Search results for: energy conservation
2765 Appraisal of Energy Efficiency of Urban Development Plans: The Fidelity Concept on Izmir-Balcova Case
Authors: Y. Duvarci, A. K. Kutluca
Abstract:
Design and land use are closely linked to the energy efficiency levels for an urban area. The current city planning practice does not involve an effective land useenergy evaluation in its 'blueprint' urban plans. The study proposed an appraisal method that can be embedded in GIS programs using five planning criteria as how far a planner can give away from the planning principles (criteria) for the most energy output s/he can obtain. The case of Balcova, a district in the Izmir Metropolitan area, is used conformingly for evaluating the proposed master plan and the geothermal energy (heating only) use for the concern district. If the land use design were proposed accordingly at-most energy efficiency (a 30% obtained), mainly increasing the density around the geothermal wells and also proposing more mixed use zones, we could have 17% distortion (infidelity to the main planning principles) from the original plan. The proposed method can be an effective tool for planners as simulation media, of which calculations can be made by GIS ready tools, to evaluate efficiency levels for different plan proposals, letting to know how much energy saving causes how much deviation from the other planning ideals. Lower energy uses can be possible for different land use proposals for various policy trials.Keywords: Sustainable Urban Planning, Energy Efficiency, Geothermal Energy, District Heating Systems (DHS), EnergyPlanning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19222764 Energy Saving of the Paint with Mineral Insulators: Simulation and Study on Different Climates
Authors: A. A. Azemati, H. Hosseini, B. Shirkavand Hadavand
Abstract:
By using an adequate thermal barrier coating in buildings the energy saving will be happened. In this study, a range of wall paints with different absorption coefficient in different climates has been investigated. In order to study these effects, heating and cooling loads of a common building with different ordinary paints and paint with mineral coating have been calculated. The effect of building paint in different climatic condition was studied and comparison was done between ordinary paints and paint with mineral insulators in temperate climate to obtain optimized energy consumption. The results have been shown that coatings with inorganic micro particles as insulation reduce the energy consumption of buildings around 14%.Keywords: Insulator, coating, climate, energy consumption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14172763 Contribution of the Cogeneration Systems to Environment and Sustainability
Authors: Kemal Çomakli, Uğur Çakir, Ayşegül Çokgez Kuş, Erol Şahin
Abstract:
A lower consumption of thermal energy will contribute not only to a reduction in the running costs, but also in the reduction of pollutant emissions that contribute to the greenhouse effect. Cogeneration or CHP (Combined Heat and Power) is the system that produces power and usable heat simultaneously by decreasing the pollutant emissions and increasing the efficiency. Combined production of mechanical or electrical and thermal energy using a simple energy source, such as oil, coal, natural or liquefied gas, biomass or the sun; affords remarkable energy savings and frequently makes it possible to operate with greater efficiency when compared to a system producing heat and power separately. This study aims to bring out the contributions of cogeneration systems to the environment and sustainability by saving the energy and reducing the emissions. In this way we made a comprehensive investigation in the literature by focusing on the environmental aspects of the cogeneration systems. In the light of these studies we reached that, cogeneration systems must be consider in sustainability and their benefits on protecting the ecology must be investigated.Keywords: Sustainability, cogeneration systems, energy economy, energy saving.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26602762 Energy Efficiency Analysis of Discharge Modes of an Adiabatic Compressed Air Energy Storage System
Authors: Shane D. Inder, Mehrdad Khamooshi
Abstract:
Efficient energy storage is a crucial factor in facilitating the uptake of renewable energy resources. Among the many options available for energy storage systems required to balance imbalanced supply and demand cycles, compressed air energy storage (CAES) is a proven technology in grid-scale applications. This paper reviews the current state of micro scale CAES technology and describes a micro-scale advanced adiabatic CAES (A-CAES) system, where heat generated during compression is stored for use in the discharge phase. It will also describe a thermodynamic model, developed in EES (Engineering Equation Solver) to evaluate the performance and critical parameters of the discharge phase of the proposed system. Three configurations are explained including: single turbine without preheater, two turbines with preheaters, and three turbines with preheaters. It is shown that the micro-scale A-CAES is highly dependent upon key parameters including; regulator pressure, air pressure and volume, thermal energy storage temperature and flow rate and the number of turbines. It was found that a micro-scale AA-CAES, when optimized with an appropriate configuration, could deliver energy input to output efficiency of up to 70%.
