Search results for: model updating
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7484

Search results for: model updating

4214 Design of a MSF Desalination Plant to be Supplied by a New Specific 42 MW Power Plant Located in Iran

Authors: Rouzbeh Shafaghat, Hoda Shafaghat, Fatemeh Ghanbari, Pouya Sirous Rezaei, Rohollah Espanani

Abstract:

Nowadays, desalination of salt water is considered an important industrial process. In many parts of the world, particularly in the gulf countries, the multi-stage flash (MSF) water desalination has an essential contribution in the production of fresh water. In this study, a simple mathematical model is defined to design a MSF desalination system and the feasibility of using the MSF desalination process in proximity of a 42 MW power plant is investigated. This power plant can just provide 10 ton/h superheated steam from low pressure (LP) section of heat recovery steam generator (HRSG) for thermal desalting system. The designed MSF system with gained output ratio (GOR) of 10.3 has 24 flashing stages and can produce 2480 ton/d of fresh water. The expected performance characteristics of the designed MSF desalination plant are determined. In addition, the effect of motive water pressure on the amount of non-condensable gases removed by water jet vacuum pumps is investigated.

Keywords: Design, dual-purpose power plant, mathematical model, MSF desalination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3986
4213 Identifying the Kinematic Parameters of Hexapod Machine Tool

Authors: M. M. Agheli, M. J. Nategh

Abstract:

Hexapod Machine Tool (HMT) is a parallel robot mostly based on Stewart platform. Identification of kinematic parameters of HMT is an important step of calibration procedure. In this paper an algorithm is presented for identifying the kinematic parameters of HMT using inverse kinematics error model. Based on this algorithm, the calibration procedure is simulated. Measurement configurations with maximum observability are decided as the first step of this algorithm for a robust calibration. The errors occurring in various configurations are illustrated graphically. It has been shown that the boundaries of the workspace should be searched for the maximum observability of errors. The importance of using configurations with sufficient observability in calibrating hexapod machine tools is verified by trial calibration with two different groups of randomly selected configurations. One group is selected to have sufficient observability and the other is in disregard of the observability criterion. Simulation results confirm the validity of the proposed identification algorithm.

Keywords: Calibration, Hexapod Machine Tool (HMT), InverseKinematics Error Model, Observability, Parallel Robot, ParameterIdentification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2367
4212 Application Methodology for the Generation of 3D Thermal Models Using UAV Photogrammety and Dual Sensors for Mining/Industrial Facilities Inspection

Authors: Javier Sedano-Cibrián, Julio Manuel de Luis-Ruiz, Rubén Pérez-Álvarez, Raúl Pereda-García, Beatriz Malagón-Picón

Abstract:

Structural inspection activities are necessary to ensure the correct functioning of infrastructures. UAV techniques have become more popular than traditional techniques. Specifically, UAV Photogrammetry allows time and cost savings. The development of this technology has permitted the use of low-cost thermal sensors in UAVs. The representation of 3D thermal models with this type of equipment is in continuous evolution. The direct processing of thermal images usually leads to errors and inaccurate results. In this paper, a methodology is proposed for the generation of 3D thermal models using dual sensors, which involves the application of RGB and thermal images in parallel. Hence, the RGB images are used as the basis for the generation of the model geometry, and the thermal images are the source of the surface temperature information that is projected onto the model. Mining/industrial facilities representations that are obtained can be used for inspection activities.

Keywords: Aerial thermography, data processing, drone, low-cost, point cloud.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 341
4211 Combining Fuzzy Logic and Data Miningto Predict the Result of an EIA Review

Authors: Kevin Fong-Rey Liu, Jia-Shen Chen, Han-Hsi Liang, Cheng-Wu Chen, Yung-Shuen Shen

Abstract:

The purpose of determining impact significance is to place value on impacts. Environmental impact assessment review is a process that judges whether impact significance is acceptable or not in accordance with the scientific facts regarding environmental, ecological and socio-economical impacts described in environmental impact statements (EIS) or environmental impact assessment reports (EIAR). The first aim of this paper is to summarize the criteria of significance evaluation from the past review results and accordingly utilize fuzzy logic to incorporate these criteria into scientific facts. The second aim is to employ data mining technique to construct an EIS or EIAR prediction model for reviewing results which can assist developers to prepare and revise better environmental management plans in advance. The validity of the previous prediction model proposed by authors in 2009 is 92.7%. The enhanced validity in this study can attain 100.0%.

