
 

 

  
Abstract—This paper describes a cycle accurate simulation results 

of weight values learned by an auto-encoder behavior model in terms 
of pre-route simulation. Given the results we visualized the first layer 
representations with natural images. Many common deep learning 
threads have focused on learning high-level abstraction of unlabeled 
raw data by unsupervised feature learning. However, in the process of 
handling such a huge amount of data, the learning method’s 
computation complexity and time limited advanced research. These 
limitations came from the fact these algorithms were computed by 
using only single core CPUs. For this reason, parallel-based hardware, 
FPGAs, was seen as a possible solution to overcome these limitations. 
We adopted and simulated the ready-made auto-encoder to design a 
behavior model in VerilogHDL1 before designing hardware. With the 
auto-encoder behavior model pre-route simulation, we obtained the 
cycle accurate results of the parameter of each hidden layer by using 
MODELSIM2. The cycle accurate results are very important factor in 
designing a parallel-based digital hardware. Finally this paper shows 
an appropriate operation of behavior model based pre-route simulation. 
Moreover, we visualized learning latent representations of the first 
hidden layer with Kyoto natural image dataset. 
 

Keywords—Auto-encoder, Behavior model simulation, Digital 
hardware design, Pre-route simulation, Unsupervised feature learning. 

I. INTRODUCTION 
HE performance of the deep learning algorithm is very 
dependent on input data. This explains that much of the 

practical effort in exploiting the algorithms start into a design 
strategy of representation learning of input [16]. That is to say, 
the learning strategy, called unsupervised feature learning, 
extracts and organizes the underlying explanatory factors latent 
in the observed milieu of low-level sensory data [1]. This 
pre-training internal distributed representations of the raw data 
mostly helps initializing parameters of the deep architectures in 
an optimal conditions to be trained well. Then after the 
pre-training, the deep networks can be fine-tuned with not 
randomized but the appropriate learned weight values [2], [3]. 

On the other hand, there has been notable approach in 
increasing performance of the deep learning algorithms, 
especially for training procedure by using FPGAs[4], [5],[17]. 
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A reconfigurability and inherent parallelism are important 
features of the FPGAs. The deep learning algorithms can be 
designed through the original and useful hardware architecture. 

 With this low-level structure, the algorithms have been 
shown to reduce the whole training time, increase performance 
of real time classification tasks, and discover high-level 
abstract features in more complex deep algorithms [4], [5], 
[17], [18]. Despite of these several advantageous parts, 
designing such high-level algorithms on FPGAs is still very 
intractable and it can be very stubborn work since it makes 
many researchers complicate to directly modify the designed 
algorithm [6]. For this reason, we proposed a pre-route 
simulation regarded as a bridge between an inflexible hardware 
and a software relatively changeable on modification of 
designed algorithm. The simulation can be quite essential to 
design the high-level systems, such as deep learning or 
unsupervised pre-training algorithms, based on complex digital 
hardware. 

This paper highlighted making use of our own designed a 
pre-route simulation model of the sparse auto-encoder 
algorithm. Throughout result of utilizing the simulation, we 
presented a feasibility of greedy layer-wise unsupervised 
pre-training digital hardware circuit, FPGAs [8]. In other 
words, we applied a novel digital hardware simulation 
framework to the auto-encoder to discover very generic 
features of the input. We used a Kyoto natural image dataset.  

The algorithm’s simulation composed of the low-level 
behavior model in VerilogHDL. Using the designed behavior 
model, we pre-trained the auto-encoder architecture with 
L-BFGS optimization method [7] which is our own designed in 
VerilogHDL, on MODELSIM simulator. Given the extracted 
unknown structure from the input distribution, we showed 
significant results by using MATLAB. We visualized the 
high-level abstraction of the input natural images, from the 
behavior model simulation [20]. 

