Search results for: Problem Based Learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14363

Search results for: Problem Based Learning

14063 Water End-Use Classification with Contemporaneous Water-Energy Data and Deep Learning Network

Authors: Khoi A. Nguyen, Rodney A. Stewart, Hong Zhang

Abstract:

‘Water-related energy’ is energy use which is directly or indirectly influenced by changes to water use. Informatics applying a range of mathematical, statistical and rule-based approaches can be used to reveal important information on demand from the available data provided at second, minute or hourly intervals. This study aims to combine these two concepts to improve the current water end use disaggregation problem through applying a wide range of most advanced pattern recognition techniques to analyse the concurrent high-resolution water-energy consumption data. The obtained results have shown that recognition accuracies of all end-uses have significantly increased, especially for mechanised categories, including clothes washer, dishwasher and evaporative air cooler where over 95% of events were correctly classified.

Keywords: Deep learning network, smart metering, water end use, water-energy data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1363
14062 A Protocol for Applied Consumer Behavior Research in Academia

Authors: A. Otjen, S. Keller

Abstract:

A Montana university has used applied consumer research in experiential learning with non-profit clients for over a decade. Through trial and error, a successful protocol has been established from problem statement through formative research to integrated marketing campaign execution. In this paper, we describe the protocol and its applications. Analysis was completed to determine the effectiveness of the campaigns and the results of how pre- and post-consumer research mark societal change because of media.

Keywords: Marketing, experiential learning, consumer behavior, community partner.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 188
14061 Impacts of E-learning in Nursing Education: In the Light of Recent Studies

Authors: A.Ö. İlkay, C.O. Zeynep

Abstract:

Information and Communication Technologies (ICT) has changed our life and learn. ICT bares doors to new innovative methods to deliver education. E-learning is a part of ICT and has been endorsed as a tool for developing “21st century skills” in higher education. The aim of this review is to establish the impacts of e-learning in undergraduate nursing education. A systematic literature review was conducted to assess the impacts of e-learning in nursing education by using Akdeniz University electronic databases. According to results, we can decelerate that the nursing faculties cannot treat e-learning methods as a single tool. E-learning should be used with a good understanding of learners’ needs.

Keywords: E-learning, nursing education, systematic literature review.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4631
14060 Recovering the Boundary Data in the Two Dimensional Inverse Heat Conduction Problem Using the Ritz-Galerkin Method

Authors: Saeed Sarabadan, Kamal Rashedi

Abstract:

This article presents a numerical method to find the heat flux in an inhomogeneous inverse heat conduction problem with linear boundary conditions and an extra specification at the terminal. The method is based upon applying the satisfier function along with the Ritz-Galerkin technique to reduce the approximate solution of the inverse problem to the solution of a system of algebraic equations. The instability of the problem is resolved by taking advantage of the Landweber’s iterations as an admissible regularization strategy. In computations, we find the stable and low-cost results which demonstrate the efficiency of the technique.

Keywords: Inverse problem, parabolic equations, heat equation, Ritz-Galerkin method, Landweber iterations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1193
14059 The use of a Bespoke Computer Game For Teaching Analogue Electronics

Authors: Olaf Hallan Graven, Dag Andreas Hals Samuelsen

Abstract:

An implementation of a design for a game based virtual learning environment is described. The game is developed for a course in analogue electronics, and the topic is the design of a power supply. This task can be solved in a number of different ways, with certain constraints, giving the students a certain amount of freedom, although the game is designed not to facilitate trial-and error approach. The use of storytelling and a virtual gaming environment provides the student with the learning material in a MMORPG environment. The game is tested on a group of second year electrical engineering students with good results.

Keywords: analogue electronics, e-learning, computer games for learning, virtual reality

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1529
14058 Learning Difficulties of Children with Disabilities

Authors: Chalise Kiran

Abstract:

The learning difficulties of children with disabilities are always a matter of concern when we talk about educational needs and quality education of children with disabilities. This paper is the outcome of the review of the literature focused on the educational needs and learning difficulties of children with disabilities. For the paper, different studies written on children with disabilities and their education were collected through search engines. The literature put together were analyzed from the angle of learning difficulties faced by children with disabilities and the same were used as a precursor to arrive at the findings on the learning of the children. The analysis showed that children with disabilities face learning difficulties. The reasons for these difficulties could be attributed to factors in terms of authority, structure, school environment and behaviors of teachers and parents and the society as a whole.