Keywords: Environmental impact assessment review, impactsignificance, fuzzy logic, data mining, classification tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1944
4210 3D Point Cloud Model Color Adjustment by Combining Terrestrial Laser Scanner and Close Range Photogrammetry Datasets

Authors: M. Pepe, S. Ackermann, L. Fregonese, C. Achille

Abstract:

3D models obtained with advanced survey techniques such as close-range photogrammetry and laser scanner are nowadays particularly appreciated in Cultural Heritage and Archaeology fields. In order to produce high quality models representing archaeological evidences and anthropological artifacts, the appearance of the model (i.e. color) beyond the geometric accuracy, is not a negligible aspect. The integration of the close-range photogrammetry survey techniques with the laser scanner is still a topic of study and research. By combining point cloud data sets of the same object generated with both technologies, or with the same technology but registered in different moment and/or natural light condition, could construct a final point cloud with accentuated color dissimilarities. In this paper, a methodology to uniform the different data sets, to improve the chromatic quality and to highlight further details by balancing the point color will be presented.

Keywords: Color models, cultural heritage, laser scanner, photogrammetry, point cloud color.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631
4209 Multi-Objective Analysis of Cost and Social Benefits in Rural Road Networks

Authors: J. K. Shrestha, A. Benta, R. B. Lopes, N. Lopes

Abstract:

This paper presents a multi-objective model for addressing two main objectives in designing rural roads networks: minimization of user operation costs and maximization of population covered. As limited budgets often exist, a reasonable trade-off must be obtained in order to account for both cost and social benefits in this type of networks. For a real-world rural road network, the model is solved, where all non-dominated solutions were obtained. Afterwards, an analysis is made on the (possibly) most interesting solutions (the ones providing better trade-offs). This analysis, coupled with the knowledge of the real world scenario (typically provided by decision makers) provides a suitable method for the evaluation of road networks in rural areas of developing countries.

Keywords: Multi-objective, user operation cost, population covered, rural road network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835
4208 Improvement of Passengers Ride Comfort in Rail Vehicles Equipped with Air Springs

Authors: H. Sayyaadi, N. Shokouhi

Abstract:

In rail vehicles, air springs are very important isolating component, which guarantee good ride comfort for passengers during their trip. In the most new rail–vehicle models, developed by researchers, the thermo–dynamical effects of air springs are ignored and secondary suspension is modeled by simple springs and dampers. As the performance of suspension components have significant effects on rail–vehicle dynamics and ride comfort of passengers, a complete nonlinear thermo–dynamical air spring model, which is a combination of two different models, is introduced. Result from field test shows remarkable agreement between proposed model and experimental data. Effects of air suspension parameters on the system performances are investigated here and then these parameters are tuned to minimize Sperling ride comfort index during the trip. Results showed that by modification of air suspension parameters, passengers comfort is improved and ride comfort index is reduced about 10%.

Keywords: Air spring, Ride comfort improvement, Thermo– dynamical effects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3123
4207 Optimization of Springback Prediction in U-Channel Process Using Response Surface Methodology

Authors: Muhamad Sani Buang, Shahrul Azam Abdullah, Juri Saedon

Abstract:

There is not much effective guideline on development of design parameters selection on spring back for advanced high strength steel sheet metal in U-channel process during cold forming process. This paper presents the development of predictive model for spring back in U-channel process on advanced high strength steel sheet employing Response Surface Methodology (RSM). The experimental was performed on dual phase steel sheet, DP590 in Uchannel forming process while design of experiment (DoE) approach was used to investigates the effects of four factors namely blank holder force (BHF), clearance (C) and punch travel (Tp) and rolling direction (R) were used as input parameters using two level values by applying Full Factorial design (24 ). From a statistical analysis of variant (ANOVA), result showed that blank holder force (BHF), clearance (C) and punch travel (Tp) displayed significant effect on spring back of flange angle (β2 ) and wall opening angle (β1 ), while rolling direction (R) factor is insignificant. The significant parameters are optimized in order to reduce the spring back behavior using Central Composite Design (CCD) in RSM and the optimum parameters were determined. A regression model for spring back was developed. The effect of individual parameters and their response was also evaluated. The results obtained from optimum model are in agreement with the experimental values.  

