Gas-Solid Nitrocarburizing of Steels: Kinetic Modeling and Experimental Validation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
Gas-Solid Nitrocarburizing of Steels: Kinetic Modeling and Experimental Validation

Authors: L. Torchane

Abstract:

The study is devoted to define the optimal conditions for the nitriding of pure iron at atmospheric pressure by using NH3- Ar-C3H8 gas mixtures. After studying the mechanisms of phase formation and mass transfer at the gas-solid interface, a mathematical model is developed in order to predict the nitrogen transfer rate in the solid, the ε-carbonitride layer growth rate and the nitrogen and carbon concentration profiles. In order to validate the model and to show its possibilities, it is compared with thermogravimetric experiments, analyses and metallurgical observations (X-ray diffraction, optical microscopy and electron microprobe analysis). Results obtained allow us to demonstrate the sound correlation between the experimental results and the theoretical predictions.

Keywords: Gaseous Nitrocarburizing, Kinetic Model, Diffusion, Layer Growth Kinetic.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1337843

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2180

References:


[1] M.A.J. Somers, P.F. Colijn, W.G. Sloof and E.J. Mittemeijer, Z. Metallkd., Vol.81, (1990), p.33-43.
[2] J. Slycke, and L. Sproge, Surface Engineering, Vol.5 (2), (1989), p.125-140.
[3] M.A.J. Somers and E.J. Mittemeijer, Surface Engineering, vol.3 (2), (1987), p.123-137.
[4] M.A.J. Somers, and E.J. Mittemeijer, Metall. Mater. Trans. A, Vol.29A, (1995),p.57-74.
[5] L. Torchane, Ph. Bilger, J. Dulcy and M. Gantois, Metall. Mater. Trans. A, Vol.27A, (1996), p.1823-1835.
[6] H. Du and J. Agren, Trita-Mac 0570 (1994), Roy. Inst. of Tech., Stockholm, Sweeden.
[7] B. Prenosil, Konove Mater., Vol.3, (1965), p.69-87.
[8] Yu.M. Lakhtin and Ya.D. Kogan, Mashinostroenie, Moscow, (1976).
[9] A. Marciniak, Surface Engineering, Vol.1 (4), (1985), p.283-88.
[10] F.K. Naumann, G. Langenscheid, Arch. EisenhŸttenwes, Vol.36 (9), (1965), p. 677-682.
[11] J. Slycke, L. Sproge and J. Agren, Scandinavian Journal of Metallurgy, 17, (1988), p.122-126.
[12] J. Kunze; Thermodynamics, Physical Research, Vol.16, AkademieVerlag, Berlin, (1990).
[13] H. Du, J. Phase equilibria, Vol.14 (6), (1993), p.682-693.
[14] H. Du and J. Agren, Metall. Mater. Trans. A, Vol.27A, (1996), p.1073-1080.
[15] E.J. Mittemeijer and M.A.J. Somers, Surface Engineering, Vol.13, No.6, (1997), p.483-497.
[16] L. Torchane: Ph.D. Thesis, I.N.P.L., Nancy, France, (1994).
[17] L. Torchane, Ph. Bilger, J. Dulcy, and M. Gantois: Mater. Sci. Forum, Vol.163-165, (1994), p.707-712.
[18] L. Torchane, Ph. Bilger, J. Dulcy and M. Gantois, entropie, No.202/203, (1997), p.45-49.
[19] M. Gantois, Mater. Sci. Forum, Vol.163-165, (1994), p.37-48.
[20] Y. Adda, and J. Phillibert, Tome I, Sarclay, France, (1966).
[21] L.S. Darken, Trans. AIME, Vol.175, (1948), p.184-94.
[22] K. Schwerdtfeger, P. Grieveson, and E.T. Turkdogan: Trans. AIME, Vol.245, (1969), p.2461-2466.
[23] H.C.F. Rozendaal, P.F. Colijn and E.J. Mittemeijer, Surface Engineering, Vol.30, No.1, (1985), also published in Heat Treatment '84', The Metal Society, London, (1984), 31.1-31.16.