Keywords: CAES, adiabatic compressed air energy storage, expansion phase, micro generation, thermodynamic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11172761 Power Production Performance of Different Wave Energy Converters in the Southwestern Black Sea
Authors: Ajab G. Majidi, Bilal Bingölbali, Adem Akpınar
Abstract:
This study aims to investigate the amount of energy (economic wave energy potential) that can be obtained from the existing wave energy converters in the high wave energy potential region of the Black Sea in terms of wave energy potential and their performance at different depths in the region. The data needed for this purpose were obtained using the calibrated nested layered SWAN wave modeling program version 41.01AB, which was forced with Climate Forecast System Reanalysis (CFSR) winds from 1979 to 2009. The wave dataset at a time interval of 2 hours was accumulated for a sub-grid domain for around Karaburun beach in Arnavutkoy, a district of Istanbul city. The annual sea state characteristic matrices for the five different depths along with a vertical line to the coastline were calculated for 31 years. According to the power matrices of different wave energy converter systems and characteristic matrices for each possible installation depth, the probability distribution tables of the specified mean wave period or wave energy period and significant wave height were calculated. Then, by using the relationship between these distribution tables, according to the present wave climate, the energy that the wave energy converter systems at each depth can produce was determined. Thus, the economically feasible potential of the relevant coastal zone was revealed, and the effect of different depths on energy converter systems is presented. The Oceantic at 50, 75 and 100 m depths and Oyster at 5 and 25 m depths presents the best performance. In the 31-year long period 1998 the most and 1989 is the least dynamic year.Keywords: Annual power production, Black Sea, efficiency, power production performance, wave energy converter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6622760 Effect of Orientation of the Wall Window on Energy Saving under Clear Sky Conditions
Authors: Madhu Sudan, G. N. Tiwari
Abstract:
In this paper, an attempt has been made to analyze the effect of wall window orientation on Daylight Illuminance Ratio (DIR) and energy saving in a building known as “SODHA BERS COMPLEX (SBC)” at Varanasi, UP, India. The building has been designed incorporating all passive concepts for thermal comfort as well daylighting concepts to maximize the use of natural daylighting for the occupants in the day to day activities. The annual average DIR and the energy saving has been estimated by using the DIR model for wall window with different orientations under clear sky condition. It has been found that for south oriented window the energy saving per square meter is more compared to the other orientations due to the higher level of solar insolation for the south window in northern hemisphere whereas energy saving potential is minimum for north oriented wall window. The energy saving potential was 26%, 81% and 51% higher for east, south and west oriented window in comparison to north oriented window. The average annual DIR has same trends of variation as the annual energy saving and it is maximum for south oriented window and minimum for north oriented window.Keywords: Clear sky, Daylight Illuminance Ratio, Energy saving, Wall window.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15032759 Simulation of the Temperature and Heat Gain by Solar Parabolic Trough Collector in Algeria
Authors: M. Ouagued, A. Khellaf
Abstract:
The objectif of the present work is to determinate the potential of the solar parabolic trough collector (PTC) for use in the design of a solar thermal power plant in Algeria. The study is based on a mathematical modeling of the PTC. Heat balance has been established respectively on the heat transfer fluid (HTF), the absorber tube and the glass envelop using the principle of energy conservation at each surface of the HCE cross-sectionn. The modified Euler method is used to solve the obtained differential equations. At first the results for typical days of two seasons the thermal behavior of the HTF, the absorber and the envelope are obtained. Then to determine the thermal performances of the heat transfer fluid, different oils are considered and their temperature and heat gain evolutions compared.Keywords: Direct solar irradiance, solar radiation in Algeria, solar parabolic trough collector, heat balance, thermal oil performance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36532758 Gas Sweetening Process Simulation: Investigation on Recovering Waste Hydraulic Energy
Authors: Meisam Moghadasi, Hassan Ali Ozgoli, Foad Farhani
Abstract:
In this research, firstly, a commercial gas sweetening unit with methyl-di-ethanol-amine (MDEA) solution is simulated and comprised in an integrated model in accordance with Aspen HYSYS software. For evaluation purposes, in the second step, the results of the simulation are compared with operating data gathered from South Pars Gas Complex (SPGC). According to the simulation results, the considerable energy potential contributed to the pressure difference between absorber and regenerator columns causes this energy driving force to be applied in power recovery turbine (PRT). In the last step, the amount of waste hydraulic energy is calculated, and its recovery methods are investigated.