Keywords: Advance high strength steel, U-channel process, Springback, Design of Experiment, Optimization, Response Surface Methodology (RSM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2298
4206 Full-genomic Network Inference for Non-model organisms: A Case Study for the Fungal Pathogen Candida albicans

Authors: Jörg Linde, Ekaterina Buyko, Robert Altwasser, Udo Hahn, Reinhard Guthke

Abstract:

Reverse engineering of full-genomic interaction networks based on compendia of expression data has been successfully applied for a number of model organisms. This study adapts these approaches for an important non-model organism: The major human fungal pathogen Candida albicans. During the infection process, the pathogen can adapt to a wide range of environmental niches and reversibly changes its growth form. Given the importance of these processes, it is important to know how they are regulated. This study presents a reverse engineering strategy able to infer fullgenomic interaction networks for C. albicans based on a linear regression, utilizing the sparseness criterion (LASSO). To overcome the limited amount of expression data and small number of known interactions, we utilize different prior-knowledge sources guiding the network inference to a knowledge driven solution. Since, no database of known interactions for C. albicans exists, we use a textmining system which utilizes full-text research papers to identify known regulatory interactions. By comparing with these known regulatory interactions, we find an optimal value for global modelling parameters weighting the influence of the sparseness criterion and the prior-knowledge. Furthermore, we show that soft integration of prior-knowledge additionally improves the performance. Finally, we compare the performance of our approach to state of the art network inference approaches.

Keywords: Pathogen, network inference, text-mining, Candida albicans, LASSO, mutual information, reverse engineering, linear regression, modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1673
4205 Numerical Simulation of Axially Loaded to Failure Large Diameter Bored Pile

Authors: M. Ezzat, Y. Zaghloul, T. Sorour, A. Hefny, M. Eid

Abstract:

Ultimate capacity of large diameter bored piles is usually determined from pile loading tests as recommended by several international codes and foundation design standards. However, loading of this type of piles till achieving apparent failure is practically seldom. In this paper, numerical analyses are carried out to simulate load test of a large diameter bored pile performed at the location of Alzey highway bridge project (Germany). Test results of pile load settlement relationship till failure as well as results of the base and shaft resistances are available. Apparent failure was indicated in this test by the significant increase of the induced settlement during the last load increment applied on the pile head. Measurements of this pile load test are used to assess the quality of the numerical models investigated. Three different material soil models are implemented in the analyses: Mohr coulomb (MC), Soft soil (SS), and Modified Mohr coulomb (MMC). Very good agreement is obtained between the field measured settlement and the calculated settlement using the MMC model. Results of analysis showed also that the MMC constitutive model is superior to MC, and SS models in predicting the ultimate base and shaft resistances of the large diameter bored pile. After calibrating the numerical model, behavior of large diameter bored piles under axial loads is discussed and the formation of the plastic zone around the pile is explored. Results obtained showed that the plastic zone below the base of the pile at failure extended laterally to about four times the pile diameter and vertically to about three times the pile diameter.

Keywords: Ultimate capacity, large diameter bored piles, plastic zone, failure, pile load test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 919
4204 Material Handling Equipment Selection using Hybrid Monte Carlo Simulation and Analytic Hierarchy Process

Authors: Amer M. Momani, Abdulaziz A. Ahmed

Abstract:

The many feasible alternatives and conflicting objectives make equipment selection in materials handling a complicated task. This paper presents utilizing Monte Carlo (MC) simulation combined with the Analytic Hierarchy Process (AHP) to evaluate and select the most appropriate Material Handling Equipment (MHE). The proposed hybrid model was built on the base of material handling equation to identify main and sub criteria critical to MHE selection. The criteria illustrate the properties of the material to be moved, characteristics of the move, and the means by which the materials will be moved. The use of MC simulation beside the AHP is very powerful where it allows the decision maker to represent his/her possible preference judgments as random variables. This will reduce the uncertainty of single point judgment at conventional AHP, and provide more confidence in the decision problem results. A small business pharmaceutical company is used as an example to illustrate the development and application of the proposed model.

