
Abstract—The paper considers a single-server queue with fixed-
size batch Poisson arrivals and exponential service times, a model 
that is useful for a buffer that accepts messages arriving as fixed size 
batches of packets and releases them one packet at time. Transient 
performance measures for queues have long been recognized as 
being complementary to the steady-state analysis. The focus of the 
paper is on the use of the functions that arise in the analysis of the 
transient behaviour of the queuing system. The paper exploits 
practical modelling to obtain a solution to the integral equation 
encountered in the analysis. Results obtained indicate that under 
heavy load conditions, there is significant disparity in the statistics 
between the transient and steady state values. 

Keywords—batch arrivals, modelling, single-server queue,  
time-varying probabilities, transient analysis.

I. INTRODUCTION

HE paper considers a single-server queue with fixed-size 
Poisson arrivals and exponential service times. This model 
is useful for a buffer that accepts messages arriving in 

fixed size batches of packets and releases one packet at time 
[1]. Justifications for the transient analysis of traffic in 
telecommunication systems abound [2]. It has long been 
recognized that transient performance measures for queues are 
complementary to the steady-state results [3-6] because there 
often exists a need to understand the initial behaviour of a 
system. In general queuing systems, arrivals at a service point 
(e.g. a switch) may occur in batches of different sizes. Due to 
congestion these arrivals may be queued for later forwarding 
to the destination. This paper considers the case in which the 
arrivals are of fixed size, and occur in continuous time. There
may be cases where the network traffic is diverted suddenly to 
cope with faults, as in automatic protection switching (APS) 
in which the transport system re-directs traffic when faults and 
failures occur in subcomponents of the network. In such cases 
a service point may experience a sudden increase in its load, 
and this may continue until the original fault has been cleared. 
After the fault is corrected, traffic reverts to the previous 
distribution, and this presents another perturbation in the 
network. There exists now a reduction in the load in parts of 
the network, 
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The restored element experiences an increased load transient 
starting from an empty state. This scenario presents the 
network service points with transient conditions that require 
the kind of analysis attempted here. The paper has limited the 
analysis to the case of fixed batch size. Of the two main 
approaches that have been adopted to obtain the transient 
behaviour of queuing systems one relies on the numerical 
inversion of Laplace transforms or generating functions [7,8], 
and the other is based on recursive computations. What is 
presented here is a method that uses a family of functions 
arising in the analysis of the queuing system. It is evident that 
these functions are akin to the modified Bessel functions of 
first kind, with which they share several similarities. Many of 
these similarities are not explored in this paper, since attention 
is on their use to obtain the transient behaviour of the queuing 
system.    

A key integral equation is obtained and in solved using 
practical expressions to produce the results required in the 
analysis. For a batch size of one (B=1), the integral equation is 
easily solved [9] to obtain the results in terms of the modified 
Bessel functions of the first kind. For B >1, the triplet (B, , k)
represents the set of  independent variables considered as 
inputs to the analysis, where B is the size of a batch,  the 
system load, and k the number of packets in the system. The 
results section presents the dependence of the system 
parameters on (B, , k) and proceeds to use these to provide 
numerical results for the assessment quantities using equations 
derived in earlier sections of the paper.  

The paper is organized as follows. Section II presents the 
system model, and sets the main point of reference for the rest 
of the presentation. It presents a brief discussion of the steady 
state probabilities, obtained by considering that time 
derivatives vanish. It proceeds to consider the more general 
case of time-varying probabilities, which is actually a 
discussion of the time-dependent quantities that, in the limit of 
large t, eventually yield the steady state results. Section III 
presents the key integral equation whose solution is used to 
determine the occupancy probabilities. Section IV addresses 
the modeling of the convolution kernels. This is done for both 
the main kernel and the general kernel. Section V gives the 
parameters for the convolution kernels and also discusses how 
to obtain the quantities Qk(t) from which the occupancy 
probabilities are obtained. Finally Section VI gives the results 
and conclusion.
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II. SYSTEM MODEL
Messages arrive at a service point in fixed size batches of B 
packets according to a Poisson process of mean rate  arrivals 
per second. The single server completes the service at the rate 
of  packets per second. The probability flow rates are as 
shown in  Fig.1. 

