
 

 

  

Abstract—The critical concern of satellite operations is to ensure 

the health and safety of satellites. The worst case in this perspective 

is probably the loss of a mission, but the more common interruption 

of satellite functionality can result in compromised mission 

objectives. All the data acquiring from the spacecraft are known as 

Telemetry (TM), which contains the wealth information related to the 

health of all its subsystems. Each single item of information is 

contained in a telemetry parameter, which represents a time-variant 

property (i.e. a status or a measurement) to be checked. As a 

consequence, there is a continuous improvement of TM monitoring 

systems to reduce the time required to respond to changes in a 

satellite's state of health. A fast conception of the current state of the 

satellite is thus very important to respond to occurring failures. 

Statistical multivariate latent techniques are one of the vital learning 

tools that are used to tackle the problem above coherently. 

Information extraction from such rich data sources using advanced 

statistical methodologies is a challenging task due to the massive 

volume of data. To solve this problem, in this paper, we present a 

proposed unsupervised learning algorithm based on Principle 

Component Analysis (PCA) technique. The algorithm is particularly 

applied on an actual remote sensing spacecraft. Data from the 

Attitude Determination and Control System (ADCS) was acquired 

under two operation conditions: normal and faulty states. The models 

were built and tested under these conditions, and the results show that 

the algorithm could successfully differentiate between these 

operations conditions. Furthermore, the algorithm provides 

competent information in prediction as well as adding more insight 

and physical interpretation to the ADCS operation. 
 

Keywords—Space telemetry monitoring, multivariate analysis, 

PCA algorithm, space operations. 

I. INTRODUCTION 

ELIABILITY, availability, and safety are critical 

requirements in space mission operations. Moreover, 

flight controllers are responsible not only for operating their 

designated spacecraft subsystems to meet mission intentions 

but also for monitoring those subsystems to ensure that they 

are operating appropriately.  

Data-driven process monitoring or statistical process 

monitoring (SPM) applies multivariate statistics and machine 

learning methods to fault detection and diagnosis for space 

operations, which has become one of the most rich areas in 

research and practice over the last two decades. Based on 

methods from the multivariate statistical analysis, SPM has 

found wide applications in various processes, including space 
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operations. The situation is greatly complicated by the fact 

most of the techniques representing different modalities are 

complex and have a black box impacts. So, due to the data-

based nature of the SPM methods, it is relatively easy to apply 

to real processes of rather a large scale comparing to other 

methods based on systems theory or rigorous process models. 

Space missions are characterized by large-scale complex 

operations that are well instrumented with a multi-level 

control hierarchy, making it a suitable place to apply the SPM 

methodologies. Disturbances and variabilities in operation 

conditions are the critical obstacles to overcome to make 

quality operations. The task of data-driven process monitoring 

is to detect such an abnormal situation and diagnose the root-

cause early. SPM capabilities are to extract vital information 

from both huge archived data and real-time operations data. 

The Applications of SPM methodology provides better 

knowledge and more accurate characterization of changes and 

disturbances in space systems operations.  

The paper represents a statistical fault detection algorithm 

based on the PCA latent space model. The algorithm 

introduces a practical approach for monitoring and diagnosis 

that includes: (i) fault detection; (ii) fault identification or 

diagnosis and quality monitoring. The tasks of the algorithm 

are to model, analyze and identify key contributors to 

anomalous events automatically which lead to characterize the 

spacecraft (ADCS) behavior. However, this approach does not 

build a causality direction between variables rather it builds a 

correlation direction inside a bounded region. Hence, it 

represents an efficient tool as a first step for process 

monitoring through the analysis of existing information. The 

contributions of this design work can be itemized as: 

1) To the best of the authors’ knowledge, this is a new 

application to model and analyze the ADSC spacecraft 

telemetry using the unsupervised learning algorithm PCA. 

2) The algorithm possesses the modeling of the data in the 

X-space where the advantage of the contribution and 

control plots can be seen. These plots facilitate the 

detection of the variables responsible for any process and 

monitor key process variables and quality over time. 

The remainder of the paper is organized as follows. We 

introduce an overview of related work to the area of research 

in Section II. The proper use of data-driven models based on 

the multivariate latent approach concept is discussed in 

Section III. ADCS configuration is presented in Section IV. 

