Bi-linear Complementarity Problem
Authors: Chao Wang, Ting-Zhu Huang Chen Jia
Abstract:
In this paper, we propose a new linear complementarity problem named as bi-linear complementarity problem (BLCP) and the method for solving BLCP. In addition, the algorithm for error estimation of BLCP is also given. Numerical experiments show that the algorithm is efficient.
Keywords: Bi-linear complementarity problem, Linear complementarity problem, Extended linear complementarity problem, Error estimation, P-matrix, M-matrix.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1088174
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1733References:
[1] C. W. Cryer and Y. Lin, An alternating direction implicit algorithm for the
solution of linear complementarity problems arising from free boundary
problems, Appl. Math. Optimization, 13 (1985) 1-17.
[2] C. E. Lemke, Bimatrix equilibrium points and mathematical programming,
Management Science, 11 (1965) 681-689.
[3] J. Rohn, Systems of linear interval equations, Lin. Alg. Appl., 126 (1989),
39–78.
[4] F. Pfeiffer and C. Glocker, Multibody Dynamics with Unilateral Contacts,
Wiley Ser. NonlinearSci., Wiley, New York, 1996.
[5] R. W. Cottle, J. S. Pang, and R. E. Stone, The Linear Complementarity
Problem, Academic Press, San Diego, 1992.
[6] J. T. J. van Eijndhoven, Solving the linear complementarity problem in
circuit simulation, SIAM J. Control and Optimization, 24 (1986), 1050-
1062.
[7] K. G. Murty, Linear Complementarity, Linear and Nonlinear Programming,
HeldermannVerlag, Berlin, 1988.
[8] T. Hansen and A. S. Manne, Equilibrium and linear complementarity—
an economy with institutional constraints on prices, Equilibrium and
Disequilibrium in Economic Theory, 4 (1978) 227-237.
[9] Bart De Moor, Lieven Vandenberghe, Joos Vandewalle, The generalized
linear complementarity problem and an algorithm to find all its solutions,
Mathematical Programming, 57 (1992) 415-426.
[10] Zhensheng Yu, Ke Su and Ji Lin, A smoothing Levenberg-Marquardt
method for the extended linear complementarity problem, Appl. Math.
Modelling, 33 (2009) 3409-3420.
[11] C.F. Ma, L.H. Jiang, D.S. Wang, The convergence of a smoothing
damped Gauss-Newton method for nonlinearcomplementarity problem,
Nonlinear Analysis: Real World Applications, 10 (2009) 2072C2087.
[12] Dong-Hui Li, Yi-Yong Nie, Jin-Ping Zeng, Conjugate gradient menthod
for the linear complementarity problem with S-martix, Math. and Computer
Modelling, 48 (2008) 918-928.
[13] G. Alefeld and U. Scha fer, Karlsruhe, Iterative Methods for Linear
Complementarity Problems with Interval Data, Computing, 70 (2003)
235-259.
[14] C. Wang, T.-Z. Huang, Chun Wen, An algorithm for linear complementarity
problems with interval data, submitted.
[15] R.S. Varga, Matrix Iterative Analysis, Prentice Hall, London 1962.
[16] Uwe Schafer, A Linear Complementarity Problem with a P-Matrix,
SIAM Review, 46(2004) 189-201.