Keywords: Gas sweetening unit, simulation, MDEA, power recovery turbine, waste-to-energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10772757 A Socio-Ecological Study of Sacred Groves and Memorial Parks: Cases from USA and India
Authors: Ishani Pruthi, William Burch Jr
Abstract:
The concept of sacred and nature have long been interlinked. Various cultural aspects such as religion, faith, traditions bring people closer to nature and the natural environment. Memorial Parks and Sacred Groves are examples of two such cultural landscapes that exist today. The project mainly deals with the significance of such sites to the environment and the deep rooted significance it has to the people. These parks and groves play an important role in biodiversity conservation and environmental protection. There are many differences between the establishment of memorial parks and sacred groves, but the underlying significance is the same. Sentiments, emotions play an important role in landscape planning and management. Hence the people and communities living at these sites need to be involved in any planning activity or decisions. The conservation of the environment should appeal to the sentiments of the people; the need to be 'with nature' should be used in the setting up of memorial forests and in the preservation of sacred groves.Keywords: Sacred groves, memorial forests, community based natural resource management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24222756 The Application of Data Mining Technology in Building Energy Consumption Data Analysis
Authors: Liang Zhao, Jili Zhang, Chongquan Zhong
Abstract:
Energy consumption data, in particular those involving public buildings, are impacted by many factors: the building structure, climate/environmental parameters, construction, system operating condition, and user behavior patterns. Traditional methods for data analysis are insufficient. This paper delves into the data mining technology to determine its application in the analysis of building energy consumption data including energy consumption prediction, fault diagnosis, and optimal operation. Recent literature are reviewed and summarized, the problems faced by data mining technology in the area of energy consumption data analysis are enumerated, and research points for future studies are given.
Keywords: Data mining, data analysis, prediction, optimization, building operational performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37092755 Energy Map Construction using Adaptive Alpha Grey Prediction Model in WSNs
Authors: Surender Kumar Soni, Dhirendra Pratap Singh
Abstract:
Wireless Sensor Networks can be used to monitor the physical phenomenon in such areas where human approach is nearly impossible. Hence the limited power supply is the major constraint of the WSNs due to the use of non-rechargeable batteries in sensor nodes. A lot of researches are going on to reduce the energy consumption of sensor nodes. Energy map can be used with clustering, data dissemination and routing techniques to reduce the power consumption of WSNs. Energy map can also be used to know which part of the network is going to fail in near future. In this paper, Energy map is constructed using the prediction based approach. Adaptive alpha GM(1,1) model is used as the prediction model. GM(1,1) is being used worldwide in many applications for predicting future values of time series using some past values due to its high computational efficiency and accuracy.Keywords: Adaptive Alpha GM(1, 1) Model, Energy Map, Prediction Based Data Reduction, Wireless Sensor Networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18012754 Highlighting of the Factors and Policies Affecting CO2 Emissions Level in Malaysian Transportation Sector
Authors: M. S. Indati, H. A. Bekhet
Abstract:
Global CO2 emission and increasing fuel consumption to meet energy demand has become a threat in recent decades. Effort to reduce the CO2 emission is now a matter of priority in most countries of the world including Malaysia. Transportation has been identified as the most intensive sector of carbon-based fuels and achievement of the voluntary target to meet 40% carbon intensity reduction set at the 15th Conference of the Parties (COP15) means that the emission from the transport sector must be reduced accordingly. This posed a great challenge to Malaysia and effort has to be made to embrace suitable and appropriate energy policy for sustainable energy and emission reduction of this sector. The focus of this paper is to analyze the trends of Malaysia’s energy consumption and emission of four different transport sub-sectors (road, rail, aviation and maritime). Underlying factors influencing the growth of energy consumption and emission trends are discussed. Besides, technology status towards energy efficiency in transportation sub-sectors is presented. By reviewing the existing policies and trends of energy used, the paper highlights prospective policy options towards achieving emission reduction in the transportation sector.
