Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32295
Parametrization of Piezoelectric Vibration Energy Harvesters for Low Power Embedded Systems

Authors: Yannick Verbelen, Tim Dekegel, Ann Peeters, Klara Stinders, Niek Blondeel, Sam De Winne, An Braeken, Abdellah Touhafi


Matching an embedded electronic application with a cantilever vibration energy harvester remains a difficult endeavour due to the large number of factors influencing the output power. In the presented work, complementary balanced energy harvester parametrization is used as a methodology for simplification of harvester integration in electronic applications. This is achieved by a dual approach consisting of an adaptation of the general parametrization methodology in conjunction with a straight forward harvester benchmarking strategy. For this purpose, the design and implementation of a suitable user friendly cantilever energy harvester benchmarking platform is discussed. Its effectiveness is demonstrated by applying the methodology to a commercially available Mide V21BL vibration energy harvester, with excitation amplitude and frequency as variables.

Keywords: Energy harvesting, vibrations, piezoelectric transducers, embedded systems, harvester parametrization.

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1194


[1] Ahmad, T. J., Arsalan, M., Black, M. J. et al., Piezoelectric Based Flow Power Harvesting for Downhole Environment, SPE Middle East Intelligent Oil and Gas Conference and Exhibition, Society of Petroleum Engineers, pp. 1-8, doi:10.2118/176777-MS, 2015.
[2] Amrs, S. W., Townsend, C. P., Churchill, D. L., et al., Energy harvesting, wireless structural health monitoring system, U.S. Patent No. 7,719,416, filed 11 September 2006, published 18 May 2010.
[3] Ashraf, Q. M., Yusoff, M. I. M., Azman, A. A. et al., Energy monitoring prototype for Internet of Things: Preliminary results, in 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), pp. 1-5, doi:10.1109/WF-IoT.2015.7389157, 2015.
[4] Bandyopadhyay, S. and Chandrakasan, A. P., Platform Architecture for Solar, Thermal, and Vibration Energy Combining With MPPT and Single Inductor, in IEEE J. Solid-State Circuits, vol. 47, no. 9, pp. 2199-2215, ISSN 0018-9200, doi:10.1109/JSSC.2012.2197239, 2012.
[5] Barbehenn, G. H., True Grid Independence: Robust Energy Harvesting System for Wireless Sensors Uses Piezoelectric Energy Harvesting Power Supply and Li-Poly Batteries with Shunt Charger, in J. Analog Innovation, vol. 20, no. 3, 2010.
[6] Berger, A., H¨ormann, L. B., Leitner, C. et al., Sustainable energy harvesting for robust wireless sensor networks in industrial applications, in IEEE Sensors Applications Symposium (SAS) pp. 1-6, doi:10.1109/SAS.2015.7133585, 2015.
[7] Cahill, P., O’Keeffe, R., et al. Structural Health Monitoring of Reinforced Concrete Beam Using Piezoelectric Energy Harvesting System, 7th European Workshop on Structural Health Monitoring, pp. 189-196, hal-01020338, 2014.
[8] Challa, V. R., Prasad, M. G., Shi, Y. et al., A vibration energy harvesting device with bidirectional resonance frequency tunability, in Smart Materials and Structures, vol. 17, no. 1, pp. 1-10, doi:10.1088/0964-1726/17/01/015035, 2008.
[9] Chen, S., Wang, L., Jiang, et al., A study on reliability of chip scale packages in shock environments, in Proc. 14th Int. Conf. Electronic Packaging Technology (ICEPT), pp. 921-924, doi:10.1109/ICEPT.2013.6756611, 2013.
[10] Cho, K., Jung, C., Kim, J. et al., Modelnig and analysis of performance based on Bluetooth Low Energy, in 7th IEEE Latin-American Conf. Communications (LATINCOM), pp. 1-6, ISBN 978-1-4673-8450-6, doi:10.1109/LATINCOM.2015.7430115, 2015.
[11] Dekegel, T., Ontwikkeling van een testbed voor pi¨ezo-elektrische energy harvesters, Master thesis, unpublished, Vrije Universiteit Brussel, Brussels, Belgium, 2015.
[12] Deng, L., Wen, Z., et al., High Voltage Output MEMS Vibration Energy Harvester in Mode With PZT Thin Film, in J. Microelectromechanical Systems, vol. 23, no. 4, pp. 855-861, ISSN 1057-7157, doi:10.1109/JMEMS.2013.2296034, 2014.