0 1 2 B B+2B+1

Fig.1 Probability Flow For the Queuing System 

Denote by  Pk(t) the probability that there are k packets in the 
system at time t. The probability flow balance equations are 
given by  

BktBkPtkP

BktkP

ktPtP

tkP
dt

tkdP

)()(1

1)(1

0)(0)(1
)(

)(        (1) 

A. Steady State Probabilities 
For steady state analysis (1) can be solved for the number of 
packets in the system  by setting the time derivatives to zero.  
This yields the set of equations 

BkBkPkP

BkkP

kPP

kP

1

11

001               (2) 

Let )(zP  be the moment generating function defined by  

0
)(

k
kPkzzP                                (3) 

Substituting (2) in (3) yields 

1
01

)( Bzz

Pz
zP                    (4) 

Since P(z) is analytic in the unit disc {z: |z|  1 }, there must 
be a pole-zero cancellation to remove the pole at z=1. This 
gives  

B

m

mz

P
zP

1
1

0)(
                        (5) 

Since P(z) is a moment generating function, it is necessary to 
have P(1) = 1.  Accordingly, P0 = 1 – B /  =1 – , where 

 = /   is the offered load. The steady state solution is 
obtained by solving (4) and (5) to give 

0
),min(

1
kmkPkP

Bk

m

            (6) 

B. Time-Varying Probabilities 
This subsection considers the more general situation of the 
probabilities before they reach the steady state. The quantity 
Pk(t) will eventually reach the steady state value Pk in the limit 
of large t. The equations in (1) can be simpler by letting 

ttkQtkP exp)()(                        (7) 

Substituting (7) in (1) results in 

BktBkQtkQ

BktkQ

ktQtQ

dt

tkdQ

)()(1

1)(1

0)(0)(1)(        (8) 

From (7) it is observed that he initial condition Pk(0)= i,k is 
equivalent to Qk(0)= i,k, where i,k is the Kronecker delta, used 
here to signify the fact the system starts with i packets. 
Defining the moment generating function Q(z,t) as 

0
)(),(

k
tkQkztzQ

                             (9) 

and using (8) gives the partial differential equation.  

)(1),(),(
0

11 tQztzQzz
t

tzQ B          (10) 

whose solution is 

t B

B

dQtzzz

tzzzQtzQ

0 0
11

1

)(exp1

exp)0,(),(  (11) 

The function tzz B 1exp  embedded in the solution 
for the moment generating function  (11) can then be written 
as

k
tVztzz B

k
B

k
kB )(exp )(11              (12) 

with  defined as 

1
1

1
1 B

BB                  (13) 

and  for 0k   the functions )()( xV B
k

  and )()( xV B
k

 are defined 

as

0 !!

)1(
)()(

l klBl

kBlxxB
kV

                            (14) 

kl klBl

kBlxxB
kV

!!

)1(
)()(                          (15) 

where for k > 0 the variable k is defined as k = k/B  and the 
notation k/B  designates the smallest integer not less than 
k/B, otherwise known as the roof (or ceiling) of k/B.  When B
= 1 it is seen that k = k, and it is easily shown by direct 
substitution that (14) and (15) coalesce and both become 
Ik(2x),  the modified Bessel function of the first kind of order 
k, evaluated at 2x. There are other aspects of correspondence 
between the functions )()( xV B

k
 and the modified Bessel 

functions, which are not explored here. The main purpose here  
is to use the functions as defined in order to obtain results for 
the transient behaviour of the queuing system. Continuing 
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these proceedings, the functions )()( xV B
k

 can now be used in 
(11) to give 

t
k

B
k

k

B
ik

B
ik

k

dthQ
k

z

k
tVztzQ

0 0
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)(1

)(

)(),(            (16) 

where

)(
1

1
1

)( tVtVth B
k

BB
kk

                 (17) 

Defining the functions )(tq ki
 according to 

tV(tq B
ik

B
ik

ki
)(1

)                        (18) 

and subsequently equating coefficients of equal powers of z 
on both sides in (16) gives 

t
k

B
k

kik d(thQ(tq(tQ
0 0

1
))())           (19) 

from which the dependence of Qk(t) on Q0(t) is evident. At 
this point it becomes necessary to seek some simplifying 
practical considerations that can simplify the analysis. These 
equations can be represented by the signal processing diagram 
of Fig.2, in which the factor  in (19) has been omitted, as it 
amounts to a scaling of the time axis.

