Search results for: Wire Electric Discharge Machining (WEDM)
863 Analysis of the Theoretical Values of Several Characteristic Parameters of Surface Topography in Rotational Turning
Authors: J. Kundrák, I. Sztankovics, K. Gyáni
Abstract:
In addition to the increase of the material removal rate or surface rate, or the improvement of the surface quality, which are the main aims of the development of manufacturing technology, a growing number of other manufacturing requirements have appeared in the machining of workpiece surfaces. Among these it is becoming increasingly dominant to generate a surface topography in finishing operations which meets more closely the needs of operational requirements.
These include the examination of the surface periodicity and/or ensuring that the twist-structure values are within the limits (or even preventing its occurrence) in specified cases such as on the sealing surfaces of rotating shafts or on the inside working surfaces of needle roller bearings. In the view of the measurement the twist has different parameters from surface roughness, which must be determined for the machining procedures. Therefore in this paper the alteration of the theoretical values of the parameters determining twist structure are studied as a function of the kinematic properties.
Keywords: Kinematic parameters, rotational turning, surface topography, twist structure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1792862 Development of Orbital TIG Welding Robot System for the Pipe
Authors: Dongho Kim, Sung Choi, Kyowoong Pee, Youngsik Cho, Seungwoo Jeong, Soo-Ho Kim
Abstract:
This study is about the orbital TIG welding robot system which travels on the guide rail installed on the pipe, and welds and tracks the pipe seam using the LVS (Laser Vision Sensor) joint profile data. The orbital welding robot system consists of the robot, welder, controller, and LVS. Moreover we can define the relationship between welding travel speed and wire feed speed, and we can make the linear equation using the maximum and minimum amount of weld metal. Using the linear equation we can determine the welding travel speed and the wire feed speed accurately corresponding to the area of weld captured by LVS. We applied this orbital TIG welding robot system to the stainless steel or duplex pipe on DSME (Daewoo Shipbuilding and Marine Engineering Co. Ltd.,) shipyard and the result of radiographic test is almost perfect. (Defect rate: 0.033%).
Keywords: Adaptive welding, automatic welding, Pipe welding, Orbital welding, Laser vision sensor, LVS, welding D/B.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3870861 Finite Element Modeling to Predict the Effect of Nose Radius on the Equivalent Strain (PEEQ) for Titanium Alloy (Ti-6Al-4V)
Authors: Moaz H. Ali, M. N. M. Ansari, Pang Jing Shen
Abstract:
In present work, prediction the effect of nose radius, rz (mm) on the equivalent strain (PEEQ) and surface finish during the machining of titanium alloy (Ti-6Al-4V) through orthogonal cutting process. The results were performed at several of the nose radiuses, rz (mm) while the cutting speed, vc (m/min), feed rate, f (mm/tooth) and depth of cut, d (mm) were remained constant. The equivalent plastic strain (PEEQ) was estimated by using finite element modeling (FEM) and applied through ABAQUS/EXPLICIT software. The simulation results led to conclude that the equivalent plastic strain (PEEQ) was increased and surface roughness (Ra) decreased when increasing nose radius, rz (mm) during the machining of titanium alloy (Ti–6Al–4V) in dry cutting conditions.
