
Dempster-Shafer Information Filtering in
Multi-Modality Wireless Sensor Networks

varying environment where data are generated from heterogeneous
sources possessing partial knowledge about the environment is pre-
sented. This is entirely derived within Dempster-Shafer and Evidence
Filtering frameworks. The belief about the current state is expressed
as belief and plausibility functions. An addition to Single Input
Single Output Evidence Filter, Multiple Input Single Output Evidence
Filtering approach is introduced. Variety of applications such as
situational estimation of an emergency environment can be developed
within the framework successfully. Fire propagation scenario is used
to justify the proposed framework, simulation results are presented.

Keywords—Dempster-Shafer Belief theory, Evidence Filtering,
Evidence Fusion, Sensor Modalities, Wireless Sensor Networks

I. INTRODUCTION

THE emergence of Wireless sensor networks (WSNs) pro-
vide a good ground for creation of new smart sensor

systems, which can be useful to further enhance human lives.
WSNs are used in variety of applications, such as medicine,
urban monitoring, military, traffic control, environment and
habitat monitoring, energy management, green buildings, sick
building monitoring [1], emergency management etc. [2] [3]

An addition to monitoring, computing, communicating and
actuating capabilities, with the added microcomputer process-
ing power, handling of multi-modality sensor systems, analog
and digital ports, transceivers and available memory, WSNs
have the capabilities to self-organize [4], self localize [5],
communicate and make decisions [6] in the deployed area.

The decisions made based on the fused information range
from detecting emergency events (detect fire and the growth
stage of fire), target tracking, estimating location, detecting the
velocity of a dynamic object, energy consumption observation
in buildings to threat detections.

However many WSNs use inexpensive sensors to compro-
mise between cost and performance. This causes the sensor
measurements to be inaccurate, and the evidence gathered
may be unreliable. Especially during an emergency high
uncertainty is added to the evidences due to communication
link failures, sensor node failures, severe background noise etc.
The use of multiple sensing modalities and fusing gathered
evidences temporally and spatially can significantly enhance
the robustness and the accuracy of the decision making process
in such environments [7].

In WSNs prior information, conditional probability, joint
probability are not known and improper initial assumptions

D.M. Weeraddana, K.S. Walgama and E.C. Kulasekere are with the
Department of Electronic and Telecommunication Engineering, University
of Moratuwa, Sri Lanka. (e-mail: dilumc7@gmail.com, chulantha@ieee.org,
kswalgama@pdn.ac.lk)

making process [8]. In this paper we use Dempster-Shafer
(DS) belief theory [9], due to the advantages in DS theoretic
methods specially relevant for above mentioned characteristics
in WSNs. Basically DS theory does not require any prior
information, conditional or joint probabilities. Moreover It has
been extensively used in past decades to model imperfect, less-
accurate data derived from multiple sensor modalities.

Evidence Filtering [10] is initially proposed to model imper-
fect data from multiple sensor modalities while making direct
inferences on the frequency characteristics of events of inter-
est, by integrating DS theory with discrete time filtering tech-
niques. However this paper analyzes the Evidence Filtering
framework in time domain to estimate the state of an dynamic
environment/object. Single input single output (SISO) and
multiple input single output (MISO) filtering approaches are
analyzed. Moreover the framework is entirely derived within
Dempster-Shafer framework. The belief about the current state
is expressed as belief and plausibility functions.

A brief review of related works is provided in Section
II. A brief review of Dempster-Shafer theory and Evidence
filtering framework is provided in Section III. The proposed
Dempster-Shafer Information Filtering is presented in Section
IV. Simulation results on a fire spread scenario is presented in
section V. Conclusion and future works appear in Section VI.

II. RELATED WORK

In contrast to Dempster-Shafer theory Bayesian inference
theory is widely used for the fusion of sensor information in
WSNs. Kalman Filters, Monte-Carlo Filters, Particle Filters
are the most popular filtering methods derived from Bayesian
theory.