Keywords: Children with disabilities, learning difficulties, education of children with disabilities, disabled children.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 423
14057 Practical Problems as Tools for the Development of Secondary School Students’ Motivation to Learn Mathematics

Authors: M. Rodionov, Z. Dedovets

Abstract:

This article discusses plausible reasoning use for solution to practical problems. Such reasoning is the major driver of motivation and implementation of mathematical, scientific and educational research activity. A general, practical problem solving algorithm is presented which includes an analysis of specific problem content to build, solve and interpret the underlying mathematical model. The author explores the role of practical problems such as the stimulation of students' interest, the development of their world outlook and their orientation in the modern world at the different stages of learning mathematics in secondary school. Particular attention is paid to the characteristics of those problems which were systematized and presented in the conclusions.

Keywords: Mathematics, motivation, secondary school, student, practical problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1065
14056 One-Class Support Vector Machines for Protein-Protein Interactions Prediction

Authors: Hany Alashwal, Safaai Deris, Razib M. Othman

Abstract:

Predicting protein-protein interactions represent a key step in understanding proteins functions. This is due to the fact that proteins usually work in context of other proteins and rarely function alone. Machine learning techniques have been applied to predict protein-protein interactions. However, most of these techniques address this problem as a binary classification problem. Although it is easy to get a dataset of interacting proteins as positive examples, there are no experimentally confirmed non-interacting proteins to be considered as negative examples. Therefore, in this paper we solve this problem as a one-class classification problem using one-class support vector machines (SVM). Using only positive examples (interacting protein pairs) in training phase, the one-class SVM achieves accuracy of about 80%. These results imply that protein-protein interaction can be predicted using one-class classifier with comparable accuracy to the binary classifiers that use artificially constructed negative examples.

Keywords: Bioinformatics, Protein-protein interactions, One-Class Support Vector Machines

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1989
14055 Feature-Based Summarizing and Ranking from Customer Reviews

Authors: Dim En Nyaung, Thin Lai Lai Thein

Abstract:

Due to the rapid increase of Internet, web opinion sources dynamically emerge which is useful for both potential customers and product manufacturers for prediction and decision purposes. These are the user generated contents written in natural languages and are unstructured-free-texts scheme. Therefore, opinion mining techniques become popular to automatically process customer reviews for extracting product features and user opinions expressed over them. Since customer reviews may contain both opinionated and factual sentences, a supervised machine learning technique applies for subjectivity classification to improve the mining performance. In this paper, we dedicate our work is the task of opinion summarization. Therefore, product feature and opinion extraction is critical to opinion summarization, because its effectiveness significantly affects the identification of semantic relationships. The polarity and numeric score of all the features are determined by Senti-WordNet Lexicon. The problem of opinion summarization refers how to relate the opinion words with respect to a certain feature. Probabilistic based model of supervised learning will improve the result that is more flexible and effective.

Keywords: Opinion Mining, Opinion Summarization, Sentiment Analysis, Text Mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2933
14054 Bi-linear Complementarity Problem

Authors: Chao Wang, Ting-Zhu Huang Chen Jia

Abstract:

In this paper, we propose a new linear complementarity problem named as bi-linear complementarity problem (BLCP) and the method for solving BLCP. In addition, the algorithm for error estimation of BLCP is also given. Numerical experiments show that the algorithm is efficient.

Keywords: Bi-linear complementarity problem, Linear complementarity problem, Extended linear complementarity problem, Error estimation, P-matrix, M-matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1725
14053 Comparative Analysis of Machine Learning Tools: A Review

Authors: S. Sarumathi, M. Vaishnavi, S. Geetha, P. Ranjetha

Abstract:

Machine learning is a new and exciting area of artificial intelligence nowadays. Machine learning is the most valuable, time, supervised, and cost-effective approach. It is not a narrow learning approach; it also includes a wide range of methods and techniques that can be applied to a wide range of complex realworld problems and time domains. Biological image classification, adaptive testing, computer vision, natural language processing, object detection, cancer detection, face recognition, handwriting recognition, speech recognition, and many other applications of machine learning are widely used in research, industry, and government. Every day, more data are generated, and conventional machine learning techniques are becoming obsolete as users move to distributed and real-time operations. By providing fundamental knowledge of machine learning tools and research opportunities in the field, the aim of this article is to serve as both a comprehensive overview and a guide. A diverse set of machine learning resources is demonstrated and contrasted with the key features in this survey.