)(tqi

)(0 th

)(1 tqi

)(1 th

)(2 tqi

)(tq ki

)(thk

)(0 tQ

)(1 tQ

)(2 tQ

)(tQk

)(2 th

Fig. 2. Linear System Representing Qk(t)

III. THE KEY INTEGRAL EQUATION
This section determines the integral equation for Q0(t), from 
whose solution the other quantities Qk(t) will be obtained. 
Setting  k=0 in (19) results in the  integral equation 

t
i d(thQ(tq(tQ

0 000 ))())              (20) 

This is the key integral equation that must be solved to obtain 
statistics for the  behaviour of the queuing system. Indeed it 
can be shown that once Q0(t) is known, the average number in 
the system can be determined, as well as the delay 
experienced by packets. This is because the Laplace-Stieltjes 
transform Q*(z,s) of the moment generating function Q(z,t) 
for Qk(t) is found to depend only on Q0(t), its initial 
conditions, and the parameters of the system, namely the 
arrival rate, batch size, and the service rate. This indicates that 
all the statistics of the system are derivable from the 
knowledge of Q0(t).

An equivalent integral equation for Q0(t) can be obtained by 
imposing the condition that  for negative values of k, it is 
necessary to have for 0)(tQk

. In particular, setting k=-1 in  
(19) yields  

t
i

B
)d(th(Qt)q 0 101

1
1

)(
             (21) 

By exploiting properties of the functions )()( xV B
k

 it can be 
shown that the two integral equations are equivalent, in the 
sense that either one can be obtained from the other. In the 
sequel (20) is used. 

A. Solution of the Key Integral Equation 
The integral equations given here can be solved by a variety 
of methods. Some authors have suggested expressing both the 
kernel and the unknown function as series of derivatives of 
the known function in the method of differential inversion 
[10,11]. One special case considers an integral equation whose 
kernel is a Bessel function [12]. In this paper, the practical 
considerations given above are used to obtain numerical 
results that can be used in the assessment of the transient 
behaviour of the queuing systems in question. The integral 
equation in (20) can be represented by the linear system in the 
upper part of Fig. 3. The lower part of Fig.3 is obtained as 
follows. The Laplace transforms of )(0 th  and )(th  are 
respectively (s)H 0  and H(s) . In order to keep the expressions 
simple, the definition  

1/1 BmB                              (22) 
yields   

1
1

0 s
(s)H                                     (23) 

s(s)H
H(s) 11

1
1

0

              (24) 

The time domain expression then becomes 
ttth exp)()(                             (25) 

With )(tqi  as  input (25) immediately yields the lower part of 

Fig.3, where for the same reason as in Fig.2 the factor  in 
(20) has once again been omitted. 

Using the linear system in Fig.3 gives Q0(t) as 
t(tiq(tiq(tQ exp)))0

                     (26) 

where the symbol * is used to denote the convolution 
operation. 
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)(tiq

)(0 th

)(0 tQ

+
+

)(tiq

)exp( t

)(
0

tQ
+
+

)(th

Fig. 3. Linear System Representing The Equation For Q0(t)

The convolution term on the right hand side of (28)  can be 
expressed as 

iBl

q

q

l

l

Bi

l

B

iBl

q
tt

l
iBl

ilBl

tiBlt
B

i

t(tiq

)1(

00 11

0

1

)1(

!
exp1)1(1

!)(!

exp*)1(
1exp)

   (30) 
With this result every needed quantity is now known. 
Accordingly (28) can be taken as a working solution for Q0(t),
which when substituted in (3) gives the probability P0(t)  that 
the system is empty.