Then, the main details and theoretical analysis of the 

algorithm are discussed in Section V. The performance of the 

algorithm on ADCS telemetry data and the analysis results are 

compared with the well-known multivariate data analysis 
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software known as soft independent model for class analogy 

(SIMCA-P) developed by Umetrics are shown in Section VI 

and VII. Finally, we conclude in Section VIII. 

II. RELATED WORK 

Archived spacecraft telemetry data contain a wealth of 

information about complex system behavior, so recent 

development techniques for monitoring and anomaly detection 

make it possible to examine this archived data and extract 

embedded information to produce advanced system health 

monitoring applications [1]. Researchers have devoted 

considerable effort to the application of various different soft 

computing methods to develop heath monitoring systems 

(HMSs) for space operations and the methods used include 

neural networks, multivariate statistical approaches and data 

mining techniques. These methods can provide important tools 

for the field of intelligent monitoring which can learn, adapt, 

and make decisions concerning the system they are in charge 

of [2]. 

T. Yairi et al. [3] evaluated a variety of dimensionality 

reduction algorithms and compared them without using the 

cross-validation. Regarding the authors’ point of view, using 

the cross-validation might be too time-consuming when the 

training set or the number of classes is large. 

I. Verzola et al. [4] clarified that a space operations are 

often based on a reactive model. The main drawback of this 

model is the unfeasibility of preventing the failure executing 

preventive actions to avoid the expected faulty condition. 

Moreover, their work describes a study on a possible proactive 

model to deal with failures based on techniques from statistics 

and machine learning to identify future trends of the object to 

foresee the behavior of the system. However, the research 

work did not give the predictions in real-time that to be 

checked against a set of pre-defined failure probabilities 

thresholds. 

J. MacGregor et al. [5] established the potential of applying 

multivariate methods in monitoring and fault diagnosis 

contrasted with many other data-driven techniques. The 

authors declared that black-box models such as Artificial 

Neural Networks (ANNs) and Hidden Markov Models 

(HMM) and statistical classification techniques such as 

Discriminant Analysis (DA) and Support Vector Machines 

(SVMs) are fallen within the class of regression 

methods/classifiers that provides no allowance for modeling 

the X-space. In addition, those techniques have a limited 

capability to interpret of full rank data, to handle missing data 

and to test for outliers in new data. Even though they 

recognize that methods can be useful in some cases. 

J. Peng et al. [6] proposed a fault diagnosis method for key 

components of satellite called anomaly monitoring method 

(AMM), which is made up of state estimation based on 

multivariate state estimation techniques (MSET). This method 

applied to the satellite power subsystem, and the analysis of 

failure applied on lithium-ion batteries (LIBs). Only two 

parameters were selected as the key parameters of AMM, so 

either an in-depth analysis failure of LIBs is conducted or 

more influencing parameters were considered. S. Lindsay et 

al. [7] applied several supervised learning and unsupervised 

methods to four different spacecraft SOH scenarios after the 

data pre-processing step. However, real-time anomaly 

resolution remains a potential research area to be examined. 

The simplicity of multivariate statistical analysis approach 

is that there is no need for a fundamental model of the system 

and only data from normal operation needs to be used, which 

is generally available in some form for most machines. 

Among the approaches used in the multivariate analysis are: 

two projection methods called principal component analysis 

(PCA) and projection to latent structure (PLS). Many 

applications of these two techniques have been successfully 

applied in other fields of process monitoring. Among the 

approaches used in multivariate analysis the PCA is a well-

known data-driven multivariate statistical tool used in many 

applications particularly the fields of process monitoring and 

diagnosis [8]-[10].  

III. MULTIVARIATE PCA BASIC THEORY 

The principle component analysis (PCA) is a quantitatively 

rigorous unsupervised learning technique that used in 

extracting information from data and is widely used by 

scientists and engineers in various disciplines such as in 

process monitoring, data compression, image analysis, as well 

as in fault detection decades ago. The method produces a 

compressed statistical model that gives linear combinations of 

the original variables that describe the major trends in the Tta 

sets in terms of capturing the variance of the data. The PCA is 

a mapping that produces new variables that are uncorrelated 

with each other and are linear combinations of the original 

variables and also preserving the correlation structure between 

the original features.  