Keywords: Analytic Hierarchy Process (AHP), Materialhandling equipment selection, Monte Carlo simulation, Multi-criteriadecision making

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3138
4203 Trace Emergence of Ants- Traffic Flow, based upon Exclusion Process

Authors: Ali Lemouari, Mohamed Benmohamed

Abstract:

Biological evolution has generated a rich variety of successful solutions; from nature, optimized strategies can be inspired. One interesting example is the ant colonies, which are able to exhibit a collective intelligence, still that their dynamic is simple. The emergence of different patterns depends on the pheromone trail, leaved by the foragers. It serves as positive feedback mechanism for sharing information. In this paper, we use the dynamic of TASEP as a model of interaction at a low level of the collective environment in the ant-s traffic flow. This work consists of modifying the movement rules of particles “ants" belonging to the TASEP model, so that it adopts with the natural movement of ants. Therefore, as to respect the constraints of having no more than one particle per a given site, and in order to avoid collision within a bidirectional circulation, we suggested two strategies: decease strategy and waiting strategy. As a third work stage, this is devoted to the study of these two proposed strategies- stability. As a final work stage, we applied the first strategy to the whole environment, in order to get to the emergence of traffic flow, which is a way of learning.

Keywords: Ants system, emergence, exclusion process, pheromone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1327
4202 Single Event Transient Tolerance Analysis in 8051 Microprocessor Using Scan Chain

Authors: Jun Sung Go, Jong Kang Park, Jong Tae Kim

Abstract:

As semi-conductor manufacturing technology evolves; the single event transient problem becomes more significant issue. Single event transient has a critical impact on both combinational and sequential logic circuits, so it is important to evaluate the soft error tolerance of the circuits at the design stage. In this paper, we present a soft error detecting simulation using scan chain. The simulation model generates a single event transient randomly in the circuit, and detects the soft error during the execution of the test patterns. We verified this model by inserting a scan chain in an 8051 microprocessor using 65 nm CMOS technology. While the test patterns generated by ATPG program are passing through the scan chain, we insert a single event transient and detect the number of soft errors per sub-module. The experiments show that the soft error rates per cell area of the SFR module is 277% larger than other modules.

Keywords: Scan chain, single event transient, soft error, 8051 processor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1490
4201 When Explanations “Cause“ Error: A Look at Representations and Compressions

Authors: Michael Lissack

Abstract:

We depend upon explanation in order to “make sense" out of our world. And, making sense is all the more important when dealing with change. But, what happens if our explanations are wrong? This question is examined with respect to two types of explanatory model. Models based on labels and categories we shall refer to as “representations." More complex models involving stories, multiple algorithms, rules of thumb, questions, ambiguity we shall refer to as “compressions." Both compressions and representations are reductions. But representations are far more reductive than compressions. Representations can be treated as a set of defined meanings – coherence with regard to a representation is the degree of fidelity between the item in question and the definition of the representation, of the label. By contrast, compressions contain enough degrees of freedom and ambiguity to allow us to make internal predictions so that we may determine our potential actions in the possibility space. Compressions are explanatory via mechanism. Representations are explanatory via category. Managers are often confusing their evocation of a representation (category inclusion) as the creation of a context of compression (description of mechanism). When this type of explanatory error occurs, more errors follow. In the drive for efficiency such substitutions are all too often proclaimed – at the manager-s peril..

Keywords: Coherence, Emergence, Reduction, Model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1239
4200 Effect of Helium-Argon Mixtures on the Heat Transfer and Fluid Flow in Gas Tungsten Arc Welding

Authors: A. Traidia, F. Roger, A. Chidley, J. Schroeder, T. Marlaud

Abstract:

A transient finite element model has been developed to study the heat transfer and fluid flow during spot Gas Tungsten Arc Welding (GTAW) on stainless steel. Temperature field, fluid velocity and electromagnetic fields are computed inside the cathode, arc-plasma and anode using a unified MHD formulation. The developed model is then used to study the influence of different helium-argon gas mixtures on both the energy transferred to the workpiece and the time evolution of the weld pool dimensions. It is found that the addition of helium to argon increases the heat flux density on the weld axis by a factor that can reach 6.5. This induces an increase in the weld pool depth by a factor of 3. It is also found that the addition of only 10% of argon to helium decreases considerably the weld pool depth, which is due to the electrical conductivity of the mixture that increases significantly when argon is added to helium.