IV. MODELLING THE CONVOLUTION KERNELS
The convolution kernel hk(t) of (18) and (19) is found to 
satisfy the representation   

0

0/1exp
)

kta

ktBm
(tkh

kb
k

B                 (31) 

where the parameters mB, ak and bk  are determined from the 
values for hk(t).

A. Modelling the Main Convolution Kernel h0(t)  
The convolution kernel h0(t), corresponding to k=0, is referred 
to as the main convolution kernel since it is used to determine 
Q0(t), which is used in (19) to obtain all the other quantities 
Qk(t. Indeed once Q0(t) is known, it is possible to obtain all 
the main statistics, such as the mean number of packets in the 
system, the variance of this number, and even the delay seen 
by a packet in the system, all as functions of time. An 
examination of the values of t(th )/(exp)0  reveals that 
the following relation holds  

exp)/()exp0 tmt(th B               (32) 
the parameter mB being given by the values in Table I.  

B.  Modelling the General Convolution Kernel hk(t)  
The kernels hk(t) are used jointly with Q0(t) in (19) to 
determine Qk(t). By examining the values of  hk(t) it is found 
that the parameter bk in (31) is independent of the load 

 = B / , but depends on the batch size B and the index k, 
according to the relation 

B
kBkb 1)1(                                    (33) 

where ]/)1[( Bk  denotes the integer part of Bk /)1( . For 
ak it is found that the following relation applies 

kr
kgka                                        (34) 

The values of gk  and rk  are given in Table II.   

C.  Determination of Qk(t)  
Qk(t) is determined by first substituting the expression for 

Q0(t)  in (19) to  write 

t(tkh(tiq(tiq(tkh(tkiq(tkQ
B

k
B

k

exp*)))*)))
11

(35)
The second term on the right hand side of (30) gives 

0

11
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!11

!)1(
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*
)*)
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l
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kbi)l(B

tkb

l
iBl

ka

ilBl

tt

ka(tq(tkh
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B
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B
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B
i

B
k

B
k

(31)
For the third (last) term in (30) it is reasonable to first consider   

kb

q q

qttkbka
t(tkh

kb
0 !

exp
!

exp*) 1

        (32) 

which when substituted in (30), gives 

k
b

q

B
k

kb
kk

B
k

q

qt(tiqt(tiq
ba

t(tkh(tiq

0

1
1

1

!
)exp)

!

exp*))
    (33) 

The first term on the right hand side can be obtained by using 
(29), and so only the last term need be evaluated. 

0 !)1)1((
1)1(1

0 !
)

0

1)1(

)1(1
l

iqBl

Bli

kb

q iqBl
t

l
iBll

kb

q q

qt(tiq

(34)

V. CONVOLUTION KERNEL PARAMETERS
The first set of results are a list of parameter values obtained 
by modelling the convolution kernels. Table I lists the values 
for the main kernel parameter mB referred to in (31) and  (32) 
for k=0.

It is noted that for values of B larger than 5, this parameter 
is given by the reciprocal of the batch size. The physical 
reasons giving rise to this observation is not explored in this 
paper.
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TABLE I 
THE  MAIN  KERNEL  PARAMETER mB

B mB

1 1.042367 
2 0.513729 
3 0.336996 
4 0.250781 
5 0.200138 

B > 5        1 / B 

For k > 0, the general kernel (23) requires the values for ak,
which in turn are expressed in as a function of several 
variables whose values are obtained from the data and are 
given in Tables II and III. The notation Mod (k, B) represents 
the remainder when  k  is divided by B.  

TABLE II 
GENERAL KERNEL PARAMETER k

 B = 2 B = 3 B = 4 
Mod(k, B) = 0 1.39916 1.1016 1.09821 
Mod(k, B) = 1 1.83551 1.7010 1.95435 
Mod(k, B) = 2 -  1.36146 1.60417 
Mod(k, B) = 3 - -  1.29080 

TABLE III 
GENERAL KERNEL PARAMETER k

 B = 2 B = 3 B = 4 
Mod(k, B) = 0 0.33413 0.3306 0.24646 
Mod(k, B) = 1 0.33813 0.34660 0.25621 
Mod(k, B) = 2  - 0.33685 0.25215 
Mod(k, B) = 3  - -  0.25046 

The values in Table II and Table III were obtained from 
values of akk after observing that the log-log plots of akk versus

 are are straight lines whose slopes and intercepts depend on 
k and B, a  few of which are given in Tables II and III.