The "aggregate variance" of the whole set of variables 

remains unchanged from before to after the mapping, but the 

variance is redistributed so that the most is in the first mapped 

variable, the next largest amount goes to the second mapped 

variable and the least to the last transformed variable. These 

new variables are called the principal components [13]. The 

utility of this method lies in the ability to explain as much of 

the total variation in the data as possible with the least number 

of principal components (new variables). The point that needs 

to be stressed is that the data can be reduced to a size that is 

more manageable but contains the features that are often of 

interest. PCA extracts a score matrix, T, and a loading matrix, 

P, from X. These matrices have the following dimensions [9]-

[11]: 
  

 X: N × K   T: N × A P: K × A                 (1) 

 

The first column of T and P are called by their shorter 

forms, t1, and p1 respectively. PCA decomposes the data 

matrix X to the sum of the products of K( K ≤ min{m, n}) 

pairs of vectors and a residual matrix, E: 

 

X = t1p�
� + t2p�

�+ .... + tkp�
� +E                 (2) 
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where ti = scores vectors, Pi= loadings vectors (eigenvectors 

of the covariance matrix) , E= residual matrix. 

So, the score vectors in the score plot represent the principle 

component (new variables) ti and Pi the loadings vectors 

represent (eigenvectors of the covariance matrix) or variables 

coefficients. In addition, the score and loading plots are 

superimposed; this means that variables lying in each quarter 

of the loading plot are contributing to the changes in the 

observations in the score plot. The residual matrix contains 

that part of the data not explained by the PCA model. The N-K 

t, p vector pairs not in the model are associated with "noise" 

the uncontrolled process and or instrument variation arising 

from random influences. A more in-depth discussion, which 

also highlights some geometric concepts of PCA, can be found 

in [12]. The algorithm used to calculate the PCA is the 

nonlinear iterative partial least squares algorithm (NIPALS) 

[9]-[11]. 

IV. SYSTEM CONFIGURATION 

The spacecraft telemetry data contains a variety of 

information including myriad sensor measurements. Anomaly 

detection techniques described in the previous section was 

applied to the attitude determination and control system 

(ADCS) of remote sensing spacecraft owned by Egyptian 

National Authority for Remote Sensing and Space Sciences 

(NARSS). 

 

 

Fig. 1 Structure diagram of the space system 

 

The main purpose of ADCS is to orientate the main 

structure of the spacecraft at the desired angle(s) within 

required accuracy. The attitude of spacecraft can be 

represented in different ways with a set of variables such as 

directions cosine matrix (DCM), Euler angles, angular 

velocity and quaternion (also known as Euler parameters)… 

etc. ADCS composition contains angular velocity meter 

(AVM) blocks that are mounted in such a way that three 

AVMs measuring axes are collinear to body-fixed axes, and 

the fourth one is a backup. The system also had a 

magnetometer (MM), magnetorquers (MT), reaction wheels 

(RW) and star sensor. Fig. 1 shows the space system structure.  

V. ALGORITHM PECULIARITIES 

The principle component analysis (PCA) algorithm is 

mainly applied as an unsupervised learning tool for spacecraft 

telemetry data. The algorithm strategy is to manage operation 

status acquired via (ADCS) telemetry data to provide efficient 

monitoring for the system above. The methodology operates in 

two phases; first, the training phase learns the model using the 

available training data. Then, the next phase trends and 

clusters the data instance as normal or an outlier using the 

model. The framework of the algorithm enumerated in the 

following steps:  

1) Auto-scale the training data to unify the influence of the 

features before building the model. These measures allow 

the model to decide the effect of each variable regarding 

their real influence.  

2) Train PCA model using the training data (Training 

samples X = [X1, X2,., Xn], then standardize the data, 

further calculate the variance of matrix (X) which 

measure of the spread of data in a given data set (one 
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dimensional concept): 

 
Var(X) = 

Σ��	

  ������������

��                        (3) 

 

where, �� mean of the set X and m: sample number and  

 Λ= (λ1 >.. > λm) is a diagonal matrix containing the  

 eigenvalues in a decreasing order (λ1 > λ2 >.. > λm).  

 Further, to calculate the covariance matrix (S) of data  

 Matrix (X), so if the data matrix-X has m-rows and n 

columns, then the covariance matrix S is equal to: 

 

 S = cov(X) = �  �
��� �X�X�                        (4)  

  

Then, choose how many PCs are used. The validity of the 

PCA model depends on a good choice of how many principal 

components (PCs) are retained. Underestimating the number 

of PCs can leave out important variations in the data which 

degrades the prediction quality of the PCA model. 