The work presented in [11] discusses decentralized Kalman
filtering for multi modality sensor data. The research in [12]
discusses distributed Kalman filtering and introduces consen-
sus filters to track the average of multiple sensor measurements
cluttered with noise. The work presented in [13] uses Bayesian
filtering for localization in indoor WSNs. It mainly focuses
on a new type of sequential Monte Carlo (MC) filter. Particle
Filtering algorithms are efficient when modeling the complex
and time varying nonlinear and non-Gaussian signal system
and widely used in tracking and localization in WSNs. Some
work on particle filtering are reported in [14] and [15]. The
work reported in [16] compares Particle filtering algorithm
and Extended Kalman filter algorithm. Eventhough the above
mentioned filters are based on Bayesian theory, research
presented in [17] derives Particle Filtering algorithm within
DS framework.
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Demspter-Shafer Evidence Updating method presented in
[18] and [6] one of the proposed methods to overcome certain
drawbacks in the original DS evidence combination rule.
During the evidence combination, above method updates the
existing knowledge base with the new evidence while taking
into account the inertia and integrity of its already available
knowledge. However estimation of time varying environments
is not addressed in the above work.

Evidence Filtering framework reported in [10] is capable of
fusing evidences to directly infer on frequency domain, which
is derived from DS framework and Evidence Updating method
[6]. Recursive and non recursive linear time invariant Evidence
Filtering frameworks are presented in [10] [19]. However the
time domain analysis is not done in the Evidence Filtering
framework, as well as the noise buried in the clutter is not
addressed. Our main focus is to address above two aspects.

In this paper we introduce a framework for evidence fusion
which is capable of estimating time varying states, which over-
comes the drawbacks associated in DS evidence combination
rule. The work presented in this paper is an extension of
Evidence Filtering reported in [10] where we introduce a DS
evidence fusion platform with novel methods to model the
input evidence signal and MISO filter.

III. PRELIMINARIES

A. Dempster-Shafer(DS) Theory

DS theory [9] can be interpreted as a generalization of
Bayesian probability theory. The probabilities are assigned to
sets as opposed to mutually exclusive singletons. The underline
notions and the definitions are briefly discussed in this section.

Let Θ = {θ1, θ2, .....θn} denote the total set of mutually
exclusive and exhaustive propositions referred as the frame
of discernment (FOD). Elements in the power set form all
propositions of interest. A proposition is referred to as a
singleton and represents the lowest level of discernible in-
formation. Other propositions are referred to as composites,
e.g.,(θ1, θ2) ⊆ Θ. A-B denotes all propositions in A after
removal of those propositions that may imply B.

There are three important functions in DS theory, the basic
probability assignment function (bpa or m), the Belief function
(Bel), and the Plausibility function (Pl).

1) Definition 1: The bpa (m) defines a mapping of the
power set to the interval between 0 and 1, where the bpa
of the null set is 0, and the summation of the bpas of all the
subsets of the power set is equals to 1.
m : 2θ ⇒ [0, 1]
m(φ) = 0; and ΣA⊆Θm(A) = 1 The mass of a composite
proposition is free to move into its singletons. This is how the
notion of ignorance, the main feature in DS theory is modeled.
A proposition that possesses a nonzero mass is referred to as a
focal element. The set of focal elements is denoted by � and
the triple {Θ,�,m} is referred to as the body of evidence
(BOE).

2) Definition 2: The upper and lower bounds of an interval
is defined from the basic probability assignment (bpa).
The lower bound is referred as Belief (Bel) for a set A defined
as the sum of all the basic probability assignments of the

proper subsets (B) of the set of interest (A) (B ⊆ A).
The upper bound Plausibility (Pl), is the sum of all the basic
probability assignments of the sets (B) that intersect the set of
interest (A) (B ∩ A �= ∅).
Given a BOE {Θ,�,m},m(A) ⊆ Θ

Bel(A) = ΣB⊆Am(B) (1)

Pl(A) = 1−Bel ¯(A) = ΣB∩A�=∅m(B) (2)

3) Definition 3: Dempsters rule combines multiple
evidence functions through their basic probability assignments
(m). These belief functions are defined on the same frame
of discernment (FOD) based on independent arguments or
bodies of evidence (BOE). Note that Dempster’s rule of
combination is purely a conjunctive operation (AND).

m(A)Θ =
ΣC,D:C∩D=Am(C)θ1m(D)θ2

K
(3)

where K = (1− ΣC,D:C∩D=φm(C)θ1m(D)θ2), ∀A ⊆ Θ

B. Evidence Filtering

Evidence Filtering is based on conditional belief notions
[20] in DempsterShafer (DS) evidence theory to directly
process temporally and spatially distributed sensor data and
infer on the frequency characteristics of events of interest. This
is based on the evidence updating strategy [6] introduced to
minimize the drawbacks associated in DS evidence combina-
tion rule (3).