[13] Erturk, A., HOffmann, J., Inman, D. J., A piezomagnetoelastic structure for broadband vibration energy harvesting, in Applied Physics Letters, vol. 94, no. 25, doi:10.1063/1.3159815, 2009.
[14] Galinina, O., Mikhaylov, K., Andreev, S. et al., Internet of Things, Smart Spaces, and Next Generation Networks and Systems: Wireless Sensor Network Based Smart Home System over BLE with Energy Harvesting Capability, Springer, vol. 8638, pp. 419-432, doi:10.1007/978-3-319-10353-2 37, 2014.
[15] Green, P. L., Papatheou, E. and Sims, N. D., Energy harvesting from human motion and bridge vibrations: An evaluation of current nonlinear energy harvesting solutions, in J. Intelligent Material Systems and Structures, vol. 24, no. 12, pp. 1494-1505, doi:10.1177/1045389X12473379, 2013.
[16] Grover, M., Pardeshi, S. K., Singh, N., et al., Bluetooth low energy for industrial automation, in Proc. 2nd Int. Conf. Electronics and Communication Systems (ICECS), pp. 512-215, ISBN 978-1-4799-7224-1, doi:10.1109/ECS.2015.7124960, 2015.
[17] Hadas, Z., Vetiska, V., Huzlik, R. et al., Model-based design and test of vibration energy harvester for aircraft application, in Microsystem Technologies, vol. 20, no. 4, pp. 831-843, ISSN 0946-7076, doi:10.1007/s00542-013-2062-y, 2014.
[18] He, Q., Mao, X., Chu, D., Output Performance Analysis on a Two-degrees-of-Freedom Bistable Piezoelectric Vibration Generator, Int. J. Online Engineering, vol. 11, no. 6, 2015.
[19] Huang, Q. and Chen, K., The Implementation of a Wireless Scale Based on Bluetooth 4.0 Low-energy, in Proc. 2015 Int. Industrial Informatics and Computer Engineering Conf. (IIICEC), Atlantis Press, 2015.
[20] Hull, M. D., Eng., C., Building Hi-Fi Speaker Systems, Philips, 1980.
[21] Jaafar, I. S. S. A. and Czarnecki, Z., Miniaturized low cost wireless data logger for vibration recording of physiological activities, in IEEE Sensors, pp. 1-4, ISSN 1930-0395, doi:ICSENS.2013.6688256, 2013.
[22] Jones, M. H. and Scott, J. B., The Energy Efficiency of 8-bit Low-power Microcontrollers, in Proc. 18th Electronics New Zealand Conf. 2011.
[23] Korla, S., Leon, R. A., Tansei, I. N. et al., Design and testing of an efficient and compact piezoelectric energy harvester, in J. Microelectronics, vol. 42, no. 2, pp. 265-270, doi:10.1016/j.mejo.2010.10.018, 2011.
[24] Krishna, B. J. and Vadivukkarasi, K., Energy Efficient Lightening System for an Indoor Environmnet using Wireless Sensor Network Based on IoT, in Int. J. Research and Scientific Innovation (IJRSI), vol. 3, no. 5, pp. 144-148, ISSN 2321-2705, 2016.
[25] Kulah, H. and Najafi, K., Energy Scavenging From Low-Frequency Vibrations by Using Frequency Up-Conversion for Wireless Sensor Applications, in IEEE Sensors J., vol. 8, no. 3, pp. 261-268, ISSN 1530-437X, doi:10.1109/JSEN.2008.917125, 2008.
[26] Leland, E. S., and Wright, P. K., Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload, in Smart Materials and Structures, vol. 15, no. 5, pp. 1413-1420, doi:10.1088/0964-1726/15/5/030, 2006.
[27] Liu, J.-Q., Fang, H.-B., Xu, Z.-Y. et al., A MEMS-based piezoelectric power generator array for vibration energy harvesting, in J. Microelectronics, vol. 39, no. 5, pp. 802-806, doi:10.1016/j.mejo.2007.12.017, 2008.
[28] Mackensen, E., Lai, M., Wendt, T. M., Bluetooth Low Energy (BLE) based wireless sensors, in IEEE Sensors, pp. 1-4, ISSN 1930-0395, ISBN 978-1-4577-1766-6, doi:10.1109/ICSENS.2012.6411303, 2012.
[29] Madgwick, S. O. H., Harrison, A. J. L., Sharkey, P. M., et al., Measuring motion with kinematically redundant accelerometer arrays: Theory, simulation and implementation, in Mechatronics, vol. 23, no. 5, pp. 518-529, doi:10.1016/j.mechatronics.2013.04.003, 2013.
[30] Miso, K., Hoegen, M., Dugundji, J. et al., Modeling and experimental verification of proof mass effects on vibration energy harvester performance, in Smart Materials and Structures, vol. 19, no. 4, doi:10.1088/0964-1726/19/4/045023, 2010.
[31] Nadee, C., Chamnongthai, K., Ultrasonic array sensors for monitoring of human fall detection, in Proc. 12th Int. Conf. Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), pp. 1-4, doi:10.1109/ECTICon.2015.7207097 2015.