Keywords: Artificial intelligence, machine learning, deep learning, machine learning algorithms, machine learning tools.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1848
14052 A Study and Implementation of On-line Learning Diagnosis and Inquiry System

Authors: YuLung Wu

Abstract:

In Knowledge Structure Graph, each course unit represents a phase of learning activities. Both learning portfolios and Knowledge Structure Graphs contain learning information of students and let teachers know which content are difficulties and fails. The study purposes "Dual Mode On-line Learning Diagnosis System" that integrates two search methods: learning portfolio and knowledge structure. Teachers can operate the proposed system and obtain the information of specific students without any computer science background. The teachers can find out failed students in advance and provide remedial learning resources.

Keywords: Knowledge Structure Graph, On-line LearningDiagnosis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1465
14051 A Method for Solving a Bi-Objective Transportation Problem under Fuzzy Environment

Authors: Sukhveer Singh, Sandeep Singh

Abstract:

A bi-objective fuzzy transportation problem with the objectives to minimize the total fuzzy cost and fuzzy time of transportation without according priorities to them is considered. To the best of our knowledge, there is no method in the literature to find efficient solutions of the bi-objective transportation problem under uncertainty. In this paper, a bi-objective transportation problem in an uncertain environment has been formulated. An algorithm has been proposed to find efficient solutions of the bi-objective transportation problem under uncertainty. The proposed algorithm avoids the degeneracy and gives the optimal solution faster than other existing algorithms for the given uncertain transportation problem.

Keywords: Transportation problem, efficient solution, ranking function, fuzzy transportation problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1357
14050 Proffering a Brand New Methodology to Resource Discovery in Grid based on Economic Criteria Using Learning Automata

Authors: Ali Sarhadi, Mohammad Reza Meybodi, Ali Yousefi

Abstract:

Resource discovery is one of the chief services of a grid. A new approach to discover the provenances in grid through learning automata has been propounded in this article. The objective of the aforementioned resource-discovery service is to select the resource based upon the user-s applications and the mercantile yardsticks that is to say opting for an originator which can accomplish the user-s tasks in the most economic manner. This novel service is submitted in two phases. We proffered an applicationbased categorization by means of an intelligent nerve-prone plexus. The user in question sets his or her application as the input vector of the nerve-prone nexus. The output vector of the aforesaid network limns the appropriateness of any one of the resource for the presented executive procedure. The most scrimping option out of those put forward in the previous stage which can be coped with to fulfill the task in question is picked out. Te resource choice is carried out by means of the presented algorithm based upon the learning automata.

Keywords: Resource discovery, learning automata, neural network, economic policy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1453
14049 Role-Governed Categorization and Category Learning as a Result from Structural Alignment: The RoleMap Model

Authors: Yolina A. Petrova, Georgi I. Petkov

Abstract:

The paper presents a symbolic model for category learning and categorization (called RoleMap). Unlike the other models which implement learning in a separate working mode, role-governed category learning and categorization emerge in RoleMap while it does its usual reasoning. The model is based on several basic mechanisms known as reflecting the sub-processes of analogy-making. It steps on the assumption that in their everyday life people constantly compare what they experience and what they know. Various commonalities between the incoming information (current experience) and the stored one (long-term memory) emerge from those comparisons. Some of those commonalities are considered to be highly important, and they are transformed into concepts for further use. This process denotes the category learning. When there is missing knowledge in the incoming information (i.e. the perceived object is still not recognized), the model makes anticipations about what is missing, based on the similar episodes from its long-term memory. Various such anticipations may emerge for different reasons. However, with time only one of them wins and is transformed into a category member. This process denotes the act of categorization.

Keywords: Categorization, category learning, role-governed category, analogy-making, cognitive modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 661
14048 Rapid Study on Feature Extraction and Classification Models in Healthcare Applications

Authors: S. Sowmyayani

Abstract:

The advancement of computer-aided design helps the medical force and security force. Some applications include biometric recognition, elderly fall detection, face recognition, cancer recognition, tumor recognition, etc. This paper deals with different machine learning algorithms that are more generically used for any health care system. The most focused problems are classification and regression. With the rise of big data, machine learning has become particularly important for solving problems. Machine learning uses two types of techniques: supervised learning and unsupervised learning. The former trains a model on known input and output data and predicts future outputs. Classification and regression are supervised learning techniques. Unsupervised learning finds hidden patterns in input data. Clustering is one such unsupervised learning technique. The above-mentioned models are discussed briefly in this paper.