According to evidence updating method, a knowledge base
should only consider the portion of the incoming evidence that
it is capable of discerning itself. Lets consider a node with
a knowledge base denoted by the BOE {Θ,�1,m1} desires
to update itself using new incoming evidence arriving from
another node denoted by the BOE {Θ,�2,m2}. Which is
conditional to the occurrence of event A ⊂ Θ. The current
knowledge base available in the first node can be updated via

Bel(B)1(k + 1) = αBel(B)1(k) + βBel(B|A)2(k) (4)

Pl(B)1(k + 1) = αPl(B)1(k) + βP l(B|A)2(k) (5)

where α, β ≥ 0 and α+ β = 1.
The index k in (4), (5) denotes the temporal ordering of the

evidence and represents a discrete time index t = kT where T
denotes the sampling time of the evidence at each node and
t denotes the continuous time. The most general form of (4)
can be stated as the N th order difference equation

Bel(B)(k) = ΣN
i=1αiBel(B)(k − i)+

ΣN
i=1βiBel(B|A)(k − i) (6)

where αi, βi ≥ 0 and ΣN
i=1αi +ΣN

i=1βi = 1.
The above constraints on the filter coefficients are needed

to ensure that the updated belief and plausibility constitute
valid belief functions and plausibility functions according to
definition 1.
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Filter in (6) corresponds to the transfer function of the N th

order recursive filter.

HB(z) =
ΣN

j=1βjz
−j

1− ΣN
i=1αiz−i

(7)

Bel(B|A)(k) captures the incoming evidence conditioned
to A, while Bel(B)(k) is the already available evidence.
Bel(B)(k + 1) denotes the updated belief.

In a multiple modality sensing environment, it is possible
to have different conditioning events A depending on the
expertise of each node. Note that similar notions hold for the
plausibility (Pl).

IV. DEMPSTER-SHAFER INFORMATION FILTERING

Dempster-Shafer(DS) Information Filtering framework is
introduced in this section. MISO and SISO LTI filtering tech-
niques for information fusion are introduced and described.

State of the environment under observation is defined as xi,
time instances as ti, space coordinates as θi, and modalities as
si. Dempster-Shafer Frame of Discernment (FOD) is defined
over states under observation,
DS FOD={x1, ...xn}

A. Single Input Single Output Evidence Filter

Input evidence signal to SISO Evidence Filter is modeled
using two methods, the weighted averaging method fused
multi modality sensor data at the normalized measurement
level and the final normalized weighted average function is
then used to obtain relevant DS mass functions. The second
method obtains evidences from each modality and fuse using
any DS evidence combination methods [6].

1) Weighted averaging method: Normalized weighted av-
erage function is obtained (Xaveragetk

) as follows,

Xaveragetk
= ΣN

i=1αi,kXsi,tk (8)

N is the number of sensor modalities, Xsi,tk is the
normalized sensor measurement at ith sensor modality at
kth time instance. Where for a fixed k, constant αi,k ≥ 0
and ΣN

i=1αi,k = 1; to ensure that the normalized values
span over 0 to 1.
Normalized weighted average is used to obtain DS mass
functions at each time instance tk.

2) Dempster-Shafer Evidence Combination:

ζsi,tk = g(Xsi,tk) (9)

Where function g can be a simple threshold based func-
tion or any function defined according to the application
and the situation under observation. ζ is the derived
evidence. This can be belief or plausibility.

λtk = f(ζsi,tk) (10)

Where function f can be any evidence combination
method, several popular methods to combine evidences
are presented in [21] to overcome the certain drawbacks
associated in initial DS evidence combination rule. λ
denotes the fused evidence.

Finally, the fused input evidence signal is obtained for event
of interest B as follows, by ordering the fused evidence λ over
time.
I(t) = Bel(B)(t) or I(t) = Pl(B)(t)
I(t) is the input evidence signal. Bel and Pl derives from DS
theory and refer to belief and plausibility functions. B is a
hypothesis consists with one or more states xi.

General higher order Evidence Filter can be considered as
a higher order SISO filter.

Bel(B)(t) = ΣN
i=1αiBel(B)(t− i)+

ΣN
i=1βiBel(B|A)(t− i) (11)

αi, βi ≥ 0 and ΣN
i=1αi +ΣN

i=1βi = 1.
The conditions above for α and β are to ensure the belief

and plausibility functions constitute valid DS functions.
Fig.1 represents the SISO Evidence Filter for belief func-

tions. A similar diagram can be used to illustrate the plausi-
bility function.