Keywords: Finite element modeling (FEM), nose radius, plastic strain (PEEQ), titanium alloy (Ti-6Al-4V).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2487860 On-Line Geometrical Identification of Reconfigurable Machine Tool using Virtual Machining
Authors: Alexandru Epureanu, Virgil Teodor
Abstract:
One of the main research directions in CAD/CAM machining area is the reducing of machining time. The feedrate scheduling is one of the advanced techniques that allows keeping constant the uncut chip area and as sequel to keep constant the main cutting force. They are two main ways for feedrate optimization. The first consists in the cutting force monitoring, which presumes to use complex equipment for the force measurement and after this, to set the feedrate regarding the cutting force variation. The second way is to optimize the feedrate by keeping constant the material removal rate regarding the cutting conditions. In this paper there is proposed a new approach using an extended database that replaces the system model. The feedrate scheduling is determined based on the identification of the reconfigurable machine tool, and the feed value determination regarding the uncut chip section area, the contact length between tool and blank and also regarding the geometrical roughness. The first stage consists in the blank and tool monitoring for the determination of actual profiles. The next stage is the determination of programmed tool path that allows obtaining the piece target profile. The graphic representation environment models the tool and blank regions and, after this, the tool model is positioned regarding the blank model according to the programmed tool path. For each of these positions the geometrical roughness value, the uncut chip area and the contact length between tool and blank are calculated. Each of these parameters are compared with the admissible values and according to the result the feed value is established. We can consider that this approach has the following advantages: in case of complex cutting processes the prediction of cutting force is possible; there is considered the real cutting profile which has deviations from the theoretical profile; the blank-tool contact length limitation is possible; it is possible to correct the programmed tool path so that the target profile can be obtained. Applying this method, there are obtained data sets which allow the feedrate scheduling so that the uncut chip area is constant and, as a result, the cutting force is constant, which allows to use more efficiently the machine tool and to obtain the reduction of machining time.Keywords: Reconfigurable machine tool, system identification, uncut chip area, cutting conditions scheduling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1450859 Design of 3-Step Skew BLAC Motor for Better Performance in Electric Power Steering System
Authors: Design of 3-Step Skew BLAC Motor for Better Performance in Electric Power Steering System
Abstract:
In Electric Power Steering (EPS), spoke type Brushless AC (BLAC) motors offer distinct advantages over other electric motor types in terms torque smoothness, reliability and efficiency. This paper deals with the shape optimization of spoke type BLAC motor, in order to reduce cogging torque. This paper examines 3 steps skewing rotor angle, optimizing rotor core edge and rotor overlap length for reducing cogging torque in spoke type BLAC motor. The methods were applied to existing machine designs and their performance was calculated using finite- element analysis (FEA). Prototypes of the machine designs were constructed and experimental results obtained. It is shown that the FEA predicted the cogging torque to be nearly reduce using those methods.Keywords: EPS, 3-Step skewing, spoke type BLAC, cogging torque, FEA, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2939858 The Potential of 48V HEV in Real Driving
Authors: Mark Schudeleit, Christian Sieg, Ferit Küçükay
Abstract:
This paper describes how to dimension the electric components of a 48V hybrid system considering real customer use. Furthermore, it provides information about savings in energy and CO2 emissions by a customer-tailored 48V hybrid. Based on measured customer profiles, the electric units such as the electric motor and the energy storage are dimensioned. Furthermore, the CO2 reduction potential in real customer use is determined compared to conventional vehicles. Finally, investigations are carried out to specify the topology design and preliminary considerations in order to hybridize a conventional vehicle with a 48V hybrid system. The emission model results from an empiric approach also taking into account the effects of engine dynamics on emissions. We analyzed transient engine emissions during representative customer driving profiles and created emission meta models. The investigation showed a significant difference in emissions when simulating realistic customer driving profiles using the created verified meta models compared to static approaches which are commonly used for vehicle simulation.Keywords: Customer use, dimensioning, hybrid electric vehicles, vehicle simulation, 48V hybrid system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3560857 Ethylene Epoxidation in a Low-Temperature Parallel Plate Dielectric Barrier Discharge System: Effects of Ethylene Feed Position and O2/C2H4 Feed Molar Ratio