Keywords: Supervised learning, unsupervised learning, regression, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 346
14047 Technology Enhanced Learning: Fostering Cooperative Learning Through the Integration of Online Communication as Part of Teaching and Learning Experience

Authors: R.Ramli

Abstract:

This paper discusses ways to foster cooperative learning through the integration of online communication technology. While the education experts believe constructivism produces a more positive learning experience, the educators are still facing problems in getting students to participate due to numerous reasons such as shy personality, language and cultural barriers. This paper will look into the factors that lead to lack of participations among students and how technology can be implemented to overcome these issues.

Keywords: cooperative learning, encouraging class participation, education, online discussion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523
14046 Multiobjective Optimization Solution for Shortest Path Routing Problem

Authors: C. Chitra, P. Subbaraj

Abstract:

The shortest path routing problem is a multiobjective nonlinear optimization problem with constraints. This problem has been addressed by considering Quality of service parameters, delay and cost objectives separately or as a weighted sum of both objectives. Multiobjective evolutionary algorithms can find multiple pareto-optimal solutions in one single run and this ability makes them attractive for solving problems with multiple and conflicting objectives. This paper uses an elitist multiobjective evolutionary algorithm based on the Non-dominated Sorting Genetic Algorithm (NSGA), for solving the dynamic shortest path routing problem in computer networks. A priority-based encoding scheme is proposed for population initialization. Elitism ensures that the best solution does not deteriorate in the next generations. Results for a sample test network have been presented to demonstrate the capabilities of the proposed approach to generate well-distributed pareto-optimal solutions of dynamic routing problem in one single run. The results obtained by NSGA are compared with single objective weighting factor method for which Genetic Algorithm (GA) was applied.

Keywords: Multiobjective optimization, Non-dominated SortingGenetic Algorithm, Routing, Weighted sum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3265
14045 iSEA: A Mobile Based Learning Application for History and Culture Knowledge Enhancement for the ASEAN Region

Authors: Maria Visitacion N. Gumabay, Byron Joseph A. Hallar, Annjeannette Alain D. Galang

Abstract:

This study was intended to provide a more efficient and convenient way for mobile users to enhance their knowledge about ASEAN countries. The researchers evaluated the utility of the developed crossword puzzle application and assessed the general usability of its user interface for its intended purpose and audience of users. The descriptive qualitative research method for the research design and the Mobile-D methodology was employed for the development of the software application output. With a generally favorable reception from its users, the researchers concluded that the iSEA Mobile Based Learning Application can be considered ready for general deployment and use. It was also concluded that additional studies can also be done to make a more complete assessment of the knowledge gained by its users before and after using the application.

Keywords: Mobile learning, e-learning, crossword, ASEAN, iSEA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1521
14044 Mining Educational Data to Analyze the Student Motivation Behavior

Authors: Kunyanuth Kularbphettong, Cholticha Tongsiri

Abstract:

The purpose of this research aims to discover the knowledge for analysis student motivation behavior on e-Learning based on Data Mining Techniques, in case of the Information Technology for Communication and Learning Course at Suan Sunandha Rajabhat University. The data mining techniques was applied in this research including association rules, classification techniques. The results showed that using data mining technique can indicate the important variables that influence the student motivation behavior on e-Learning.

Keywords: association rule mining, classification techniques, e- Learning, Moodle log Motivation Behavior

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3093
14043 Augmented Reality Sandbox and Constructivist Approach for Geoscience Teaching and Learning

Authors: Muhammad Nawaz, Sandeep N. Kundu, Farha Sattar

Abstract:

Augmented reality sandbox adds new dimensions to education and learning process. It can be a core component of geoscience teaching and learning to understand the geographic contexts and landform processes. Augmented reality sandbox is a useful tool not only to create an interactive learning environment through spatial visualization but also it can provide an active learning experience to students and enhances the cognition process of learning. Augmented reality sandbox can be used as an interactive learning tool to teach geomorphic and landform processes. This article explains the augmented reality sandbox and the constructivism approach for geoscience teaching and learning, and endeavours to explore the ways to teach the geographic processes using the three-dimensional digital environment for the deep learning of the geoscience concepts interactively.