The main objective of this paper, first, is to describe the 
feasibility of high-level algorithm, unsupervised auto-encoder 
learning algorithm on digital hardware circuits. To show the 
possibility, we introduced the pre-routing simulation 
methodology with showing the cycle accurate result of the 
algorithm. It is possible to fast and accurate modify the revised 
algorithm through the procedure of an intractable hardware 
design. Also, case study of designing the auto-encoder learning 
structure with the pre-route simulation platform can be of help 
to who want to implement pre-route simulation before 
designing the synthesizable RTL3 model. 
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II. UNSUPERVISED FEATURE LEARNING 

A. Unsupervised Feature Learning 
An unsupervised feature learning method is to capture the 

unknown factors of latent variation that underlie the input 
distribution. Such unsupervised learning of representations 
often learns the posterior distribution P(y|x) of the underlying 
features for the raw input distribution P(x) [8]. 

According to Tesauro [9], deep learning architectures was 
too difficult to train, since a gradient descent optimization 
method might get stuck in poor solutions, such as local 
minimum, with randomly initialized starting parameters. In 
other words, it was a quite difficult task to search the parameter 
space of deep architectures. However, Hinton et al. [1] 
published a greedy layer-wise unsupervised learning method to 
address the training problem. By using this unsupervised 
feature training strategy, we can initialize the parameters in a 
region near an optimal local minimum for fast and accurate 
optimization process. With the optimal loaded parameters, it 
shows better performance of generalization or classification 
with learned high-level abstractions of the input. Considering 
the learning method from a different point of view, 
unsupervised pre-training acts as a regularizer, by adding an 
infinite penalty term on the cost function of auto-encoder [10]. 
More intuitively, we can consider the optimal initialization 
parameters as inherently imposing penalty on the parameters of 
the networks. Each layer trained in unsupervised learning 
method corresponds with sparse auto-encoder, we will describe 
in next section. 

B. Auto-Encoder with Sparsity 
An auto-encoder is a sort of unsupervised learning algorithm 

which applies back-propagation algorithm for training 
architecture [11], [12]. There are three layers, input, hidden and 
output layers, in the single auto-encoder. First two layers, input 
and hidden, represent an encoder part. Next two layers, hidden 
and output, act as a decoder. Setting identical number of units in 
the input and the output layers can make output values same as 
an input values. 

 

 
Fig. 1 Auto-encoder structure 

 
It seems like useless arranging the units to reconstruct the 

input data similar as identity function. However, by limiting the 
number of hidden units in a constraint, we can extract 
significant features about input data. As mentioned above, the 
latent features of the input data are critical for recognition and 
classification of the input one.  

Besides, we used the logistic sigmoid function for activation 
function of each unit, applied element wise of the vector z.  
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Cost function has a sparse constraint which imposes on the 

hidden layer. Overall cost function of auto-encoder is as 
follows. 

 

,
1

2
|| , ||

2
 

 
The notation of ,  is a nonlinear form of hypothesis, 

i.e. the output of each computational hidden unit. The first term 
is an average of sum of squared error term. The second one is a 
regularization term which tends to prevent over-fitting by 
decreasing the magnitude of the weight. The λ is a weight decay 
hyper-parameter which controls the balance between two 
terms. 

To reduce the complexity of computation, we enforce a 
sparse constraint on the hidden units. An average activation of 
each hidden unit j would be close to specific sparsity parameter 
(ρ) as below. 

 
1

 

 
To satisfy this restraint, we choose a KL divergence4 for 

hidden unit activation penalty term as follows [20]: 
 

|| 1
1
1

 

 
Notations of above two formulas are descripted in footnote5. 

Thus, to minimize the above penalty term, we add it to our cost 
function. 

 

, , ||  

 
The hyper-parameter β is control parameter for sparsity 

penalty term. Now, to complete the pre-training of 
auto-encoder, we have only to optimize the objective function 
by using optimization method. We chose the L-BFGS 
optimization method with exponentially decreasing step length 
[13] instead of any other adaptive learning methods, such as 
Armijo or Wolfe conditions. The simple procedure of the 
back-propagation algorithm for auto-encoder is as follows.  

First step is to perform a “feed forward pass” to compute all 
the activations from input layer to output layer, the output value 

 
4Kullback-Leibler divergence: non-symmetric measure of the difference 

between two probability distributions. 
5 Notation i and j are the index of input and hidden unit. is the index of 

layer. is the number of input data. is the output layer. 
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