Overestimating the number of PCs, on the other hand, 

introduces noise that masks some of the important features in 

the data.  

3) Construct the model for exploratory and trend the data 

under diverse operating conditions.  

4) Compute the ranking of all features with a certain 

criterion in term of their contribution to trends and 

clustering. One can note that the ranking criterion for the 

trends and clustering of features is based on the normal 

vector of the hyper-plane. 

5) Finally, the model is used along with one of the detection 

guides to detect faults for new data samples (if the 

detection index falls outside the control limits, which are 

defined by the thresholds associated with these indices). 

The Hotelling’s (T
2
) statistic measures the variations in 

the principal components at different time samples. For 

new testing data, when the value of T
2
 exceeds the value 

of the threshold, (T
2
α) a fault is declared. The (Q) statistic 

or squared prediction error (SPE) measures the projection 

of a data sample on the residual subspace, which provides 

an overall measure of how a data sample fits the model. 

When a vector of new data is available, the Q statistic is 

calculated and compared with the threshold value (Qα). If 

the confidence limit is violated, a fault is declared. The 

value of the threshold is calculated based on the 

assumptions that the measurements are time-independent 

and multivariate normally distributed. The Q fault 

detection index is very sensitive to modeling errors, and 

its performance largely depends on the choice of the 

number of retained principal components). Fig. 2 shows 

the framework of the PCA monitoring algorithm. 

VI. MODEL BUILDING 

The concept of the model depends on using of operation 

variables. Let X-matrix includes variables containing 

information from the sensory data. First, the data were mean 

centered and scaled to unit variance. Second, control limits in 

the latent space were established using F-distribution based on 

reference distribution provided by the dataset. In addition, t1 

and t2 are the first two principal components that capture most 

of the variance in the X-matrix. Fig. 3 illustrates how the score 

plot is built for a simple case 3-variables and 2-scores. After 

determining the direction of maximum variation by iterative 

steps, one might rotate the new plane determined by the new 

score variables t1 and t2 and then monitor the change of the 

new observations in the reduced dimensional space during 

space operations. 

 

 

Fig. 2 PCA Fault detection algorithm framework 

 

 

Fig. 3 Establishing score plot for three variables 

 

The scenario of spacecraft operation uses a total of "16" 

features to generate the input matrix “X”, which means that 

the original data has "16" dimensions "D = 16". These features 

represent the root mean square of the time domain records of 

the sensory signals measurements regarding spacecraft roll, 

pitch, yaw angles, angler velocity and quaternion's ---, etc., 

Models are built using the new principle component analysis 

(PCA) algorithm and compared with SIMCA-P software 

developed by Umetrics [9]. PCA finds latent directions that 

maximize the variance of the process. The multivariate model 

is a linear model given in matrix form by X = TP
T
 + EA. 

However, there exist non-linear PCA versions even by 

augmenting the original matrix with the non-linear factors or 

by building a non-linear relation between score factors [14]. 

The models are established using a set of telemetry data 

sampled from the spacecraft operation for two days that 
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represents the nominal and off-nominal operations of (ADCS). 

During this period, a system anomaly was reported due to 

angler velocity meter in Z-direction (AVMz) malfunctioning 

and the reserve (AVMr) were used instead of the faulty one. In 

addition spacecraft high rate damping mode (detumbling 

mode) occurs. If the fault mentioned above will be repeated 

the spacecraft will acquire the detumbling mode more than the 

design specifications and regarding experts experience this 

mode is very critical because it could be lead to spacecraft 

losses. 

VII. RESULTS AND ANALYSIS 

The key target in building (PCA) models is data 

preparation, scaling and selecting the number of principal 

components. First, data must be in tab enclosed text format 

with no headings or extra characters before entering into 

MATLAB. The PCA is unsupervised learning approach that 

does not have class labels on training data and sometimes does 

not include the number of classes. The approach is based on 

using an available database that gives an acceptable level of 

process quality to build the monitoring system and then the 

model can reveal both smooth time trends and sudden shifts in 

the telemetry of normal operation. Consequently, the first 

model is generated using the proposed PCA unsupervised 

algorithm and compared with SIMCA-P software, so a clear 

supervision for the data can be attained. The telemetry with 

"777" observations from nominal operation as training set for 

different features values used to develop the PCA model. Fig. 

4 shows a scatter plot of the two score vectors t1 and t2 of the 

PCA algorithm (new mapping variables). The model 

illustrates a clear direction of the data that indicates the trends. 