Keywords: Augmented Reality Sandbox, constructivism, deep learning, geoscience.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523
14042 Online Collaborative Learning System Using Speech Technology

Authors: Sid-Ahmed. Selouani, Tang-Ho Lê, Chadia Moghrabi, Benoit Lanteigne, Jean Roy

Abstract:

A Web-based learning tool, the Learn IN Context (LINC) system, designed and being used in some institution-s courses in mixed-mode learning, is presented in this paper. This mode combines face-to-face and distance approaches to education. LINC can achieve both collaborative and competitive learning. In order to provide both learners and tutors with a more natural way to interact with e-learning applications, a conversational interface has been included in LINC. Hence, the components and essential features of LINC+, the voice enhanced version of LINC, are described. We report evaluation experiments of LINC/LINC+ in a real use context of a computer programming course taught at the Université de Moncton (Canada). The findings show that when the learning material is delivered in the form of a collaborative and voice-enabled presentation, the majority of learners seem to be satisfied with this new media, and confirm that it does not negatively affect their cognitive load.

Keywords: E-leaning, Knowledge Network, Speech recognition, Speech synthesis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1713
14041 Measuring E-Learning Effectiveness Using a Three-Way Comparison

Authors: Matthew Montebello

Abstract:

The way e-learning effectiveness has been notoriously measured within an academic setting is by comparing the e-learning medium to the traditional face-to-face teaching methodology. In this paper, a simple yet innovative comparison methodology is introduced, whereby the effectiveness of next generation e-learning systems are assessed in contrast not only to the face-to-face mode, but also to the classical e-learning modality. Ethical and logistical issues are also discussed, as this three-way approach to compare teaching methodologies was applied and documented in a real empirical study within a higher education institution.

Keywords: E-learning effectiveness, higher education, teaching modality comparison.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1394
14040 Solution Approaches for Some Scheduling Problems with Learning Effect and Job Dependent Delivery Times

Authors: M. Duran Toksarı, B. Uçarkuş

Abstract:

In this paper, we propose two algorithms to optimally solve makespan and total completion time scheduling problems with learning effect and job dependent delivery times in a single machine environment. The delivery time is the extra time to eliminate adverse effect between the main processing and delivery to the customer. In this paper, we introduce the job dependent delivery times for some single machine scheduling problems with position dependent learning effect, which are makespan are total completion. The results with respect to two algorithms proposed for solving of the each problem are compared with LINGO solutions for 50-jobs, 100-jobs and 150- jobs problems. The proposed algorithms can find the same results in shorter time.

Keywords: Delivery times, learning effect, makespan, scheduling, total completion time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1551
14039 Information Sharing to Transformation: Antecedents of Collaborative Networked Learning in Manufacturing

Authors: Wee Hock Quik, Nevan Wright

Abstract:

Collaborative networked learning (hereafter CNL) was first proposed by Charles Findley in his work “Collaborative networked learning: online facilitation and software support" as part of instructional learning for the future of the knowledge worker. His premise was that through electronic dialogue learners and experts could interactively communicate within a contextual framework to resolve problems, and/or to improve product or process knowledge. Collaborative learning has always been the forefront of educational technology and pedagogical research, but not in the mainstream of operations management. As a result, there is a large disparity in the study of CNL, and little is known about the antecedents of network collaboration and sharing of information among diverse employees in the manufacturing environment. This paper presents a model to bridge the gap between theory and practice. The objective is that manufacturing organizations will be able to accelerate organizational learning and sharing of information through various collaborative

Keywords: Collaborative networked learning, Collaborative technologies, Organizational learning, Synchronous and asynchronous networked learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1700
14038 Space Telemetry Anomaly Detection Based on Statistical PCA Algorithm

Authors: B. Nassar, W. Hussein, M. Mokhtar

Abstract:

The critical concern of satellite operations is to ensure the health and safety of satellites. The worst case in this perspective is probably the loss of a mission, but the more common interruption of satellite functionality can result in compromised mission objectives. All the data acquiring from the spacecraft are known as Telemetry (TM), which contains the wealth information related to the health of all its subsystems. Each single item of information is contained in a telemetry parameter, which represents a time-variant property (i.e. a status or a measurement) to be checked. As a consequence, there is a continuous improvement of TM monitoring systems to reduce the time required to respond to changes in a satellite's state of health. A fast conception of the current state of the satellite is thus very important to respond to occurring failures. Statistical multivariate latent techniques are one of the vital learning tools that are used to tackle the problem above coherently. Information extraction from such rich data sources using advanced statistical methodologies is a challenging task due to the massive volume of data. To solve this problem, in this paper, we present a proposed unsupervised learning algorithm based on Principle Component Analysis (PCA) technique. The algorithm is particularly applied on an actual remote sensing spacecraft. Data from the Attitude Determination and Control System (ADCS) was acquired under two operation conditions: normal and faulty states. The models were built and tested under these conditions, and the results show that the algorithm could successfully differentiate between these operations conditions. Furthermore, the algorithm provides competent information in prediction as well as adding more insight and physical interpretation to the ADCS operation.