Keywords: GTAW, Thermal plasmas, Fluid flow, Marangoni effect, Shielding Gases.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3222
4199 Color Image Segmentation Using SVM Pixel Classification Image

Authors: K. Sakthivel, R. Nallusamy, C. Kavitha

Abstract:

The goal of image segmentation is to cluster pixels into salient image regions. Segmentation could be used for object recognition, occlusion boundary estimation within motion or stereo systems, image compression, image editing, or image database lookup. In this paper, we present a color image segmentation using support vector machine (SVM) pixel classification. Firstly, the pixel level color and texture features of the image are extracted and they are used as input to the SVM classifier. These features are extracted using the homogeneity model and Gabor Filter. With the extracted pixel level features, the SVM Classifier is trained by using FCM (Fuzzy C-Means).The image segmentation takes the advantage of both the pixel level information of the image and also the ability of the SVM Classifier. The Experiments show that the proposed method has a very good segmentation result and a better efficiency, increases the quality of the image segmentation compared with the other segmentation methods proposed in the literature.

Keywords: Image Segmentation, Support Vector Machine, Fuzzy C–Means, Pixel Feature, Texture Feature, Homogeneity model, Gabor Filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6747
4198 A Study on Mode of Collapse of Metallic Shells Having Combined Tube-Frusta Geometry Subjected to Axial Compression

Authors: P. K. Gupta

Abstract:

The present paper deals with the experimental and computational study of axial collapse of the aluminum metallic shells having combined tube-frusta geometry between two parallel plates. Shells were having bottom two third lengths as frusta and remaining top one third lengths as tube. Shells were compressed to recognize their modes of collapse and associated energy absorption capability. An axisymmetric Finite Element computational model of collapse process is presented and analysed, using a non-linear FE code FORGE2. Six noded isoparametric triangular elements were used to discretize the deforming shell. The material of the shells was idealized as rigid visco-plastic. To validate the computational model experimental and computed results of the deformed shapes and their corresponding load-compression and energy-compression curves were compared. With the help of the obtained results progress of the axisymmetric mode of collapse has been presented, analysed and discussed.

Keywords: Axial compression, crashworthiness, energy absorption, FORGE2, metallic shells.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1480
4197 Automatic Lip Contour Tracking and Visual Character Recognition for Computerized Lip Reading

Authors: Harshit Mehrotra, Gaurav Agrawal, M.C. Srivastava

Abstract:

Computerized lip reading has been one of the most actively researched areas of computer vision in recent past because of its crime fighting potential and invariance to acoustic environment. However, several factors like fast speech, bad pronunciation, poor illumination, movement of face, moustaches and beards make lip reading difficult. In present work, we propose a solution for automatic lip contour tracking and recognizing letters of English language spoken by speakers using the information available from lip movements. Level set method is used for tracking lip contour using a contour velocity model and a feature vector of lip movements is then obtained. Character recognition is performed using modified k nearest neighbor algorithm which assigns more weight to nearer neighbors. The proposed system has been found to have accuracy of 73.3% for character recognition with speaker lip movements as the only input and without using any speech recognition system in parallel. The approach used in this work is found to significantly solve the purpose of lip reading when size of database is small.

Keywords: Contour Velocity Model, Lip Contour Tracking, LipReading, Visual Character Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2401
4196 Project Selection Using Fuzzy Group Analytic Network Process

Authors: Hamed Rafiei, Masoud Rabbani

Abstract:

This paper deals with the project selection problem. Project selection problem is one of the problems arose firstly in the field of operations research following some production concepts from primary product mix problem. Afterward, introduction of managerial considerations into the project selection problem have emerged qualitative factors and criteria to be regarded as well as quantitative ones. To overcome both kinds of criteria, an analytic network process is developed in this paper enhanced with fuzzy sets theory to tackle the vagueness of experts- comments to evaluate the alternatives. Additionally, a modified version of Least-Square method through a non-linear programming model is augmented to the developed group decision making structure in order to elicit the final weights from comparison matrices. Finally, a case study is considered by which developed structure in this paper is validated. Moreover, a sensitivity analysis is performed to validate the response of the model with respect to the condition alteration.

