Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30685
Efficiency Improvements of GaAs-based Solar Cells by Hydrothermally-deposited ZnO Nanostructure Array

Authors: Chun-Yuan Huang, Chiao-Yang Cheng, Chun-Yem Huang, Yan-Kuin Su, James Chin-Lung Fang

Abstract:

ZnO nanostructures including nanowires, nanorods, and nanoneedles were successfully deposited on GaAs substrates, respectively, by simple two-step chemical method for the first time. A ZnO seed layer was firstly pre-coated on the O2-plasma treated substrate by sol-gel process, followed by the nucleation of ZnO nanostructures through hydrothermal synthesis. Nanostructures with different average diameter (15-250 nm), length (0.9-1.8 μm), density (0.9-16×109 cm-2) were obtained via adjusting the growth time and concentration of precursors. From the reflectivity spectra, we concluded ordered and taper nanostructures were preferential for photovoltaic applications. ZnO nanoneedles with an average diameter of 106 nm, a moderate length of 2.4 μm, and the density of 7.2×109 cm-2 could be synthesized in the concentration of 0.04 M for 18 h. Integrated with the nanoneedle array, the power conversion efficiency of single junction solar cell was increased from 7.3 to 12.2%, corresponding to a 67% improvement.

Keywords: Solar Cells, Chemical Synthesis, Anti-reflection, ZnO nanostructures

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1072195

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542

References:


[1] R. L. Hoffman, B. J. Norris, and J. F. Wager, "ZnO-based transparent thin-film transistors," Appl. Phys. Lett., vol. 82, pp. 733-735, 2003
[2] J. Schrier, D. O. Demchenko, and L. W. Wang, "Optical properties of ZnO/ZnS and ZnO/ZnTe heterostructures for photovoltaic applications," Nano Lett., vol. 7, pp. 2377-2381, 2007.
[3] A. Tsukazaki,; A. Ohtomo, T. Onuma,; M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, "Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO," Nat. Mater., vol. 4, pp. 42-45, 2005.
[4] L. J. Mandalapu, Z. Yang, S. Chu, and J. L. Liu, "Ultraviolet emission from Sb-doped p-type ZnO based heterojunction light-emitting diodes," Appl. Phys. Lett., vol. 92, pp. 122101 1-3, 2008.
[5] J. B. Lee, M. H. Lee, C. K. Park, and J. S. Park, "Effects of lattice mismatches in ZnO/substrate structures on the orientations of ZnO films and characteristics of SAW devices," Thin Solid Films, vol. 447, pp. 296-300, 2004.
[6] S. Kar, B. N. Pal, S. Chaudhuri, and D. Chakravorty, "One-dimensional ZnO nanostructure arrays: synthesis and characterization," J. Phys. Chem. B, vol. 110, pp. 4605-4608, 2006.
[7] Y. Gao and M. Nagai, "Morphology evolution of ZnO thin films from aqueous solutions and their application to solar cells," Langmuir, vol. 22, pp. 3936-3939, 2006.
[8] X. M. Zhang, M. Y. Lu, Y. Zhang, L. J. Chen, and Z. L. Wang, "Fabrication of a highÔÇÉ brightness blueÔÇÉ lightÔÇÉ emitting diode using a ZnOÔÇÉ nanowire array grown on p-GaN thin film," Adv. Mater., vol. 21, pp. 2767-2770, 2009.
[9] S. S. Shinde, P. S. Patil, R. S. Gaikwad, R. S. Mane, B. N. Pawar, and K. Y. Rajpure, "Influences in high quality zinc oxide films and their photoelectrochemical performance," J. Alloy Compd., vol. 503, pp. 416-418, 2010.
[10] J. X. Wang, X. W. Sun, Y. Yang, H. Huang, Y. C. Lee, O. K. Tan, and L. Vayssieres, "Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications," Nanotechnol., vol. 17, pp. 4995-4998, 2006.
[11] B. Weintraub, Y. Deng, and Z. L. Wang, "Position-controlled seedless growth of ZnO nanorod arrays on a polymer substrate via wet chemical synthesis," J. Phys. Chem. C, vol. 111, pp. 10162-10165, 2007.
[12] Y. K. Su, S. M. Peng, L. W. Ji, C. Z. Wu, W. B. Cheng, and C. H. Liu, "Ultraviolet ZnO nanorod photosensors," Langmuir, vol. 26, pp. 603-606, 2010.
[13] W. Lee, M. C. Jeong, and J. M. Myoung, "Ultraviolet electroluminescence from controlled arsenic-doped ZnO nanowire homojunctions," Nanotechnol., vol. 15, vol. 254-257, 2004.
[14] Y. W. Heo, M. Kaufman, K. Pruessner, K. N. Siebein, D. P. Norton, and F. Ren, "ZnO/cubic (Mg, Zn) O radial nanowire heterostructures," Appl. Phys. A, vol. 80, pp. 263-266, 2005.
[15] B. Y. Su, Y. K. Su, Z. L. Tseng, M. F. Shih, C. Y. Cheng, T. H. Wu, C. S. Wu, J. J. Yeh, P. Y. Ho, Y. D. Juang, and S. Y. Chu, "Antireflective and radiation resistant ZnO thin films for the efficiency enhancement of GaAs photovoltaics," J. Electrochem. Soc., vol. 158, pp. H267-H270, 2011.
[16] C. Y. Cheng, F. C. N. Hong, and C. Y. Huang, "Micro-and nanopatterned polymethylmethacrylate layers on plastic poly (ethylene terephthalate) substrates by modified roller-reversal imprint process," J. Vac. Sci. Technol. B, vol. 28, pp. 921-925, 2010.
[17] R. Ghosh, G. K. Paul, and D. Basak, "Effect of thermal annealing treatment on structural, electrical and optical properties of transparent sol-gel ZnO thin films," Mater. Res. Bull., vol. 40, pp. 1905-1908, 2005.
[18] A. Wei, X. W. Sun, C. X. Xu, Z. L. Dong, Y. Yang, S. T. Tan, and W. Huang, "Growth mechanism of tubular ZnO formed in aqueous solution," Nanotechnol., vol. 17, pp. 1740-1744, 2006.
[19] M. Guo, P. Diao, and S. Cai, "Hydrothermal growth of well-aligned ZnO nanorod arrays: Dependence of morphology and alignment ordering upon preparing conditions," J. Solid State Chem., vol. 178, pp. 1864-1867, 2005.
[20] L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, and P. Yang, "Low-temperature wafer-scale production of ZnO nanowire arrays," Angew. Chem. Int. Ed., vol. 42, pp. 3031-3034, 2003.
[21] D. Buie, M. J. McCann, K. J. Weber, and C. J. Dey, "Full day simulations of anti-reflection coatings for flat plate silicon photovoltaics," Solar Energy Materials & Solar Cells, vol. 81, pp. 13-24, 2003.