Authors: Bunphot Paosombat, Thitiporn Suttikul, Sumaeth Chavadej
Abstract:
The effects of ethylene (C2H4) feed position and O2/C2H4 feed molar ratio on ethylene epoxidation in a parallel dielectric barrier discharge (DBD) were studied. The results showed that the ethylene feed position fraction of 0.5 and the feed molar ratio of O2/C2H4 of 0.2:1 gave the highest EO selectivity of 34.3% and the highest EO yield of 5.28% with low power consumptions of 2.11×10-16 Ws/molecule of ethylene converted and 6.34×10-16 Ws/molecule of EO produced when the DBD system was operated under the best conditions: an applied voltage of 19 kV, an input frequency of 500 Hz and a total feed flow rate of 50 cm3/min. The separate ethylene feed system provided much higher epoxidation activity as compared to the mixed feed system which gave EO selectivity of 15.5%, EO yield of 2.1% and the power consumption of EO produced of 7.7×10-16 Ws/molecule.Keywords: Dielectric Barrier Discharge, C2H4 Feed Position, Epoxidation, Ethylene Oxide
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1703856 An Investigation into Turbine Blade Tip Leakage Flows at High Speeds
Authors: Z. Saleh, E. J. Avital, T. Korakianitis
Abstract:
The effect of the blade tip geometry of a high pressure gas turbine is studied experimentally and computationally for high speed leakage flows. For this purpose two simplified models are constructed, one models a flat tip of the blade and the second models a cavity tip of the blade. Experimental results are obtained from a transonic wind tunnel to show the static pressure distribution along the tip wall and provide flow visualization. RANS computations were carried to provide further insight into the mean flow behavior and to calculate the discharge coefficient which is a measure of the flow leaking over the tip. It is shown that in both geometries of tip the flow separates over the tip to form a separation bubble. The bubble is higher for the cavity tip while a complete shock wave system of oblique waves ending with a normal wave can be seen for the flat tip. The discharge coefficient for the flat tip shows less dependence on the pressure ratio over the blade tip than the cavity tip. However, the discharge coefficient for the cavity tip is lower than that of the flat tip, showing a better ability to reduce the leakage flow and thus increase the turbine efficiency.Keywords: Gas turbine, blade tip leakage flow, transonic flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2340855 Flow Discharge Determination in Straight Compound Channels Using ANNs
Authors: A. Zahiri, A. A. Dehghani
Abstract:
Although many researchers have studied the flow hydraulics in compound channels, there are still many complicated problems in determination of their flow rating curves. Many different methods have been presented for these channels but extending them for all types of compound channels with different geometrical and hydraulic conditions is certainly difficult. In this study, by aid of nearly 400 laboratory and field data sets of geometry and flow rating curves from 30 different straight compound sections and using artificial neural networks (ANNs), flow discharge in compound channels was estimated. 13 dimensionless input variables including relative depth, relative roughness, relative width, aspect ratio, bed slope, main channel side slopes, flood plains side slopes and berm inclination and one output variable (flow discharge), have been used in ANNs. Comparison of ANNs model and traditional method (divided channel method-DCM) shows high accuracy of ANNs model results. The results of Sensitivity analysis showed that the relative depth with 47.6 percent contribution, is the most effective input parameter for flow discharge prediction. Relative width and relative roughness have 19.3 and 12.2 percent of importance, respectively. On the other hand, shape parameter, main channel and flood plains side slopes with 2.1, 3.8 and 3.8 percent of contribution, have the least importance.Keywords: ANN model, compound channels, divided channel method (DCM), flow rating curve
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2559854 An Analysis of Blackouts for Electric Power Transmission Systems
Authors: Karamitsos Ioannis, Orfanidis Konstantinos
Abstract:
In this paper an analysis of blackouts in electric power transmission systems is implemented using a model and studied in simple networks with a regular topology. The proposed model describes load demand and network improvements evolving on a slow timescale as well as the fast dynamics of cascading overloads and outages.Keywords: Blackout, Generator, Load, Power Load.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1472853 Quantitative Analysis of Nutrient Inflow from River and Groundwater to Imazu Bay in Fukuoka, Japan