VI. RESULTS   AND   CONCLUSION
The paper has attempted to analyze the single-server queue 
with fixed size batch Poisson arrivals and exponential service 
times. Various parameters needed in the analysis are identified 
and their values determined by modelling. The values are 
obtained from observations made on the functions that arise in 
the solution of the differential equation describing the moment 
generating function for the occupancy probabilities. The 
differential equations have solutions which involve 
convolutions.  

By modelling the convolution kernels, the integral equation 
for the empty probability is solved, and equations are provided 
showing how to obtain the other non-empty probabilities.  

Fig. 4 shows how the state probabilities Pk(t) vary with time 
for a queuing system with a batch size of 3 and starting with 5 
packets (i=5) initially. The labels for the probabilities Pk(t) are 
given on the right of the figure. The curves are such that the 
probabilities P1, P2, and P3  appear to merge on the right of the 
figure. The actual values of these probabilities are different, 
but close. Since they appear to be merged, a single triple label 
P1, P2, P3  is used. For the next set of probabilities P4, P5, and 
P6, the label P4,P5,P6  is used to mean that P4, represents the 
curve immediately to the left of this label, P5 represents the 

curve below that an P6 refers to the second curve below. This 
method was used to avoid cluttering the figure. The same 
convention is applied to P7,P8,P9 and P10,P11,P12. For the curves 
at the top (P0) and at the bottom (P13) single labels are used. It 
is observed that P5(t)  starts from a value of unity (at t=0), and 
settles at the steady state value of  5.545 10-4.

The other probabilities (for k i) start from a value of zero 
and eventually settle at there steady state levels.  Also 
observed is the fact that as k increases, the probabilities take 
longer to reach steady state.

Probabilties Pk(t) For B=3 and i = 5
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Fig. 4.  State Probabilities  Pk(t)  with 5 Initial Packets and  = 0.05 

Fig.5 and Fig.6 show how the empty state probability P0(t)
varies with time for non-zero initial state (i=5) and for an 
empty state initial state (i=0), respectively. 

Empty Probability P0(t)  For B=3 and i = 5
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Fig. 5. Empty Probability  P0(t) with 5 Initial Packets 

 When the system is initially empty (Fig.6), the empty state 
probability starts from a value of unity, and when the initial 
state is non-zero (as in Fig.5), it starts from a value of zero.  In 
both cases P0(t) eventually settles at a steady state value 
determined by the load. 

Fig.7 shows the variation of the mean number of packets in 
the system for some time instants. For load values 
below 0.4 (i.e. for  < 0.4), there is little difference between 
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the transient and steady state values for the number of packets. 
However, for heavier loads (e.g. for  = 0.9), there is much 
greater difference between the transient and steady state 
values. At t = 5, the average number of packets is 2.14, while 
for t = 80, this number is 18, which is the steady state value. 

Empty Probability P0(t)  For B=3 and i = 0
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Fig. 6 Probability P0(t) With Queue Initially Empty (i=0) 

Thus, the disparity between the transient and steady state 
values are more pronounced under heavy load conditions. 
Although at low loads, e.g.  < 0.4, the system still takes some 
time to reach steady state, the difference between the transient 
and steady state values is small. Accordingly, steady state 
results will be insufficient to determine the relevant statistics 
of the system following a perturbation. This conclusion is not 
surprising, the paper has only provided a means to arrive at it 
by using modeling and the functions described in the text. 