Fig. 5 demonstrates the results acquired by SIMCA-P 

software. To get better supervision of the data another attempt 

has been made by augmenting the X-matrix using 

transformation and unit scaling of variables. The model is 

fitted by cross-validation to get a two-component model with 

R2X(cum): 0.893, Q2(cum): 0.812. The model shows a good 

percentage of explanation of the X-variables R2X(cum), 

together with a good percentage in the prediction ability as 

shown by Q2(cum) and the both models results have a 

remarkable agreement. 

 

 

Fig. 4 PCA score vectors (t1 and t2) of the algorithm using nominal process data 

 

 

Fig. 5 PCA score vectors (t1 and t2) of SIMCA-P software using nominal process data 

 

The second model was validated to the spacecraft telemetry, 

and it has been built by using "810" observations for both 

nominal and faulty operations of (ADCS) "777 normal data", 

"33 faulty data". As we mentioned in Section III and referred 

to (NIPALS) algorithm that T=P
T
X, so the score vectors in the 

score plot represents the principle component (new variables) 
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ti and Pi represent the loadings vectors (eigenvectors of the 

covariance matrix) or variables coefficients. Figs. 6 (a) and 7 

(a) show scatter plots of the two score vectors (t1 and t2) for 

both our PCA algorithm and SIMCA-P software that provide a 

clear vision of the dispersion of the data, with two main 

groups: normal and faulty data. This clustering is shown by 

manually highlighted by black line clusters in the plot (for 

visual purposes). The analysis proves the capability of the 

model to create unique data clusters and compare the 

characteristics of each one. In addition, a clear interference 

can be detected between two groups in observation "N 788" 

and it is shown by manually highlighted with red dotted circle 

in the score plot and the explanation for this will be introduced 

afterwards. Additionally, another attempt has been made by 

expanding the X-matrix with square terms, cross product and 

cubic terms between the important variables that represent the 

most effective influence regarding the fault. Furthermore, the 

model is fitted by cross-validation to get a two-component 

model with R2X(cum): 0.882, Q2(cum): 0.793. More study is 

conducted by examining the loading plots of both PCA 

algorithm and SIMCA-P software to investigate the 

relationships between the different variables. Figs. 6 (b) and 7 

(b) show the loading plots that clarify the relations between 

variables. As we explain before the score and loading plots are 

superimposed, so by investigating the loading plots one can 

detect directly which variables are more responsible for 

affecting a specified group of data in the score plot. Finally, 

assessment of both models results shows a significant 

agreement. 
 

 

Fig. 6 (a) PCA algorithm score plot using the training dataset 

 

 

Fig. 6 (b) PCA algorithm loading plot using the training dataset 

 

Fig. 7 (a) SIMCA-P software score plot using the training dataset 

 

 

Fig. 7 (b) SIMCA-P software loading plot using the training dataset 

 

From Figs. 6 and 7 one can notice how angular velocities 

(ωx), (ωy), (ωz), quaternion (q2) in the left corner of the 

loading plot contribute to the left swarm (faulty states) of data 

in the score plot. In other words, these variables are directly 

correlated with the faulty states while the pitch angle (Theta) 

is inversely correlated with them. A further investigation 

carried out by using the contribution plot named variables 

importance to projection (VIP) bar plot Fig. 8. The plot 

explains the anomaly identification across the features deemed 

most critical in determining the overall health status of the 

process operation and shows that the variables mentioned 

above ωx, ωy, ωz, q2, and Theta are most critical. More 

investigation was carried out using contribution plots which 

represent the unexplained variation (”residuals”) in the model 

and can be used to define a control limit in a direction 

perpendicular to the PC-model hyperplane and detect 

processes upsets (spikes in telemetry data that couldn't be 

observed by scatter plots) by determining moderate outliers. 

Figs. 9 and 10 demonstrate both our PCA contribution plot 

and SIMCA-P plot that is named distance to model X 

(DModX). From both plots, one can note that the most of the 

observations from "N1" to "N777" used to train the model are 

inside or nearly inside the model critical distance (D-Critical 

0.05) which indicates that in this time interval the process is 

fairly stable, and no new process event is recognized. 
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However, the last observations from "N778" to "N810" don't 

fit the model well, and indicate that a new process behavior 

has become establish and ought to be scrutinized more closely 

and observation "N778" is farthest away from the model plane 

displays largest portion of unexplained variation. 

