Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31903
Simulation of the Temperature and Heat Gain by Solar Parabolic Trough Collector in Algeria

Authors: M. Ouagued, A. Khellaf


The objectif of the present work is to determinate the potential of the solar parabolic trough collector (PTC) for use in the design of a solar thermal power plant in Algeria. The study is based on a mathematical modeling of the PTC. Heat balance has been established respectively on the heat transfer fluid (HTF), the absorber tube and the glass envelop using the principle of energy conservation at each surface of the HCE cross-sectionn. The modified Euler method is used to solve the obtained differential equations. At first the results for typical days of two seasons the thermal behavior of the HTF, the absorber and the envelope are obtained. Then to determine the thermal performances of the heat transfer fluid, different oils are considered and their temperature and heat gain evolutions compared.

Keywords: Direct solar irradiance, solar radiation in Algeria, solar parabolic trough collector, heat balance, thermal oil performance

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3511


[1] A. Gama, M. Haddadi, A. Malek, " Etude et réalisation d-un concentrateur cylindro parabolique avec poursuite solaire aveugle", Revue des Energies Renouvelables Vol. 11 N┬░3 (2008) 437 - 451.
[2] F. Yettou,A. Malek, M. Haddadi, A. Gama, " Etude comparative de deux modèles de calcul du rayonnement solaire par ciel clair en Algérie", Revue des Energies Renouvelables Vol. 12 N┬░2 (2009) 331 - 346.
[3] S. A. Kalogirou, "Solar thermal collectors and applications", Prog. Energy Combust. Sci. 30 (3) (2004) 231-295.
[4] H. Price, "Guidelines for Reporting Parabolic Trough Solar Electric System Performance". NREL/CP-550-22729. Golden, CO: National Renewable Energy Laboratory (1997).
[5] J. A. Duffie, W. A. Beckman, "Solar engineering of thermal processes", 2nd ed. Madison: John Wiley &Sons, Inc., (1991).
[6] O. García-Valladares, N. Velázquez, "Numerical simulation of parabolic trough solar collector: Improvement using counter flow concentric circular heat exchangers", International Journal of Heat and Mass Transfer, (2009) 597-609.
[7] N. ESKIN, "Transient performance analysis of cylindrical parabolic concentrating collectors and comparison with experimental results ", Energy Conver, Mgnt, Vol 40, (1999) 175-191.
[8] I. Sefa, M. Demirtas, I. Olak, "Application of one-axis sun tracking system", Energy Conversion and Management 50, (2009) 2709-2718.
[9] R. Forristall, "Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver", NREL, USA (2003).
[10] R. Siegel, J. Howell, "Thermal Radiation Heat Transfer", Fourth Edition. New York, NY: Taylor & Francis (2002).
[11] F. Incropera, D. DeWitt, "Fundamentals of Heat and Mass Transfer", sixth Edition (1990).
[12] V. Gnielinski, "New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow". International Chemical Engineering (16:2) (April 1976) pp. 359-363.
[13] KJC Operating Company. " Final Report on HCE Heat Transfer Analysis Code". SANDIA Contract No. AB-0227. Albuquerque, NM: Sandia National Laboratories (December 1993).
[14] S. W. Churchill, and H. H. S. Chu, "Correlating equations for laminar and turbulent free convection from a horizontal cylinder", Int. J. Heat Mass Transfer 18 (9) (1975) 1049-1053.
[15] V. E. Dudley, J. G. Kolb, A. R. Mahoney, T. R. Mancini, C. W. Matthews, Sloan and D. Kearney, " Test results: SEGS LS-2 solar collector", Report of Sandia National Laboratories (SANDIA-94-1884) (1994).
[16] Quoilin Sylvain., "Les Centrales Solaires ├á Concentration", Faculté des sciences appliquées, Université de Liège (2007).
[17] M. Pucara, Despicb., "The effect of diffuse/indirect light on the energy gain of solar thermal collectors", Renewable Energy 30, (2005) 1749- 1758.