Fig. 1. Single Input Single Output Evidence Filter

B. Multiple Input Single Output Evidence Filter

Each sensor-modality generates a separate input evidence
signal by obtaining evidences according to (10).

Bel(B)(t) = ΣM
k=1αkBel(B)(t− k)+

ΣN,M
i=1,k=0βsi,kBelsi,k(B|A)(t− k) (12)

Pl(B)(t) = ΣM
k=1αkPl(B)(t− k)+

ΣN,M
i=1,k=0βsi,kPlsi,k(B|A)(t− k) (13)

αk ≥ 0;βsi,k ≥ 0 (14)

ΣM
k=1αk +ΣN,M

i=1,k=0βsi,k = 1; (15)

The conditions in (14) and (15) are to ensure that the belief
and plausibility functions constitute valid DS functions.
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Fig. 2. Multiple Input Single Output Evidence Filter

Fig.2 represents the MISO Evidence Filter for belief func-
tions. A similar diagram can be used to illustrate the plausi-
bility function.

During the information filtering, filter updates the existing
knowledge base with the new evidence while taking into
account the inertia and integrity of its already available
knowledge. Coefficient α is the weight given to the available
knowledge while β is the weight given to incoming evidence.

V. EXPERIMENTAL SCENARIO FOR FIRE SPREAD MODEL

Wireless sensor networks (WSNs) offer existing oppor-
tunities to minimize the impacts caused by emergencies.
Emergencies range from fire, gas leakages, earthquakes to
terrorist attacks. Fire detection and prediction plays an im-
portant role in indoor emergencies and disaster management
due to the high number of deaths reported in all over the
world frequently. The results gathered from WSNs are highly
useful for firefighters during their rescue operations. To obtain
an accurate situational assessment on the environment under
observation, the WSNs often use multiple sensor modalities,
and the measurements are gathered from several locations
and perhaps from different orientations. Moreover during an
emergency high ground noise is present with node and link
failures compared to non-emergency situations.

Furthermore various types of fire models can be found such
as smoldering fire, flaming fire, nuisances. Therefore there are
several uncertainties involved in the fusion of data obtained
from such situations. Many WSNs use inexpensive sensors to
reach a tradeoff between cost and performance. Hence sensor
measurements may be inaccurate, and the results derived will
be unreliable. This directly impacts on safety of both the
rescuers and victims.

A. Simulation Setup

Fire scenario is developed using Fire Dynamic Simulator
(FDS) which is developed by National Institute of Standard
and Technology (NIST), United States [22].

A living room consists with one couch seat cushions, two
couch armrests and one couch back cushions. There is no fan.
The door is open, so that the fire can easily propagate outside
of the living room. The fire scenario we generate here is of
smoldering type, where initially generates less flame and heat
with more smoke. A grid based sensor network is deployed at
the ceiling consists with 36 (9x4) sensor nodes. Each sensor
node is attached with three sensors, to sense temperature,
smoke, and optical density. At t=0, ignition starts. Ignition
source is on the couch. Fig. 3 shows the simulation setup in
FDS smoke view. Sampling time is set to 1s.

Fig. 3. Simulation setup: Living room, Sensor nodes are deployed at the
ceiling

Objective of this setup is to detect emergency, and determine
the growth stage of the fire or the severity level. Therefore the
DS Frame of Discernment (FOD) is defined as,
DS FOD(Θ)={no emergency, low1, low2.., lown,medium1,
medium2, .. mediumm, high}
If m = n = 1, number of hypothesis is 24 = 16.
At each time instance, each sensor node takes measurements
for temperature, smoke, optical density and assigns masses to
respective DS hypothesis.

a) Noise: Zero mean white Gaussian noise is added to
raw sensor measurements of temperature, smoke and optical
density.

B. Mass Assignment and Construction of Evidence Table

Normalized sensor measurements are obtained at each time
instance for each sensor modality. The mapping from nor-
malized values to related masses can be obtained by suitable
modality functions. Here we use threshold based mapping. For
fire detection, the hypothesis interested (B) is (low, medium,
high). Belief or plausibility functions are obtained according
to DS theory.
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C. Sensor Fusion
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Fig. 4. Normalized Sensor Measurements at node 32 (Before Noise is Added)
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Fig. 5. Input Evidence Signal of SISO Filter-Fused Multi-Modality Evidences
at node 32

1) SISO Evidence Filter: Gathered evidences for multiple
modalities are fused using DS evidence updating method. The
fused evidences are temporally ordered and passed through
first order SISO LTI Filter.

