive manufacturing process for the production of metal and composite parts. It is termed as composite metal foil manufacturing and is a combination of laminated object manufacturing and brazing techniques. The process has been described in detail and is being used to produce dissimilar aluminum to copper foil single lap joints. A three dimensional finite element model has been developed to study the thermo-mechanical characteristics of the dissimilar Al/Cu single lap joint. The effects of thermal stress and strain have been analyzed by carrying out transient thermal analysis on the heated plates used to join the two 0.1mm thin metal foils. Tensile test has been carried out on the foils before joining and after the single Al/Cu lap joints are made, they are subjected to tensile lap-shear test to analyze the effect of heat on the foils. The analyses are designed to assess the mechanical integrity of the foils after the brazing process and understand whether or not the heat treatment has an effect on the fracture modes of the produced specimens.
Keywords: Brazing, Laminated Object Manufacturing, Tensile Lap-Shear Test, Thermo-Mechanical Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1900