Authors: Keisuke Konishi, Yoshinari Hiroshiro, Kento Terashima, Atsushi Tsutsumi
Abstract:
Imazu Bay plays an important role for endangered species such as horseshoe crabs and black-faced spoonbills that stay in the bay for spawning or the passing of winter. However, this bay is semi-enclosed with slow water exchange, which could lead to eutrophication under the condition of excess nutrient inflow to the bay. Therefore, quantification of nutrient inflow is of great importance. Generally, analysis of nutrient inflow to the bays takes into consideration nutrient inflow from only the river, but that from groundwater should not be ignored for more accurate results. The main objective of this study is to estimate the amounts of nutrient inflow from river and groundwater to Imazu Bay by analyzing water budget in Zuibaiji River Basin and loads of T-N, T-P, NO3-N and NH4-N. The water budget computation in the basin is performed using groundwater recharge model and quasi three-dimensional two-phase groundwater flow model, and the multiplication of the measured amount of nutrient inflow with the computed discharge gives the total amount of nutrient inflow to the bay. In addition, in order to evaluate nutrient inflow to the bay, the result is compared with nutrient inflow from geologically similar river basins. The result shows that the discharge is 3.50×107 m3/year from the river and 1.04×107 m3/year from groundwater. The submarine groundwater discharge accounts for approximately 23 % of the total discharge, which is large compared to the other river basins. It is also revealed that the total nutrient inflow is not particularly large. The sum of NO3-N and NH4-N loadings from groundwater is less than 10 % of that from the river because of denitrification in groundwater. The Shin Seibu Sewage Treatment Plant located below the observation points discharges treated water of 15,400 m3/day and plans to increase it. However, the loads of T-N and T-P from the treatment plant are 3.9 mg/L and 0.19 mg/L, so that it does not contribute a lot to eutrophication.Keywords: Eutrophication, groundwater recharge model, nutrient inflow, quasi three-dimensional two-phase groundwater flow model, Submarine groundwater discharge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1188852 Design and Development of Real-Time Optimal Energy Management System for Hybrid Electric Vehicles
Authors: Masood Roohi, Amir Taghavipour
Abstract:
This paper describes a strategy to develop an energy management system (EMS) for a charge-sustaining power-split hybrid electric vehicle. This kind of hybrid electric vehicles (HEVs) benefit from the advantages of both parallel and series architecture. However, it gets relatively more complicated to manage power flow between the battery and the engine optimally. The applied strategy in this paper is based on nonlinear model predictive control approach. First of all, an appropriate control-oriented model which was accurate enough and simple was derived. Towards utilization of this controller in real-time, the problem was solved off-line for a vast area of reference signals and initial conditions and stored the computed manipulated variables inside look-up tables. Look-up tables take a little amount of memory. Also, the computational load dramatically decreased, because to find required manipulated variables the controller just needed a simple interpolation between tables.Keywords: Hybrid electric vehicles, energy management system, nonlinear model predictive control, real-time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1389851 Understanding Charge Dynamics in Elastomers Adopting Pulsed Electro Acoustic (PEA) Technique
Authors: R. Sarathi, M. G. Danikas, Y. Chen, T. Tanaka
Abstract:
In the present work, Pulsed Electro Acoustic (PEA) technique was adopted to understand the space charge dynamics in elastomeric material. It is observed that the polarity of the applied DC voltage voltage and its magnitude alters the space charge dynamics in insulation structure. It is also noticed that any addition of compound to the base material/processing technique have characteristic variation in the space charge injection process. It could be concluded based on the present work that the plasticizer could inject heterocharges into the insulation medium. Also it is realized that space charge magnitude is less with the addition of plasticizer. In the PEA studies, it is observed that local electric field in the insulating material can be much more than applied electric field due to space charge formation. One of the important conclusions arrived at based on PEA technique is that one could understand the safe operating electric field of an insulation material and the charge trap sites.Keywords: Pulsed electro acoustic technique, space charge, DCvoltage, elastomers, Electric field, high voltage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1447850 Effects of Electric Potential on Thermo-Mechanical Behavior of Functionally Graded Piezoelectric Hollow Cylinder under Non-Axisymmetric Loads