Variation of  Mean Number of Packets (For i = 0 )
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Fig. 7. Mean Number of Packets - Queue Initially Empty (i=0) 

REFERENCES

[1]  G. N. Higginbottom, Performance Evaluation of Communication 
Networks, Artech House 1998 

[2]  H. P. Schwefel, L. Lipsky, M. Jobmann,  “On the Necessity of Transient 
Performance Analysis in Telecommunication Networks," 17th

International Teletraffic Congress (ITC17),  Salvador da Bahia, Brazil, 
September 24-28  2001 

[3]  B. van Holt, C. Blondia, “Approximated Transient Queue Length and 
Waiting Time Distribution via Steady State Analysis”, Stochastic
Models 21, pp.725-744, 2005 

[4]  T. Hofkens, K. Spacy, C. Blondia, “Transient Analysis of the D-
BMAP/G/1 Queue with an Applications to the Dimensioning of Video 
Playout Buffer for VBR Traffic”, Proceedings of Networking, Athens 
Greece, 2004 

[5]   D. M. Lucantoni, G. L. Choudhury, W. Witt, “The Transient 
BMAP/PH/1 Queue”, Stochastic Models 10, pp.461-478, 1994 

[6]  W. Böhm. S. G. Mohanty, “Transient Analysis of Queues with 
Heterogeneous Arrivals” , Queuing Systems, Vol.18,  pp.27-45, 1994 

[7]   G. L. Choudhury, D. M. Lucantoni, W. Witt, “Multidimensional 
Transform Inversion with Application to the Transient M/G/1 Queue”, 
Annals of Applied Probability, 4, 1994,  pp.719-740. 

[8]  J. Abate, G. L. Choudhury, W. Whitt, “An Introduction to Numerical 
Transform Inversion and its Application to Probability Models” In: W. 
Grassman, (ed.) Computational Probability, pp. 257–323. Kluwer,  
Boston , 1999.

[9]  L. Kelinrock, R. Gail,  Queuing Systems: Problems and Solutions, John 
Wiley & Sons,  1996.  

[10]  R. G. Hohlfeld, J. I. F. King, T. W. Drueding, G. v. H. Sandri, “Solution 
of convolution integral equations by the method of differential 
inversion”, SIAM Journal on Applied Mathematics, Vol. 53 ,  No.1 
 (February 1993), Pages: 154 - 167   

[11]  A. S. Vasudeva Murthy,  “A note on the differential inversion method of 
Hohlfeld et al.”,SIAM Journal on Applied Mathematics, Vol. 55 ,  No.3 
(June 1995), pp. 719 - 722 

[12]  P. L. Bharatiya , “The Inversion of a Convolution Transform Whose 
Kernel is a Bessel Function”, The American Mathematical Monthly, Vol. 
72, No. 4. (Apr., 1965), pp. 393-397

Vitalice K. Oduol received his pre-university education at Alliance High 
School in Kenya. In 1981 he was awarded a CIDA scholarship to study 
electrical engineering at McGill University, Canada, where he received the 
B.Eng. (Hons.) and M.Eng. degrees in 1985 and 1987, respectively, both in 
electrical engineering. In June 1992, he received the Ph.D. degree in electrical 
engineering at McGill University.  

He was a research associate and teaching assistant while a graduate student 
at McGill University. He joined MPB Technologies, Inc. in 1989, where he 
participated in a variety of projects, including meteor burst communication 
systems, satellite on-board processing, low probability of intercept radio, 
among others. In 1994 he joined INTELSAT where he initiated research and 
development work on the integration of terrestrial wireless and  satellite 
systems. After working at COMSAT Labs. (1996-1997) on VSAT networks, 
and TranSwitch Corp.(1998-2002) on product definition and architecture, he 
returned to Kenya, where since 2003 he has been with Department of 
Electrical and Information Engineering, University of Nairobi. 

Dr. Oduol was a two-time recipient of the Douglas tutorial scholarship at 
McGill University. He is currently chairman, Department of Electrical and 
Information Engineering, University of Nairobi. His research interests include 
performance analysis, modeling and simulation of telecommunication 
systems, adaptive error control, feedback communication.

World Academy of Science, Engineering and Technology
International Journal of Electrical and Computer Engineering

 Vol:3, No:9, 2009 

1733International Scholarly and Scientific Research & Innovation 3(9) 2009 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 E
le

ct
ri

ca
l a

nd
 C

om
pu

te
r 

E
ng

in
ee

ri
ng

 V
ol

:3
, N

o:
9,

 2
00

9 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/4
99

4.
pd

f