Keywords: CO2 Emission, Energy policy, Fuel consumption, Transportation sector, Malaysia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36842753 Parametrization of Piezoelectric Vibration Energy Harvesters for Low Power Embedded Systems
Authors: Yannick Verbelen, Tim Dekegel, Ann Peeters, Klara Stinders, Niek Blondeel, Sam De Winne, An Braeken, Abdellah Touhafi
Abstract:
Matching an embedded electronic application with a cantilever vibration energy harvester remains a difficult endeavour due to the large number of factors influencing the output power. In the presented work, complementary balanced energy harvester parametrization is used as a methodology for simplification of harvester integration in electronic applications. This is achieved by a dual approach consisting of an adaptation of the general parametrization methodology in conjunction with a straight forward harvester benchmarking strategy. For this purpose, the design and implementation of a suitable user friendly cantilever energy harvester benchmarking platform is discussed. Its effectiveness is demonstrated by applying the methodology to a commercially available Mide V21BL vibration energy harvester, with excitation amplitude and frequency as variables.Keywords: Energy harvesting, vibrations, piezoelectric transducers, embedded systems, harvester parametrization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13102752 Application of Boost Converter for Ride-through Capability of Adjustable Speed Drives during Sag and Swell Conditions
Authors: S. S. Deswal, Ratna Dahiya, D. K. Jain
Abstract:
Process control and energy conservation are the two primary reasons for using an adjustable speed drive. However, voltage sags are the most important power quality problems facing many commercial and industrial customers. The development of boost converters has raised much excitement and speculation throughout the electric industry. Now utilities are looking to these devices for performance improvement and reliability in a variety of areas. Examples of these include sags, spikes, or transients in supply voltage as well as unbalanced voltages, poor electrical system grounding, and harmonics. In this paper, simulations results are presented for the verification of the proposed boost converter topology. Boost converter provides ride through capability during sag and swell. Further, input currents are near sinusoidal. This eliminates the need of braking resistor also.Keywords: Adjustable speed drive, power quality, boost converter, ride through capabilities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16962751 Investigating the Role of Community in Heritage Conservation through the Ladder of Citizen Participation Approach: Case Study, Port Said, Egypt
Authors: Sara S. Fouad, Omneya Messallam
Abstract:
Egypt has countless prestigious buildings and diversity of cultural heritage which are located in many cities. Most of the researchers, archaeologists, stakeholders and governmental bodies are paying more attention to the big cities such as Cairo and Alexandria, due to the country’s centralization nature. However, there are other historic cities that are grossly neglected and in need of emergency conservation. For instance, Port Said which is a former colonial city that was established in nineteenth century located at the edge of the northeast Egyptian coast between the Mediterranean Sea and the Suez Canal. This city is chosen because it presents one of the important Egyptian archaeological sites that archive Egyptian architecture of the 19th and 20th centuries. The historic urban fabric is divided into three main districts; the Arab, the European (Al-Afrang), and Port Fouad. The European district is selected to be the research case study as it has culture diversity, significant buildings, and includes the largest number of the listed heritage buildings in Port Said. Based on questionnaires and interviews, since 2003 several initiative trials have been taken by Alliance Francaise, the National Organization for Urban Harmony (NOUH), some Non-Governmental Organizations (NGOs), and few number of community residents to highlight the important city legacy and protect it from being demolished. Unfortunately, the limitation of their participation in decision-making policies is considered a crucial threat facing sustainable heritage conservation. Therefore, encouraging the local community to participate in their architecture heritage conservation would create a self-confident one, capable of making decisions for the city’s future development. This paper aims to investigate the role of the local inhabitants in protecting their buildings heritage through listing the community level of participations twice (2012 and 2018) in preserving their heritage based on the ladder citizen participation approach. Also, it is to encourage community participation in order to promote city architecture conservation, heritage management, and sustainable development. The methodology followed in this empirical research involves using several data assembly methods such as structural observations, questionnaires, interviews, and mental mapping. The questionnaire was distributed among 92 local inhabitants aged 18-60 years. However, the outset of this research at the beginning demonstrated the majority negative attitude, motivation, and confidence of the local inhabitants’ role to safeguard their architectural heritage. Over time, there was a change in the negative attitudes. Therefore, raising public awareness and encouraging community participation by providing them with a real opportunity to take part in the decision-making. This may lead to a positive relationship between the community residents and the built heritage, which is essential for promoting its preservation and sustainable development.
Keywords: Al-Afrang/Port Said, community participation, heritage conservation, ladder of citizen participation, NGOs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14922750 Energy Efficient Shading Strategies for Windows of Hospital ICUs in the Desert
Authors: A. Sherif, A. El Zafarany, R. Arafa
Abstract:
Hospitals, everywhere, are considered heavy energy consumers. Hospital Intensive Care Unit spaces pose a special challenge, where design guidelines requires the provision of external windows for daylighting and external view. Window protection strategies could be employed to reduce energy loads without detriment effect on comfort or health care. This paper addresses the effectiveness of using various window strategies on the annual cooling, heating and lighting energy use of a typical Hospital Intensive Unit space. Series of experiments were performed using the EnergyPlus simulation software for a typical Intensive Care Unit (ICU) space in Cairo, located in the Egyptian desert. This study concluded that the use of shading systems is more effective in conserving energy in comparison with glazing of different types, in the Cairo ICUs. The highest energy savings in the West and South orientations were accomplished by external perforated solar screens, followed by overhangs positioned at a protection angle of 45°.