Authors: Amir Atrian, Javad Jafari Fesharaki, Gh. Hossein Majzoobi, Mahsa Sheidaee
Abstract:
The analytical solution of functionally graded piezoelectric hollow cylinder which is under radial electric potential and non-axisymmetric thermo-mechanical loads, are presented in this paper. Using complex Fourier series and estimation of power law for variations of material characterizations through the thickness, the electro thermo mechanical behavior of the FGPM cylinder is obtained. The stress and displacement distributions and the effect of electric potential field on the cylinder behavior are also presented and some applicable results are offered at the end of the paper.Keywords: Analytical, FGM, Fourier series, Non-axisymmetric, Piezoelectric, Thermo-elasticity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841849 Prediction of the Dynamic Characteristics of a Milling Machine Using the Integrated Model of Machine Frame and Spindle Unit
Authors: Jui P. Hung, Yuan L. Lai, Tzuo L. Luo, Hsi H. Hsiao
Abstract:
The machining performance is determined by the frequency characteristics of the machine-tool structure and the dynamics of the cutting process. Therefore, the prediction of dynamic vibration behavior of spindle tool system is of great importance for the design of a machine tool capable of high-precision and high-speed machining. The aim of this study is to develop a finite element model to predict the dynamic characteristics of milling machine tool and hence evaluate the influence of the preload of the spindle bearings. To this purpose, a three dimensional spindle bearing model of a high speed engraving spindle tool was created. In this model, the rolling interfaces with contact stiffness defined by Harris model were used to simulate the spindle bearing components. Then a full finite element model of a vertical milling machine was established by coupling the spindle tool unit with the machine frame structure. Using this model, the vibration mode that had a dominant influence on the dynamic stiffness was determined. The results of the finite element simulations reveal that spindle bearing with different preloads greatly affect the dynamic behavior of the spindle tool unit and hence the dynamic responses of the vertical column milling system. These results were validated by performing vibration on the individual spindle tool unit and the milling machine prototype, respectively. We conclude that preload of the spindle bearings is an important component affecting the dynamic characteristics and machining performance of the entire vertical column structure of the milling machine.Keywords: Dynamic compliance, Milling machine, Spindle unit, Bearing preload.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3654848 Experimental Investigation of Hull Form for Electric Driven Ferry
Authors: Vasilij Djackov, Tomas Zapnickas, Evgenii Iamshchikov, Lukas Norkevicius, Rima Mickeviciene, Larisa Vasiljeva
Abstract:
In this paper, the resistance and pitching values of the test of an electric ferry are presented. The research was carried out in the open flow channel of Klaipėda University with a multi-axis dynamometer. The received model resistance values were recalculated to the real vessel and the preliminary chosen propulsion unit power was compared. After analyzing the results of the pitching of the model, it was concluded that the shape of the hull needs to be further improved, taking into account the possible uneven weight distribution at the ends of the ferry. Further investigation of the hull of the electric ferry is recommended, including experiments with various water depths and activation of propulsion units.
Keywords: Electrical ferry, model tests, open flow channel, pitching, resistance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 210847 Optimum Tuning Capacitors for Wireless Charging of Electric Vehicles Considering Variation in Coil Distances
Authors: Muhammad Abdullah Arafat, Nahrin Nowrose
Abstract:
Wireless charging of electric vehicles is becoming more and more attractive as large amount of power can now be transferred to a reasonable distance using magnetic resonance coupling method. However, proper tuning of the compensation network is required to achieve maximum power transmission. Due to the variation of coil distance from the nominal value as a result of change in tire condition, change in weight or uneven road condition, the tuning of the compensation network has become challenging. In this paper, a tuning method has been described to determine the optimum values of the compensation network in order to maximize the average output power. The simulation results show that 5.2% increase in average output power is obtained for 10% variation in coupling coefficient using the optimum values without the need of additional space and electro-mechanical components. The proposed method is applicable to both static and dynamic charging of electric vehicles.