Bel(B)(t) = αtBel(B)(t− 1) + βtBel(B|A)(t) (16)

Pl(B)(t) = αtPl(B)(t− 1) + βtPl(B|A)(t) (17)

A narrow information bandwidth is taken, by assigning a
high value to αt. Lets take αt= 0.9, and βt= 0.1.

2) MISO Evidence Filter: Gathered evidences for multiple
modalities are separately ordered over time and separate input

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time(s)

B
el

(lo
w

,m
ed

iu
m

,h
ig

h)
 fo

r 
di

ffe
re

nt
 s

en
so

r 
m

od
al

iti
es

Temperature−Bel(low,medium,high)
Smoke−Bel(low,medium,high)
Optical Density−Bel(low,medium,high)

Fig. 6. Input Evidence Signals of MISO Filter at node 32
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Fig. 7. Output Evidence Signal of SISO Filter at node 32

evidence signals are generated. Multiple signals are passed
through first order MISO LTI Filter.

Bel(B)(t) = αtBel(B)(t− 1) + Σn
i=1βt,siBelsi(B|A)(t)

(18)
Pl(B)(t) = αtPl(B)(t− 1) + Σn

i=1βt,siPlsi(B|A)(t) (19)

A narrow information bandwidth is taken, by assigning a
high value to αt. Lets take αt= 0.9, and βt,s1= βt,s2= βt,s3=
1−αt

3 . In both cases A is taken as the DS FOD (Θ).

D. Results Analysis

Fig.4 shows the normalized sensor readings of temperature,
smoke and optical density before noise is added. Within the
proposed framework, DS-Evidence Combination input signal
modeling under SISO Evidence Filter, MISO Evidence Filter
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Fig. 8. Output Evidence Signal of MISO Filter at node 32
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Fig. 9. Input vs Output Evidence Signals of SISO filter node 32

are implemented. Input evidence signal to SISO Evidence
Filter is shown in Fig. 5. This clearly illustrates the high
ambiguity in the fused results during the fire growth from
low to high level. Fig. 7 shows output evidence signal from
the first order SISO Evidence Filter. Output evidence signal
indicates the fire scenario much clearly than the input evidence
signal.

Three input evidence signals of the MISO Evidence Filter
are shown in Fig. 6. These input signals are not fused until
those have been sent to the filter. Ambiguity and uncertainty in
the input signals are very high compare to the output evidence
signal which is shown in the Fig. 8.

Basically in both cases fusing over time has provided more
reasonable indication of the fire scenario with less ambiguity
for dynamically varying states when the noise is present. Fig.
9 and Fig. 10 compare input and output evidence signals of
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Fig. 10. Input vs Output Evidence Signals of MISO filter node 32

both filters.
At the beginning of the fire we can observe a sudden

increment in the output signal, next there is a sluggishness
due to ambiguity in temperature and optical density. However
after sometime when the temperature and optical density
measurements start giving the information on fire, the filter
quickly catches up and gives expected information of the fire.

In both cases we considered a narrow information band-
width, by assigning large weights to the past knowledge base
to make the system absorbs less noise. However this makes the
system to be more sluggish to the incoming evidences. Com-
promising these two aspects can be achieved by introducing a
time varying filter.

Note that all the plots shown in the simulation are taken
for the 32nd sensor node which is just above the ignition
point. We have obtained the results for other sensor nodes
(1-36) as well. Each application which runs on the proposed
framework can develop its own algorithm to manipulate the
spatial correlation of the output evidence signals of each node.
So that distributed DS Information Filtering is performed at
each child node and base station node separately according to
the algorithms specific to the application.

VI. CONCLUSION

The work in this paper develops the framework of
Dempster-Shafer Information Filtering for processing infor-
mation from multiple sensor modalities. Essentially, DS In-
formation Filtering offers a way of fusing information across
multiple sensing modalities and time recursively. This concept
is an extension of Evidence Filtering framework.

Our main objective of removing noise in the clutter to min-
imize the uncertainty in the sensor measurements is achieved
for greater extend by using both MISO and SISO Evidence
Filters. The proposed DS Information Filtering framework
is described with design procedures. Practical use of the
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proposed concept was studied with a simulation example of
an indoor fire spread application.

During an emergency, in an indoor multi-storey building
environment coefficients can be determined dynamically based
on the delay of the link, residual node energy, building
hierarchy etc. Therefore selection of time varying coefficients
still needs to be investigated.
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