Keywords: Space telemetry monitoring, multivariate analysis, PCA algorithm, space operations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062
14037 Understanding Cultural Influences: Principles for Personalized E-learning Systems

Authors: R. Boondao, A. J. Hurst, J. I. Sheard

Abstract:

In the globalized e-learning environment, students coming from different cultures and countries have different characteristics and require different support designed for their approaches to study and learning styles. This paper explores the ways in which cultural background influences students- approaches to study and learning styles. Participants in the study consisted of 131 eastern students and 54 western students from an Australian university. The students were tested using the Study Process Questionnaire (SPQ) for assessing their approaches to study and the Index of Learning Styles Questionnaire (ILS) for assessing their learning styles. The results of the study led to a set of principles being proposed to guide personalization of e-learning system design on the basis of cultural differences.

Keywords: Approaches to study, Cultural influences, Learningstyles, Personalization, e-learning system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1783
14036 Integrating E-learning Environments with Computational Intelligence Assessment Agents

Authors: Christos E. Alexakos, Konstantinos C. Giotopoulos, Eleni J. Thermogianni, Grigorios N. Beligiannis, Spiridon D. Likothanassis

Abstract:

In this contribution an innovative platform is being presented that integrates intelligent agents in legacy e-learning environments. It introduces the design and development of a scalable and interoperable integration platform supporting various assessment agents for e-learning environments. The agents are implemented in order to provide intelligent assessment services to computational intelligent techniques such as Bayesian Networks and Genetic Algorithms. The utilization of new and emerging technologies like web services allows integrating the provided services to any web based legacy e-learning environment.

Keywords: Bayesian Networks, Computational Intelligence techniques, E-learning legacy systems, Service Oriented Integration, Intelligent Agents

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1932
14035 Unsupervised Feature Learning by Pre-Route Simulation of Auto-Encoder Behavior Model

Authors: Youngjae Jin, Daeshik Kim

Abstract:

This paper describes a cycle accurate simulation results of weight values learned by an auto-encoder behavior model in terms of pre-route simulation. Given the results we visualized the first layer representations with natural images. Many common deep learning threads have focused on learning high-level abstraction of unlabeled raw data by unsupervised feature learning. However, in the process of handling such a huge amount of data, the learning method’s computation complexity and time limited advanced research. These limitations came from the fact these algorithms were computed by using only single core CPUs. For this reason, parallel-based hardware, FPGAs, was seen as a possible solution to overcome these limitations. We adopted and simulated the ready-made auto-encoder to design a behavior model in VerilogHDL before designing hardware. With the auto-encoder behavior model pre-route simulation, we obtained the cycle accurate results of the parameter of each hidden layer by using MODELSIM. The cycle accurate results are very important factor in designing a parallel-based digital hardware. Finally this paper shows an appropriate operation of behavior model based pre-route simulation. Moreover, we visualized learning latent representations of the first hidden layer with Kyoto natural image dataset.

Keywords: Auto-encoder, Behavior model simulation, Digital hardware design, Pre-route simulation, Unsupervised feature learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2690
14034 Efficient Implementation of Serial and Parallel Support Vector Machine Training with a Multi-Parameter Kernel for Large-Scale Data Mining

Authors: Tatjana Eitrich, Bruno Lang

Abstract:

This work deals with aspects of support vector learning for large-scale data mining tasks. Based on a decomposition algorithm that can be run in serial and parallel mode we introduce a data transformation that allows for the usage of an expensive generalized kernel without additional costs. In order to speed up the decomposition algorithm we analyze the problem of working set selection for large data sets and analyze the influence of the working set sizes onto the scalability of the parallel decomposition scheme. Our modifications and settings lead to improvement of support vector learning performance and thus allow using extensive parameter search methods to optimize classification accuracy.

Keywords: Support Vector Machines, Shared Memory Parallel Computing, Large Data

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577