Keywords: Coupling coefficient, electric vehicles, magnetic resonance coupling, tuning capacitor, wireless power transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 251846 On using PEMFC for Electrical Power Generation on More Electric Aircraft
Authors: Jenica Ileana Corcau, Liviu Dinca
Abstract:
The electrical power systems of aircrafts have made serious progress in recent years because the aircrafts depend more and more on the electricity. There is a trend in the aircraft industry to replace hydraulic and pneumatic systems with electrical systems, achieving more comfort and monitoring features and enlarging the energetic efficiency. Thus, was born the concept More Electric Aircraft. In this paper is analyzed the integration of a fuel cell into the existing electrical generation and distribution systems of an aircraft. The dynamic characteristics of fuel cell systems necessitate an adaptation of the electrical power system. The architecture studied in this paper consists of a 50kW fuel cell, a dc to dc converter and several loads. The dc to dc converter is used to step down the fuel cell voltage from about 625Vdc to 28Vdc.Keywords: Electrical power system, More Electric Aircraft, Fuel Cell, dc to dc converter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2181845 Comparison between Solar Simulation and Infrared Technique for Thermal Balance Test
Authors: Tao Tao, Wang Jing, Cao Zhisong, Liu Yi, Qie Dianfu
Abstract:
The precision of heat flux simulation influences the temperature field and test aberration for TB test and also reflects the test level for spacecraft development. This paper describes TB tests for a small satellite using solar simulator, electric heaters, calrod heaters to evaluate the difference of the three methods. Under the same boundary condition, calrod heaters cases were about 6oC higher than solar simulator cases and electric heaters cases for non-external-heat-flux cases (extreme low temperature cases). While calrod heaters cases and electric heaters cases were 5~7oC and 2~3oC lower than solar simulator cases respectively for high temperature cases. The results show that the solar simulator is better than calrod heaters for its better collimation, non-homogeneity and stability.Keywords: solar simulation, infrared simulation, TB test, TMM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2758844 Determination of the Characteristics for Ferroresonance Phenomenon in Electric Power Systems
Authors: Sezen Yildirim, Tahir Çetin Akinci, Serhat Seker, Nazmi Ekren
Abstract:
Ferroresonance is an electrical phenomenon in nonlinear character, which frequently occurs in power system due to transmission line faults and single or more-phase switching on the lines as well as usage of the saturable transformers. In this study, the ferroresonance phenomena are investigated under the modeling of the West Anatolian Electric Power Network of 380 kV in Turkey. The ferroresonance event is observed as a result of removing the loads at the end of the lines. In this sense, two different cases are considered. At first, the switching is applied at 2nd second and the ferroresonance affects are observed between 2nd and 4th seconds in the voltage variations of the phase-R. Hence the ferroresonance and nonferroresonance parts of the overall data are compared with each others using the Fourier transform techniques to show the ferroresonance affects.Keywords: Ferroresonance, West Anatolian Electric Power System, Power System Modeling, Switching, Spectral Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2691843 Modeling Electric Field Distribution on Insulator under Electron Bombardment in Vacuum
Authors: A.G.E. Sutjipto, Jufriadi, R. Muhida, Afzeri, E.Y. Adesta
Abstract:
Charging and discharging phenomenon on the surface of materials can be found in plasma display panel, spacecraft charging, high voltage insulator, etc. This report gives a simple explanation on this phenomenon. A scanning electron microscope was used not only as a tool to produce energetic electron beam to charge an insulator without metallic coating and to produce a surface discharging (surface breakdown/flashover) but also to observe the visible charging and discharging on the sample surface. A model of electric field distribution on the surface was developed in order to explain charging and discharging phenomena. Since charging and discharging process involves incubation time, therefore this process can be used to evaluate the insulation property of materials under electron bombardment.Keywords: Flashover, SEM, Electron Bombardment, Electric Field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1538842 Electric Field and Potential Distributions along Surface of Silicone Rubber Polymer Insulators Using Finite Element Method
Authors: B. Marungsri, W. Onchantuek, A. Oonsivilai
Abstract:
This paper presents the simulation the results of electric field and potential distributions along surface of silicone rubber polymer insulators. Near the same leakage distance subjected to 15 kV in 50 cycle salt fog ageing test, alternate sheds silicone rubber polymer insulator showed better contamination performance than straight sheds silicone rubber polymer insulator. Severe surface ageing was observed on the straight sheds insulator. The objective of this work is to elucidate that electric field distribution along straight sheds insulator higher than alternate shed insulator in salt fog ageing test. Finite element method (FEM) is adopted for this work. The simulation results confirmed the experimental data, as well.Keywords: Electric field distribution, potential distribution, silicone rubber polymer insulator, finite element method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2111841 Design and Control Algorithms for Power Electronic Converters for EV Applications