Keywords: Analytic network process, Fuzzy sets theory, Nonlinear programming, Project selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1769
4195 Stochastic Modeling and Combined Spatial Pattern Analysis of Epidemic Spreading

Authors: S. Chadsuthi, W. Triampo, C. Modchang, P. Kanthang, D. Triampo, N. Nuttavut

Abstract:

We present analysis of spatial patterns of generic disease spread simulated by a stochastic long-range correlation SIR model, where individuals can be infected at long distance in a power law distribution. We integrated various tools, namely perimeter, circularity, fractal dimension, and aggregation index to characterize and investigate spatial pattern formations. Our primary goal was to understand for a given model of interest which tool has an advantage over the other and to what extent. We found that perimeter and circularity give information only for a case of strong correlation– while the fractal dimension and aggregation index exhibit the growth rule of pattern formation, depending on the degree of the correlation exponent (β). The aggregation index method used as an alternative method to describe the degree of pathogenic ratio (α). This study may provide a useful approach to characterize and analyze the pattern formation of epidemic spreading

Keywords: spatial pattern epidemics, aggregation index, fractaldimension, stochastic, long-rang epidemics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1676
4194 High Sensitivity Crack Detection and Locating with Optimized Spatial Wavelet Analysis

Authors: A. Ghanbari Mardasi, N. Wu, C. Wu

Abstract:

In this study, a spatial wavelet-based crack localization technique for a thick beam is presented. Wavelet scale in spatial wavelet transformation is optimized to enhance crack detection sensitivity. A windowing function is also employed to erase the edge effect of the wavelet transformation, which enables the method to detect and localize cracks near the beam/measurement boundaries. Theoretical model and vibration analysis considering the crack effect are first proposed and performed in MATLAB based on the Timoshenko beam model. Gabor wavelet family is applied to the beam vibration mode shapes derived from the theoretical beam model to magnify the crack effect so as to locate the crack. Relative wavelet coefficient is obtained for sensitivity analysis by comparing the coefficient values at different positions of the beam with the lowest value in the intact area of the beam. Afterward, the optimal wavelet scale corresponding to the highest relative wavelet coefficient at the crack position is obtained for each vibration mode, through numerical simulations. The same procedure is performed for cracks with different sizes and positions in order to find the optimal scale range for the Gabor wavelet family. Finally, Hanning window is applied to different vibration mode shapes in order to overcome the edge effect problem of wavelet transformation and its effect on the localization of crack close to the measurement boundaries. Comparison of the wavelet coefficients distribution of windowed and initial mode shapes demonstrates that window function eases the identification of the cracks close to the boundaries.

Keywords: Edge effect, scale optimization, small crack locating, spatial wavelet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 949
4193 Perceived Ease-of-Use and Intention to Use E-Government Services in Ghana: The Moderating Role of Perceived Usefulness

Authors: Isaac Kofi Mensah

Abstract:

Public sector organizations, ministries, departments and local government agencies are adopting e-government as a means to provide efficient and quality service delivery to citizens. The purpose of this research paper is to examine the extent to which perceived usefulness (PU) of e-government services moderates between perceived ease-of-use (PEOU) of e-government services and intention to use (IU) e-government services in Ghana. A structured research questionnaire instrument was developed and administered to 700 potential respondents in Ghana, of which 693 responded, representing 99% of the questionnaires distributed. The Technology Acceptance Model (TAM) was used as the theoretical framework for the study. The Statistical Package for Social Science (SPSS) was used to capture and analyze the data. The results indicate that even though predictors such as PU and PEOU are main determiners of citizens’ intention to adopt and use e-government services in Ghana, it failed to show that PEOU and IU e-government services in Ghana is significantly moderated by the PU of e-government services. The implication of this finding on theory and practice is further discussed.