Keywords: Energy, Hospital, Intensive Care Units, Shading.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25552749 Performance Analysis of ERA Using Fuzzy Logic in Wireless Sensor Network
Authors: Kamalpreet Kaur, Harjit Pal Singh, Vikas Khullar
Abstract:
In Wireless Sensor Network (WSN), the main limitation is generally inimitable energy consumption during processing of the sensor nodes. Cluster head (CH) election is one of the main issues that can reduce the energy consumption. Therefore, discovering energy saving routing protocol is the focused area for research. In this paper, fuzzy-based energy aware routing protocol is presented, which enhances the stability and network lifetime of the network. Fuzzy logic ensures the well-organized selection of CH by taking four linguistic variables that are concentration, energy, centrality, and distance to base station (BS). The results show that the proposed protocol shows better results in requisites of stability and throughput of the network.
Keywords: ERA, fuzzy logic, network model, WSN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8792748 An Energy Efficient Cluster Formation Protocol with Low Latency In Wireless Sensor Networks
Authors: A. Allirani, M. Suganthi
Abstract:
Data gathering is an essential operation in wireless sensor network applications. So it requires energy efficiency techniques to increase the lifetime of the network. Similarly, clustering is also an effective technique to improve the energy efficiency and network lifetime of wireless sensor networks. In this paper, an energy efficient cluster formation protocol is proposed with the objective of achieving low energy dissipation and latency without sacrificing application specific quality. The objective is achieved by applying randomized, adaptive, self-configuring cluster formation and localized control for data transfers. It involves application - specific data processing, such as data aggregation or compression. The cluster formation algorithm allows each node to make independent decisions, so as to generate good clusters as the end. Simulation results show that the proposed protocol utilizes minimum energy and latency for cluster formation, there by reducing the overhead of the protocol.Keywords: Sensor networks, Low latency, Energy sorting protocol, data processing, Cluster formation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27412747 Modal Analysis for Study of Minor Historical Architecture
Authors: Milorad Pavlovic, Anna Manzato, Antonella Cecchi
Abstract:
Cultural heritage conservation is a challenge for contemporary society. In recent decades, significant resources have been allocated for the conservation and restoration of architectural heritage. Historical buildings were restored, protected and reinforced with the intent to limit the risks of degradation or loss, due to phenomena of structural damage and to external factors such as differential settlements, earthquake effects, etc. The wide diffusion of historic masonry constructions in Italy, Europe and the Mediterranean area requires reliable tools for the evaluation of their structural safety. In this paper is presented a free modal analysis performed on a minor historical architecture located in the village of Bagno Grande, near the city of L’Aquila in Italy. The location is characterized by a complex urban context, seriously damaged by the earthquake of 2009. The aim of this work is to check the structural behavior of a masonry building characterized by several boundary conditions imposed by adjacent buildings and infrastructural facilities.
Keywords: FEM, masonry, minor historical architecture, modal analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11162746 Environmental Impact of Autoclaved Aerated Concrete in Modern Construction: A Case Study from the New Egyptian Administrative Capital
Authors: Esraa A. Khalil, Mohamed N. AbouZeid
Abstract:
Building materials selection is critical for the sustainability of any project. The choice of building materials has a huge impact on the built environment and cost of projects. Building materials emit huge amount of carbon dioxide (CO2) due to the use of cement as a basic component in the manufacturing process and as a binder, which harms our environment. Energy consumption from buildings has increased in the last few years; a huge amount of energy is being wasted from using unsustainable building and finishing materials, as well as from the process of heating and cooling of buildings. In addition, the construction sector in Egypt is taking a good portion of the economy; however, there is a lack of awareness of buildings environmental impacts on the built environment. Using advanced building materials and different wall systems can help in reducing heat consumption, the project’s initial and long-term costs, and minimizing the environmental impacts. Red Bricks is one of the materials that are being used widely in Egypt. There are many other types of bricks such as Autoclaved Aerated Concrete (AAC); however, the use of Red Bricks is dominating the construction industry due to its affordability and availability. This research focuses on the New Egyptian Administrative Capital as a case study to investigate the potential of the influence of using different wall systems such as AAC on the project’s cost and the environment. The aim of this research is to conduct a comparative analysis between the traditional and most commonly used bricks in Egypt, which is Red Bricks, and AAC wall systems. Through an economic and environmental study, the difference between the two wall systems will be justified to encourage the utilization of uncommon techniques in the construction industry to build more affordable, energy efficient and sustainable buildings. The significance of this research is to show the potential of using AAC in the construction industry and its positive influences. The study analyzes the factors associated with choosing suitable building materials for different projects according to the need and criteria of each project and its nature without harming the environment and wasting materials that could be saved or recycled. The New Egyptian Administrative Capital is considered as the country’s new heart, where ideas regarding energy savings and environmental benefits are taken into consideration. Meaning that, Egypt is taking good steps to move towards more sustainable construction. According to the analysis and site visits, there is a potential in reducing the initial costs of buildings by 12.1% and saving energy by using different techniques up to 25%. Interviews with the mega structures project engineers and managers reveal that they are more open to introducing sustainable building materials that will help in saving the environment and moving towards green construction as well as to studying more effective techniques for energy conservation.
