Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2

Search results for: Juri Saedon

2 Optimization of Springback Prediction in U-Channel Process Using Response Surface Methodology

Authors: Muhamad Sani Buang, Shahrul Azam Abdullah, Juri Saedon

Abstract:

There is not much effective guideline on development of design parameters selection on spring back for advanced high strength steel sheet metal in U-channel process during cold forming process. This paper presents the development of predictive model for spring back in U-channel process on advanced high strength steel sheet employing Response Surface Methodology (RSM). The experimental was performed on dual phase steel sheet, DP590 in Uchannel forming process while design of experiment (DoE) approach was used to investigates the effects of four factors namely blank holder force (BHF), clearance (C) and punch travel (Tp) and rolling direction (R) were used as input parameters using two level values by applying Full Factorial design (24 ). From a statistical analysis of variant (ANOVA), result showed that blank holder force (BHF), clearance (C) and punch travel (Tp) displayed significant effect on spring back of flange angle (β2 ) and wall opening angle (β1 ), while rolling direction (R) factor is insignificant. The significant parameters are optimized in order to reduce the spring back behavior using Central Composite Design (CCD) in RSM and the optimum parameters were determined. A regression model for spring back was developed. The effect of individual parameters and their response was also evaluated. The results obtained from optimum model are in agreement with the experimental values.  

Keywords: Advance high strength steel, U-channel process, Springback, Design of Experiment, Optimization, Response Surface Methodology (RSM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2078
1 MovieReco: A Recommendation System

Authors: Dipankaj G Medhi, Juri Dakua

Abstract:

Recommender Systems act as personalized decision guides, aiding users in decisions on matters related to personal taste. Most previous research on Recommender Systems has focused on the statistical accuracy of the algorithms driving the systems, with no emphasis on the trustworthiness of the user. RS depends on information provided by different users to gather its knowledge. We believe, if a large group of users provide wrong information it will not be possible for the RS to arrive in an accurate conclusion. The system described in this paper introduce the concept of Testing the knowledge of user to filter out these “bad users". This paper emphasizes on the mechanism used to provide robust and effective recommendation.

Keywords: Collaborative Filtering, Content Based Filtering, Intelligent Agent, Level of Interest, Recommendation System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1434