[32] Naik, A. G., Kuwelkar, S. and Magdum, V., Evaluation of Classic Bluetooth Based On the Spectrums For Its Usability In Industrial Applications, Int. J. Advanced Research in Electronics and Communication Engineering (IJARECE), vol. 4, no. 3, 2015.
[33] Parker, J. S., Roberts, S. Vibration energy harvester for converting mechanical vibrational energy into electrical energy, U.S. Patent No. 8,680,694, 2014.
[34] Penella, M., Albesa, J., Gasulla, M., Powering wireless sensor nodes: primary batteries versus energy harvesting, in Proc. IEEE Instrumentation and Measurement Technology Conf. (I2MTC), pp. 1625-1630, ISBN 978-1-42443353-7, 2009.
[35] Ren, L., Chen, R., Xia, H. et al., Energy harvesting performance of a broadband electromagnetic vibration energy harvester for powering industrial wireless sensor networks, in Proc. SPIE 9799, Active and Passive Smart Structures and Integrated Systems, 97993P, doi:10.1117/12.2218736, 2016.
[36] Sharma, M., Agarwal, N., Reddy, S. R. N., Design and development of daughter board for USB-UART communication between Raspberry Pi and PC, in Proc. Int. Conf. Computing, Communication & Automation (ICCCA), pp. 944-948, ISBN 978-1-4799-8889-1, 10.1109/CCAA.2015.7148532, 2015.
[37] Shieh, P. J., Azana, N. T., Santos, T. E. A., et al., Methodology for choosing piezoelectric devices, in Proc. IEEE Brasil RFID, pp. 46-49, ISBN 978-1-4799-7045-2, doi:10.1109/BrasilRFID.2014.7128963, 2014.
[38] Singh, K., Awasthi, A. K., Quality, Reliability, Security and Robustness in Heterogenous Networks, 9th Int. Conf. QShine 2013: Revised Selected Papers, 1011 p., Springer, 2013.
[39] Sodano, H. A., Inman, D. J., Comparison of Piezoelectric Energy Harvesting Devices for Recharging Batteries, in J. Intelligent Material Systems and Structures, vol. 16, no. 10, pp 799-807, doi:10.1177/1045389X05056681, Los Alamos National Laboratory, 2005.
[40] Sodano, H. A., Park, G. and Inman, D. J., Estimation of Electric Charge Output for Piezoelectric Energy Harvesting, in Strain, vol. 40, pp. 49-58, doi:10.1111/j.1475-1305.2004.00120.x, 2004.
[41] ST Microelectronics, 10W Car Radio Audio Amplifier, ST Microelectronics, datasheet, 2013.
[42] Tang, X., Lin, T., Zuo, L, Design and optimization of a tubular linear electromagnetic vibration energy harvester, IEEE Transactions on Mechatronics, vol. 19, no. 2, pp. 615-622, doi:10.1109/TMECH.2013.2249666, 2014.
[43] Verbelen, Y., Touhafi, A., Resource Considerations for Durable Large Scale Renewable Energy Harvesting Applications, in Proc. 2nd Int. Conf. Renewable Energy Research and Applications (ICRERA), pp. 401-406, doi:10.1109/ICRERA.2013.6749788, 2013.
[44] Verbelen, Y., Braeken, A., Touhafi, A., Parametrization of Ambient Energy Harvesters for Complementary Balanced Electronic Applications, in Proc. SPIE 8763, Smart Sensors, Actuators, and MEMS VI, 87631U, doi:10.1117/12.2018490, 2013.
[45] Verbelen, Y., Braeken, A., Touhafi, A., Towards a complementary balanced energy harvesting solution for low power embedded systems, in Microsystem Technologies, vol. 20, no. 4, pp. 1007-1021, doi:10.1007/s00542-014-2103-1, 2014.
[46] Volcko, T., Moucha, V., Kan, V., A Wireless Communication Interfaces for Small Unmanned Systems, in Proc. Int. Scientific Conf. Modern Safety Technologies in Transportation, pp. 200-205, ISSN 1338-5232, 2015.
[47] Whitaker, M., Energy Harvester Produces Power from Local Environment, Eliminating Batteries in Wireless Sensors, in J. Analog Innovation, vol. 20, no. 1, 2010.
[48] Yang, B., Lee, C., Xiang, W. et al., Electromagnetic energy ahrvesting from vibrations of multiple frequencies, in J. Micromechanics and Microengineering, vol. 19, no. 3, doi:10.1088/0960-1317/19/3/035001, 2009.
[49] Yang, W., Chen, J., Zhu, G. et al., Harvesting Energy from the Natural Vibration of Human Walking, in ACS Nano, vol. 7, no. 12, pp. 11317-11324, doi:10.1021/nn405175z, 2013.
[50] Zuo, L. and Tang, X., Large-scale vibration energy harvesting, in J. Intelligent Material Systems and Structures, vol. 24, no. 11, pp. 1405-1430, doi:10.1177/1045389X13486707, 2013.