Keywords: AAC blocks, building material, environmental impact, modern construction, New Egyptian Administrative Capital.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19332745 Visualising Energy Efficiency Landscape
Authors: Hairulliza M. Judi, Soon Y. Chee
Abstract:
This paper discusses the landscape design that could increase energy efficiency in a house. By planting trees in a house compound, the tree shades prevent direct sunlight from heating up the building, and it enables cooling off the surrounding air. The requirement for air-conditioning could be minimized and the air quality could be improved. During the life time of a tree, the saving cost from the mentioned benefits could be up to US $ 200 for each tree. The project intends to visually describe the landscape design in a house compound that could enhance energy efficiency and consequently lead to energy saving. The house compound model was developed in three dimensions by using AutoCAD 2005, the animation was programmed by using LightWave 3D softwares i.e. Modeler and Layout to display the tree shadings in the wall. The visualization was executed on a VRML Pad platform and implemented on a web environment.Keywords: Tree planting, tree shading, energy efficiency, visualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17022744 Shading Percentage Effects on Energy Consumption for Bahraini Residential Buildings
Authors: Saad F. Al Nuaimi
Abstract:
Energy consumption is a very important topic these days especially regarding air conditioning in residential buildings, since this takes the biggest amount of energy in buildings total consumption, residential buildings constitute the biggest percentage of energy consumption in Bahrain. This research reflects on the effects of shading percentage in different solar orientations on the energy consumption inside residential buildings (domestic dwellings). The research as found that, there are different effects of shading in changing building orientation: • 0.69% for the shading percentage 25% when the building is oriented to the north (0º); • 18.59% for 75% of shading in north-west orientation (325º); • The best effect for shading is in north-west orientation (315º); • The less effect for shading was in case of the building orientation is the north (0º).Keywords: Bahraini buildings, Building shading, energy consumption, residential buildings, shading effects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19272743 Ovshinsky Effect by Quantum Mechanics
Authors: Thomas V. Prevenslik
Abstract:
Ovshinsky initiated scientific research in the field of amorphous and disordered materials that continues to this day. The Ovshinsky Effect where the resistance of thin GST films is significantly reduced upon the application of low voltage is of fundamental importance in phase-change - random access memory (PC-RAM) devices.GST stands for GdSbTe chalcogenide type glasses.However, the Ovshinsky Effect is not without controversy. Ovshinsky thought the resistance of GST films is reduced by the redistribution of charge carriers; whereas, others at that time including many PC-RAM researchers today argue that the GST resistance changes because the GST amorphous state is transformed to the crystalline state by melting, the heat supplied by external heaters. In this controversy, quantum mechanics (QM) asserts the heat capacity of GST films vanishes, and therefore melting cannot occur as the heat supplied cannot be conserved by an increase in GST film temperature.By precluding melting, QM re-opens the controversy between the melting and charge carrier mechanisms. Supporting analysis is presented to show that instead of increasing GST film temperature, conservation proceeds by the QED induced creation of photons within the GST film, the QED photons confined by TIR. QED stands for quantum electrodynamics and TIR for total internal reflection. The TIR confinement of QED photons is enhanced by the fact the absorbedheat energy absorbed in the GST film is concentrated in the TIR mode because of their high surface to volume ratio. The QED photons having Planck energy beyond the ultraviolet produce excitons by the photoelectric effect, the electrons and holes of which reduce the GST film resistance.Keywords: Ovshinsky, phase change memory, PC-RAM, chalcogenide, quantummechanics, quantum electrodynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16912742 Determination of Critical Source Areas for Sediment Loss: Sarrath River Basin, Tunisia
Authors: Manel Mosbahi
Abstract:
The risk of water erosion is one of the main environmental concerns in the southern Mediterranean regions. Thus, quantification of soil loss is an important issue for soil and water conservation managers. The objective of this paper is to examine the applicability of the Soil and Water Assessment Tool (SWAT) model in The Sarrath river catchment, North of Tunisia, and to identify the most vulnerable areas in order to help manager implement an effective management program. The spatial analysis of the results shows that 7 % of the catchment experiences very high erosion risk, in need for suitable conservation measures to be adopted on a priority basis. The spatial distribution of erosion risk classes estimated 3% high, 5,4% tolerable, and 84,6% low. Among the 27 delineated subcatchments only 4 sub-catchments are found to be under high and very high soil loss group, two sub-catchments fell under moderate soil loss group, whereas other sub-catchments are under low soil loss group.Keywords: Critical source areas, Erosion risk, SWAT model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14662741 Analyzing the Effect of Materials’ Selection on Energy Saving and Carbon Footprint: A Case Study Simulation of Concrete Structure Building