Authors: Ilya Kavalchuk, Mehdi Seyedmahmoudian, Ben Horan, Aman Than Oo, Alex Stojcevski
Abstract:
The power electronic components within Electric Vehicles (EV) need to operate in several important modes. Some modes directly influence safety, while others influence vehicle performance. Given the variety of functions and operational modes required of the power electronics, it needs to meet efficiency requirements to minimize power losses. Another challenge in the control and construction of such systems is the ability to support bidirectional power flow. This paper considers the construction, operation, and feasibility of available converters for electric vehicles with feasible configurations of electrical buses and loads. This paper describes logic and control signals for the converters for different operations conditions based on the efficiency and energy usage bases.Keywords: Electric Vehicles, Electrical Machines Control, Power Electronics, Powerflow Regulations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2505840 Design of a Permanent Magnet Synchronous Machine for the Hybrid Electric Vehicle
Authors: Arash Hassanpour Isfahani, Siavash Sadeghi
Abstract:
Permanent magnet synchronous machines are known as a good candidate for hybrid electric vehicles due to their unique merits. However they have two major drawbacks i.e. high cost and small speed range. In this paper an optimal design of a permanent magnet machine is presented. A reduction of permanent magnet material for a constant torque and an extension in speed and torque ranges are chosen as the optimization aims. For this purpose the analytical model of the permanent magnet synchronous machine is derived and the appropriate design algorithm is devised. The genetic algorithm is then employed to optimize some machine specifications. Finally the finite element method is used to validate the designed machine.Keywords: Design, Finite Element, Hybrid electric vehicle, Optimization, Permanent magnet synchronous machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4117839 Online Electric Current Based Diagnosis of Stator Faults on Squirrel Cage Induction Motors
Authors: Alejandro Paz Parra, Jose Luis Oslinger Gutierrez, Javier Olaya Ochoa
Abstract:
In the present paper, five electric current based methods to analyze electric faults on the stator of induction motors (IM) are used and compared. The analysis tries to extend the application of the multiple reference frames diagnosis technique. An eccentricity indicator is presented to improve the application of the Park’s Vector Approach technique. Most of the fault indicators are validated and some others revised, agree with the technical literatures and published results. A tri-phase 3hp squirrel cage IM, especially modified to establish different fault levels, is used for validation purposes.
Keywords: Motor fault diagnosis, induction motor, MCSA, ESA, Extended Park´s vector approach, multiparameter analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1689838 Exploring the Challenging Issues with Synchrophasor Technology Deployments in Electric Power Grids
Authors: Emmanuel U. Oleka, Anil Khanal, Ali R. Osareh, Gary L. Lebby
Abstract:
Synchrophasor technology is fast being deployed in electric power grids all over the world and is fast changing the way the grids are managed. This trend is to continue until the entire power grids are fully connected so they can be monitored and controlled in real-time. Much achievement has been made in the synchrophasor technology development and deployment, and there are still much more to be achieved. For instance, real-time power grid control and protection potentials of synchrophasor are yet to be explored. It is of necessity that researchers keep in view the various challenges that still need to be overcome in expanding the frontiers of synchrophasor technology. This paper outlines the major challenges that should be dealt with in order to achieve the goal of total power grid visualization, monitoring, and control using synchrophasor technology.Keywords: Electric power grid, Grid Visualization, Phasor Measurement Unit, Synchrophasor Technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1911837 ED Machining of Particulate Reinforced MMC’s
Authors: Sarabjeet Singh Sidhu, Ajay Batish, Sanjeev Kumar
Abstract:
This paper reports the optimal process conditions for machining of three different types of MMC’s 65vol%SiC/A356.2; 10vol%SiC-5vol%quartz/Al and 30vol%SiC/A359 using PMEDM process. MRR, TWR, SR and surface integrity were evaluated after each trial and contributing process parameters were identified. The four responses were then collectively optimized using TOPSIS and optimal process conditions were identified for each type of MMC. The density of reinforced particles shields the matrix material from spark energy hence the high MRR and SR was observed with lowest reinforced particle. TWR was highest with Cu-Gr electrode due to disintegration of the weakly bonded particles in the composite electrode. Each workpiece was examined for surface integrity and ranked as per severity of surface defects observed and their rankings were used for arriving at the most optimal process settings for each workpiece.