Keywords: E-government services, intention to use, moderating role, perceived ease-of-use, perceived usefulness, Ghana, technology acceptance model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533
4192 Key Performance Indicators and the Model for Achieving Digital Inclusion for Smart Cities

Authors: Khalid Obaed Mahmod, Mesut Cevik

Abstract:

The term smart city has appeared recently and was accompanied by many definitions and concepts, but as a simplified and clear definition, it can be said that the smart city is a geographical location that has gained efficiency and flexibility in providing public services to citizens through its use of technological and communication technologies, and this is what distinguishes it from other cities. Smart cities connect the various components of the city through the main and sub networks in addition to a set of applications, and thus are able to collect data that is the basis for providing technological solutions to manage resources and provide services. The basis of the work of the smart city is the use of artificial intelligence (AI) and the technology of the Internet of Things (IoT). The work presents the concept of smart cities, the pillars, standards and evaluation indicators on which smart cities depend, and the reasons that prompted the world to move towards its establishment. It also provides a simplified hypothetical way to measure the ideal smart city model by defining some indicators and key pillars, simulating them with logic circuits and testing them to determine if the city can be considered an ideal smart city or not.

Keywords: Evaluation indicators, logic gates, performance factors, pillars, smart city.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 351
4191 Increasing the System Availability of Data Centers by Using Virtualization Technologies

Authors: Chris Ewe, Naoum Jamous, Holger Schrödl

Abstract:

Like most entrepreneurs, data center operators pursue goals such as profit-maximization, improvement of the company’s reputation or basically to exist on the market. Part of those aims is to guarantee a given quality of service. Quality characteristics are specified in a contract called the service level agreement. Central part of this agreement is non-functional properties of an IT service. The system availability is one of the most important properties as it will be shown in this paper. To comply with availability requirements, data center operators can use virtualization technologies. A clear model to assess the effect of virtualization functions on the parts of a data center in relation to the system availability is still missing. This paper aims to introduce a basic model that shows these connections, and consider if the identified effects are positive or negative. Thus, this work also points out possible disadvantages of the technology. In consequence, the paper shows opportunities as well as risks of data center virtualization in relation to system availability.

Keywords: Availability, cloud computing IT service, quality of service, service level agreement, virtualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 993
4190 Multiple Sensors and JPDA-IMM-UKF Algorithm for Tracking Multiple Maneuvering Targets

Authors: Wissem Saidani, Yacine Morsly, Mohand Saïd Djouadi

Abstract:

In this paper, we consider the problem of tracking multiple maneuvering targets using switching multiple target motion models. With this paper, we aim to contribute in solving the problem of model-based body motion estimation by using data coming from visual sensors. The Interacting Multiple Model (IMM) algorithm is specially designed to track accurately targets whose state and/or measurement (assumed to be linear) models changes during motion transition. However, when these models are nonlinear, the IMM algorithm must be modified in order to guarantee an accurate track. In this paper we propose to avoid the Extended Kalman filter because of its limitations and substitute it with the Unscented Kalman filter which seems to be more efficient especially according to the simulation results obtained with the nonlinear IMM algorithm (IMMUKF). To resolve the problem of data association, the JPDA approach is combined with the IMM-UKF algorithm, the derived algorithm is noted JPDA-IMM-UKF.

Keywords: Estimation, Kalman filtering, Multi-Target Tracking, Visual servoing, data association.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2564
4189 Loudspeaker Parameters Inverse Problem for Improving Sound Frequency Response Simulation

Authors: Y. T. Tsai, Jin H. Huang

Abstract:

The sound pressure level (SPL) of the moving-coil loudspeaker (MCL) is often simulated and analyzed using the lumped parameter model. However, the SPL of a MCL cannot be simulated precisely in the high frequency region, because the value of cone effective area is changed due to the geometry variation in different mode shapes, it is also related to affect the acoustic radiation mass and resistance. Herein, the paper presents the inverse method which has a high ability to measure the value of cone effective area in various frequency points, also can estimate the MCL electroacoustic parameters simultaneously. The proposed inverse method comprises the direct problem, adjoint problem, and sensitivity problem in collaboration with nonlinear conjugate gradient method. Estimated values from the inverse method are validated experimentally which compared with the measured SPL curve result. Results presented in this paper not only improve the accuracy of lumped parameter model but also provide the valuable information on loudspeaker cone design.