Authors: M. Kouhirostamkolaei, M. Kouhirostami, M. Sam, J. Woo, A. T. Asutosh, J. Li, C. Kibert
Abstract:
Construction is one of the most energy consumed activities in the urban environment that results in a significant amount of greenhouse gas emissions around the world. Thus, the impact of the construction industry on global warming is undeniable. Thus, reducing building energy consumption and mitigating carbon production can slow the rate of global warming. The purpose of this study is to determine the amount of energy consumption and carbon dioxide production during the operation phase and the impact of using new shells on energy saving and carbon footprint. Therefore, a residential building with a re-enforced concrete structure is selected in Babolsar, Iran. DesignBuilder software has been used for one year of building operation to calculate the amount of carbon dioxide production and energy consumption in the operation phase of the building. The primary results show the building use 61750 kWh of energy each year. Computer simulation analyzes the effect of changing building shells -using XPS polystyrene and new electrochromic windows- as well as changing the type of lighting on energy consumption reduction and subsequent carbon dioxide production. The results show that the amount of energy and carbon production during building operation has been reduced by approximately 70% by applying the proposed changes. The changes reduce CO2e to 11345 kg CO2/yr. The result of this study helps designers and engineers to consider material selection’s process as one of the most important stages of design for improving energy performance of buildings.
Keywords: Construction materials, green construction, energy simulation, carbon footprint, energy saving, concrete structure, DesignBuilder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9952740 Investigating the Effect of Refinancing on Financial Behavior of Energy Efficiency Projects
Authors: Zohreh Soltani, Seyedmohammadhossein Hosseinian
Abstract:
Reduction of energy consumption in built infrastructure, through the installation of energy-efficient technologies, is a major approach to achieving sustainability. In practice, the viability of energy efficiency projects strongly depends on the cost reimbursement and profitability. These projects are subject to failure if the actual cost savings do not reimburse the project cost promptly. In such cases, refinancing could be a solution to benefit from the long-term returns of the project, if implemented wisely. However, very little is still known about the effect of refinancing options on financial performance of energy efficiency projects. In order to fill this gap, the present study investigates the financial behavior of energy efficiency projects with focus on refinancing options, such as Leveraged Loans. A System Dynamics (SD) model is introduced, and the model application is presented using an actual case-study data. The case study results indicate that while high-interest start-ups make using Leveraged Loan inevitable, refinancing can rescue the project and bring about profitability. This paper also presents some managerial implications of refinancing energy efficiency projects based on the case-study analysis. Results of this study help to implement financially viable energy efficiency projects so that the community could benefit from their environmental advantages widely.Keywords: Energy efficiency projects, leveraged loan, refinancing, sustainability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12202739 Design and Operation of a Multicarrier Energy System Based On Multi Objective Optimization Approach
Authors: Azadeh Maroufmashat, Sourena Sattari Khavas, Halle Bakhteeyar
Abstract:
Multi-energy systems will enhance the system reliability and power quality. This paper presents an integrated approach for the design and operation of distributed energy resources (DER) systems, based on energy hub modeling. A multi-objective optimization model is developed by considering an integrated view of electricity and natural gas network to analyze the optimal design and operating condition of DER systems, by considering two conflicting objectives, namely, minimization of total cost and the minimization of environmental impact which is assessed in terms of CO2 emissions. The mathematical model considers energy demands of the site, local climate data, and utility tariff structure, as well as technical and financial characteristics of the candidate DER technologies. To provide energy demands, energy systems including photovoltaic, and co-generation systems, boiler, central power grid are considered. As an illustrative example, a hotel in Iran demonstrates potential applications of the proposed method. The results prove that increasing the satisfaction degree of environmental objective leads to increased total cost.