Keywords: Metal matrix composites (MMCs), Metal removal rate (MRR), Surface roughness (SR), Surface integrity (SI), Tool wear rate (TWR), Technique for order preference by similarity to ideal solution (TOPSIS).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2878836 Effect of Rotating Electrode
Authors: S. Gnapowski, H. Akiyama, S. Hamid R. Hosseini, C. Yamabe
Abstract:
A gold coated copper rotating electrode was used to eliminate surface oxidation effect. This study examined the effect of electrode rotation on the ozone generation process and showed that an ozonizer with an electrode rotating system might be a possible way to increase ozone-synthesis efficiency. Two new phenomena appeared during experiments with the rotating electrode. First was that ozone concentration increased to about two times higher than that of the case with no rotation. Second, input power and discharge area were found to increase with the rotation speed. Both ozone concentration and ozone production efficiency improved in the case of rotating electrode compared to the case with a non-rotating electrode. One possible reason for this was the increase in discharge length of micro-discharges during electrode rotation. The rotating electrode decreased onset voltage, while reactor capacitance increased with rotation. Use of a rotating-type electrode allowed earlier observation of the ozone zero phenomena compared with a non-rotating electrode because, during rotation, the entire electrode surface was functional, allowing nitrogen on the electrode surface to be evenly consumed. Nitrogen demand increased with increasing rotation s
Keywords: Rotating electrode, input power, onset voltage, discharge canal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2137835 A Bayesian Network Reliability Modeling for FlexRay Systems
Authors: Kuen-Long Leu, Yung-Yuan Chen, Chin-Long Wey, Jwu-E Chen, Chung-Hsien Hsu
Abstract:
The increasing importance of FlexRay systems in automotive domain inspires unceasingly relative researches. One primary issue among researches is to verify the reliability of FlexRay systems either from protocol aspect or from system design aspect. However, research rarely discusses the effect of network topology on the system reliability. In this paper, we will illustrate how to model the reliability of FlexRay systems with various network topologies by a well-known probabilistic reasoning technology, Bayesian Network. In this illustration, we especially investigate the effectiveness of error containment built in star topology and fault-tolerant midpoint synchronization algorithm adopted in FlexRay communication protocol. Through a FlexRay steer-by-wire case study, the influence of different topologies on the failure probability of the FlexRay steerby- wire system is demonstrated. The notable value of this research is to show that the Bayesian Network inference is a powerful and feasible method for the reliability assessment of FlexRay systems.Keywords: Bayesian Network, FlexRay, fault tolerance, network topology, reliability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2031834 Electromagnetic Assessment of Submarine Power Cable Degradation Using Finite Element Method and Sensitivity Analysis
Authors: N. Boutra, N. Ravot, J. Benoit, O. Picon
Abstract:
Submarine power cables used for offshore wind farms electric energy distribution and transmission are subject to numerous threats. Some of the risks are associated with transport, installation and operating in harsh marine environment. This paper describes the feasibility of an electromagnetic low frequency sensing technique for submarine power cable failure prediction. The impact of a structural damage shape and material variability on the induced electric field is evaluated. The analysis is performed by modeling the cable using the finite element method, we use sensitivity analysis in order to identify the main damage characteristics affecting electric field variation. Lastly, we discuss the results obtained.Keywords: Electromagnetism, defect, finite element method, sensitivity analysis, submarine power cables.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1094