Ethylene Epoxidation in a Low-Temperature Parallel Plate Dielectric Barrier Discharge System: Effects of Ethylene Feed Position and O2/C2H4 Feed Molar Ratio
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
Ethylene Epoxidation in a Low-Temperature Parallel Plate Dielectric Barrier Discharge System: Effects of Ethylene Feed Position and O2/C2H4 Feed Molar Ratio

Authors: Bunphot Paosombat, Thitiporn Suttikul, Sumaeth Chavadej

Abstract:

The effects of ethylene (C2H4) feed position and O2/C2H4 feed molar ratio on ethylene epoxidation in a parallel dielectric barrier discharge (DBD) were studied. The results showed that the ethylene feed position fraction of 0.5 and the feed molar ratio of O2/C2H4 of 0.2:1 gave the highest EO selectivity of 34.3% and the highest EO yield of 5.28% with low power consumptions of 2.11×10-16 Ws/molecule of ethylene converted and 6.34×10-16 Ws/molecule of EO produced when the DBD system was operated under the best conditions: an applied voltage of 19 kV, an input frequency of 500 Hz and a total feed flow rate of 50 cm3/min. The separate ethylene feed system provided much higher epoxidation activity as compared to the mixed feed system which gave EO selectivity of 15.5%, EO yield of 2.1% and the power consumption of EO produced of 7.7×10-16 Ws/molecule.

Keywords: Dielectric Barrier Discharge, C2H4 Feed Position, Epoxidation, Ethylene Oxide

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1061092

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1701

References:


[1] P.P. McClellan, Ind. Eng. Chem. 42 (1950) 2402.
[2] S. Matar, M.J. Mirbach, H.A. Tayim, Catalysis in Petrochemical Processes, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1989.
[3] J.G. Serafin, A.C. Liu, S.R. Seyedmonir, J. Mol. Catal. A: Chem. 131 (1998) 157.
[4] K.L. Yeung, A. Gavriilidis, A. Varma, M.M. Bhasin, J. Catal. 174 (1998) 1.
[5] W.S. Epling, G.B. Hoflund, D.M. Minahan, J. Catal. 171 (1970) 490.
[6] S.N. Goncharova, E.A. Paukshtis, B.S. Bal-zhinimaev, Appl. Catal. A: Gen. 126 (1995) 67.
[7] M.A. Pena, D.M. Carr, K.L. Yeung, A. Varma, Chem. Eng. Sci. 53 (1998) 3821.
[8] D. Lafarga, A. Varma, Chem. Eng. Sci. 55 (2000) 749.
[9] E.A. Podgornov, I.P. Prosvirin, V.I. Bukhtiyarov, J. Mol. Catal. A: Chem. 158 (2000) 337.
[10] A. Ayame, Y. Uchida, H. Ono, M. Miyamoto, T. Sato, H. Hayasaka, Appl. Catal. A: Gen. 244 (2003) 59.
[11] M.C.N. Amorim de Carvalho, F.B. Passos, M. Schmal, J. Catal. 248 (2007) 124.
[12] S. Linic, J. Jankowiak, M.A. Barteau, J. Catal. 224 (2004) 489.
[13] J.T. Jankowiak, M.A. Barteau, J. Catal. 236 (2005) 366.
[14] J.T. Jankowiak, M.A. Barteau, J. Catal. 236 (2005) 379.
[15] J.C. Dellamorte, J. Lauterbach, M.A. Barteau, Catal. Today 120 (2007) 182.
[16] P.V. Geenen, H.J. Boss, G.T. Pott, J. Catal. 77 (1982) 499.
[17] N. Toreis, X.E. Verykios, J. Catal. 108 (1987) 161.
[18] R. Herrera, A. Varma, E. Martnez, Stud. Surf. Sci. Catal. 55 (1990) 717.
[19] D.I. Kondarides, X.E. Verykios, J. Catal. 158 (1996) 363.
[20] S. Rojluechai, S. Chavadej, J.W. Schwank, V. Meeyoo, Catal. Commun. 8 (2007) 57.
[21] S. Chavadej, S. Rojluechai, J.W. Schwank, V. Meeyoo, Mechanisms in Homogeneous and Heterogeneous Epoxidation Catalysis, Elsevier, 2008, p. 283
[22] B. Elissson, U. Kogelschatz, IEEE Trans. Plasma Sci. 19 (1991) 1063.
[23] H. Suhr, H. Pfreundschuh, Plasma Chem. Plasma Process. 8 (1988) 67.
[24] L.A. Rosacha, G.K. Anderson, L.A. Bechtold, J.J. Coogan, H.G. Heck, M. Kang, W.H. McCulla, R.A. Tennant, P.J. Wantuck, NATO ASI Ser. Part B (1993) 34.
[25] P. Patino, F.E. Hernandez, S. Rondon, Plasma Chem. Plasma Process. 15 (1995) 159.
[26] T. Suttikul, T. Srethawong, H. Segiguchi, S. Chavadej, Plasma Chem. Plasma Process. 31 (2011) 290.