Keywords: Multi objective optimization, DER systems, Energy hub, Cost, CO2 emission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24672738 A Study of the Trade-off Energy Consumption-Performance-Schedulability for DVFS Multicore Systems
Authors: Jalil Boudjadar
Abstract:
Dynamic Voltage and Frequency Scaling (DVFS) multicore platforms are promising execution platforms that enable high computational performance, less energy consumption and flexibility in scheduling the system processes. However, the resulting interleaving and memory interference together with per-core frequency tuning make real-time guarantees hard to be delivered. Besides, energy consumption represents a strong constraint for the deployment of such systems on energy-limited settings. Identifying the system configurations that would achieve a high performance and consume less energy while guaranteeing the system schedulability is a complex task in the design of modern embedded systems. This work studies the trade-off between energy consumption, cores utilization and memory bottleneck and their impact on the schedulability of DVFS multicore time-critical systems with a hierarchy of shared memories. We build a model-based framework using Parametrized Timed Automata of UPPAAL to analyze the mutual impact of performance, energy consumption and schedulability of DVFS multicore systems, and demonstrate the trade-off on an actual case study.Keywords: Time-critical systems, multicore systems, schedulability analysis, performance, memory interference, energy consumption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4682737 Assessment of Energy Demand Considering Different Model Simulations in a Low Energy Demand House
Authors: M. Cañada-Soriano, C. Aparicio-Fernández, P. Sebastián Ferrer Gisbert, M. Val Field, J.-L. Vivancos-Bono
Abstract:
The lack of insulation along with the existence of air leakages constitute a meaningful impact on the energy performance of buildings. Both of them lead to increases in the energy demand through additional heating and/or cooling loads. Additionally, they cause thermal discomfort. In order to quantify these uncontrolled air currents, the Blower Door test can be used. It is a standardized procedure that determines the airtightness of a space by characterizing the rate of air leakages through the envelope surface. In this sense, the low-energy buildings complying with the Passive House design criteria are required to achieve high levels of airtightness. Due to the invisible nature of air leakages, additional tools are often considered to identify where the infiltrations take place such as the infrared thermography. The aim of this study is to assess the airtightness of a typical Mediterranean dwelling house, refurbished under the Passive House standard, using the Blower Door test. Moreover, the building energy performance modelling tools TRNSYS (TRaNsient System Simulation program) and TRNFlow (TRaNsient Flow) have been used to estimate the energy demand in different scenarios. In this sense, a sequential implementation of three different energy improvement measures (insulation thickness, glazing type and infiltrations) have been analyzed.
Keywords: Airtightness, blower door, TRNSYS, infrared thermography, energy demand.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2222736 Bioclimatic Design, Evaluation of Energy Behavior and Energy-Saving Interventions at the Theagenio Cancer Hospital
Authors: Emmanouel Koumoulas, Aikaterini Rokkou, Marios Moschakis
Abstract:
Theagenio" in Thessaloniki exists and works for three centuries now as a hospital. Since 1975, it has been operating as an Integrated Special Cancer Hospital and since 1985 it has been integrated into the National Health System. "Theagenio" Cancer Hospital is located at the central web of Thessaloniki residential complex and consists of two buildings, the "Symeonidio Research Center", which was completed in 1962 and the Nursing Ward, a project that was later completed in 1975. This paper examines the design of the Hospital Unit according to the requirements of the energy design of buildings. Initially, the energy characteristics of the Hospital are recorded, followed by a detailed presentation of the electromechanical installations. After the existing situation has been captured and with the help of the software TEE-KENAK, different scenarios for the energy upgrading of the buildings have been studied. Proposals for upgrading concern both the shell, e.g. installation of external thermal insulation, replacement of frames, addition of shading systems, etc. as well as electromechanical installations, e.g. use of ceiling fans, improvements in heating and cooling systems, interventions in lighting, etc. The simulation calculates the future energy status of the buildings and presents the economic benefits of the proposed interventions with reference to the environmental profits that arise.Keywords: Energy consumption in hospitals, energy saving interventions, energy upgrading, hospital facilities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 844