Keywords: Inverse problem, cone effective area, loudspeaker, nonlinear conjugate gradient method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2554
4188 Laser Surface Hardening Considering Coupled Thermoelasticity using an Eulerian Formulations

Authors: Me. Sistaninia, G.H.Farrahi, Ma. Sistaninia

Abstract:

Thermoelastic temperature, displacement, and stress in heat transfer during laser surface hardening are solved in Eulerian formulation. In Eulerian formulations the heat flux is fixed in space and the workpiece is moved through a control volume. In the case of uniform velocity and uniform heat flux distribution, the Eulerian formulations leads to a steady-state problem, while the Lagrangian formulations remains transient. In Eulerian formulations the reduction to a steady-state problem increases the computational efficiency. In this study also an analytical solution is developed for an uncoupled transient heat conduction equation in which a plane slab is heated by a laser beam. The thermal result of the numerical model is compared with the result of this analytical model. Comparing the results shows numerical solution for uncoupled equations are in good agreement with the analytical solution.

Keywords: Coupled thermoelasticity, Finite element, Laser surface hardening, Eulerian formulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1565
4187 Aerodynamic Performance of a Pitching Bio-Inspired Corrugated Airfoil

Authors: Hadi Zarafshani, Shidvash Vakilipour, Shahin Teimori, Sara Barati

Abstract:

In the present study, the aerodynamic performance of a rigid two-dimensional pitching bio-inspired corrugate airfoil was numerically investigated at Reynolds number of 14000. The Open Field Operations And Manipulations (OpenFOAM) computational fluid dynamic tool is used to solve flow governing equations numerically. The k-ω SST turbulence model with low Reynolds correction (k-ω SST LRC) and the pimpleDyMFOAM solver are utilized to simulate the flow field around pitching bio-airfoil. The lift and drag coefficients of the airfoil are calculated at reduced frequencies k=1.24-4.96 and the angular amplitude of A=5°-20°. Results show that in a fixed reduced frequency, the absolute value of the sectional lift and drag coefficients increase with increasing pitching amplitude. In a fixed angular amplitude, the absolute value of the lift and drag coefficients increase as the pitching reduced frequency increases.

Keywords: Bio-inspired pitching airfoils, OpenFOAM, low Reynolds k-ω SST model, lift and drag coefficients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 906
4186 Enhancement of Visual Comfort Using Parametric Double Skin Façades

Authors: Ahmed Ashraf Khamis, Sherif A. Ibrahim, Mahmoud ElKhatieb, Mohamed A. Barakat

Abstract:

Parametric design deemed to be one of icons of the modern architectural trends that facilitates taking complex design decisions counting on altering various design parameters. Double skin façades are one of the parametric applications that are used in parametric designs. This paper opts to enhance different daylight parameters of a selected case study office building in Cairo using a parametric double skin façade. First, the design and optimization process was executed utilizing Grasshopper parametric design software package, in which the daylighting performance of the base case building model was compared with the one used in the double façade showing an enhancement in task plane illuminance by 180%. Second, execution drawings are made for the optimized design using Revit software. Finally, computerized digital fabrication stages of the designed model with various scales are demonstrated to reach the final design decisions using Simplify 3D for mock-up digital fabrication.

Keywords: Parametric design, Double skin façades, Digital Fabrication, Grasshopper, Simplify 3D.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 347
4185 Solar Seawater Desalination Still with Seawater Preheater Using Efficient Heat Transfer Oil: Numerical Investigation and Data Verification

Authors: Ahmed N. Shmroukh, Gamal Tag Abdel-Jaber, Rashed D. Aldughpassi

Abstract:

The feasibility of improving the performance of the proposed solar still unit which operated in very hot climate is investigated numerically and verified with experimental data. This solar desalination unit with proposed auxiliary device as seawater preheating system using petrol based textherm oil was used to produce pure fresh water from seawater. The effective evaporation area of basin is about 1 m2. The unit was tested in two main operation modes which are normal and with seawater preheating system. The results showed that, there is good agreement between the theoretical data and the experimental data; this means that the numerical model can be accurately dependable for predicting the proposed solar still performance and design parameters. The results also showed that the fresh water productivity of the solar still in the modified preheating case which is higher than normal case, leads to an increase in productivity of 42%.

Keywords: Improving productivity, seawater desalination, solar stills, theoretical model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 772