 

 

Fig. 8 SIMCA-P variables importance in projection 

 

 

Fig. 9 SIMCA-P DModX contribution plot 
 

 

Fig. 10 PCA algorithm contribution plot 

 

Further investigation can be carried out using control charts. 

Fig. 11 shows the control Hotelling’s T
2
 and DModX (model 

residual) plots with the training set. A clear advantage is 

realized from modeling the X-space over the present 

approaches the Hotelling’s T
2
 chart failed to detect this shift 

but is alarmed through the model residual DModX starting 

from observation "N778". One can observe that the score plot 

model cannot differentiate between the faulty telemetry 

"N778" with the others normal ones in both models results 

acquired by SIMCA-P and the proposed algorithm. The 

explanation for this is the difference in goal between 

supervised and unsupervised learning methods. The 

unsupervised PCA is a well-known multivariate technique for 

exploratory data analysis. But, supervised pattern recognition 

techniques differ from PCA in that the goal is to detect 

similarities between objects and find groups in the data on the 

basis of calculated distances, whereas PCA does not focus on 

how many groups will be found. Consequently, Also PCA do 

not use information related to predefined classes of objects. 

On the other hand, supervised pattern recognition requires a 

priori information on the set of samples that is used for 

classification purposes. Gathering both control and residual 

contribution charts are very informative and enables strong 

and moderate process outliers to be considered 

simultaneously. 
 

 

 

Fig. 11 Monitoring system built for alarm 

 

Fig. 12 explores the contribution bar plot that is used to 

understand which variables contribute most strongly to an 

observed process change. One can notice that the angular 

velocity of spacecraft ωy , quaternion elements q2 of the 

satellite orientation in orbital coordinate system (OCS) and the 

pitch angle (Theta) giving an alarm on the occurrence of the 

faulty state due to high angler velocity which caused by the 

beginning of high rate damping mode (detumbling mode) 
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occurs. In addition, the dissimilarity between faulty 

observation "N778" and the rest faulty ones is a critical 

intention. This unique direction is regarding to that faulty 

telemetry "N778" has the higher effect of the pitch angle 

(Theta) instead of reverse effect in others faulty telemetry and 

this is reasonable, due to the beginning of occurrence of high 

rate damping mode of the spacecraft.  

Additional analysis using multivariate control charts are 

crucial objective because the contribution plots will not 

explicitly indicate the cause of this shift provides good insight 

into plausible causes or variables related to the causes. To 

detect special events, control chart technique is routinely used 

to monitor key process variables and quality over time. So, the 

proposed algorithm has the capability to detect large changes 

like a shift in average or general drift overtime via 

investigating the telemetry data over time. Both Figs. 13 and 

14 show that the process shifts could be tackled using the 

control chart of the PCA algorithm and SIMCA-P ''Shewhart 

control chart '' that are used as an early warning trend monitor. 

Gathering both control and residual contribution charts are 

very informative and enables strong and moderate process 

outliers to be considered simultaneously. 

VIII. CONCLUSION 

The unsupervised learning principle component analysis 

(PCA) algorithm is introduced to monitor the spacecraft 

operations status via a practical application on attitude 

determination and control subsystem (ADCS). The algorithm 

is based on the multivariate projection technique and applied 

to spacecraft telemetry data to manage ADCS operations and 

overcome faulty state. The algorithm exploits telemetry data 

for model building and testing. The analysis results clarify that 

the algorithm has the capability to supervise the major trends 

in the data and compares the characteristics of each one and 

capable to correlate the clusters with low cardinalities to their 

corresponding trigger events. Furthermore, the analysis results 

acquired by our algorithm and soft independent model for the 

class analogy (SIMCA-P) software were compared together 

and show an evident agreement. The algorithm proves that it 

can be used as an effective tool for monitoring ADCS 

operations status and deals with multiple process states.  

In the near future, we aim at adopting and evolving the 

approach into a more powerful tool by extending the work to 

be implemented for more than one faulty system and coupled 

with supervised learning techniques like support vector 

machines (SVMs) and projection to latent structure 

discriminant analysis (PLS-DA) to solve the relevant 

problems.  

 

 

Fig. 12 Contribution to variables weight plot 

 

 

Fig. 13 PCA algorithm control charts for process shifts 

 

 

Fig. 14 SIMCA-P Shewhart control charts for process shifts 
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