Bi-linear Complementarity Problem
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Bi-linear Complementarity Problem

Authors: Chao Wang, Ting-Zhu Huang Chen Jia

Abstract:

In this paper, we propose a new linear complementarity problem named as bi-linear complementarity problem (BLCP) and the method for solving BLCP. In addition, the algorithm for error estimation of BLCP is also given. Numerical experiments show that the algorithm is efficient.

Keywords: Bi-linear complementarity problem, Linear complementarity problem, Extended linear complementarity problem, Error estimation, P-matrix, M-matrix.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1088174

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1733

References:


[1] C. W. Cryer and Y. Lin, An alternating direction implicit algorithm for the solution of linear complementarity problems arising from free boundary problems, Appl. Math. Optimization, 13 (1985) 1-17.
[2] C. E. Lemke, Bimatrix equilibrium points and mathematical programming, Management Science, 11 (1965) 681-689.
[3] J. Rohn, Systems of linear interval equations, Lin. Alg. Appl., 126 (1989), 39–78.
[4] F. Pfeiffer and C. Glocker, Multibody Dynamics with Unilateral Contacts, Wiley Ser. NonlinearSci., Wiley, New York, 1996.
[5] R. W. Cottle, J. S. Pang, and R. E. Stone, The Linear Complementarity Problem, Academic Press, San Diego, 1992.
[6] J. T. J. van Eijndhoven, Solving the linear complementarity problem in circuit simulation, SIAM J. Control and Optimization, 24 (1986), 1050- 1062.
[7] K. G. Murty, Linear Complementarity, Linear and Nonlinear Programming, HeldermannVerlag, Berlin, 1988.
[8] T. Hansen and A. S. Manne, Equilibrium and linear complementarity— an economy with institutional constraints on prices, Equilibrium and Disequilibrium in Economic Theory, 4 (1978) 227-237.
[9] Bart De Moor, Lieven Vandenberghe, Joos Vandewalle, The generalized linear complementarity problem and an algorithm to find all its solutions, Mathematical Programming, 57 (1992) 415-426.
[10] Zhensheng Yu, Ke Su and Ji Lin, A smoothing Levenberg-Marquardt method for the extended linear complementarity problem, Appl. Math. Modelling, 33 (2009) 3409-3420.
[11] C.F. Ma, L.H. Jiang, D.S. Wang, The convergence of a smoothing damped Gauss-Newton method for nonlinearcomplementarity problem, Nonlinear Analysis: Real World Applications, 10 (2009) 2072C2087.
[12] Dong-Hui Li, Yi-Yong Nie, Jin-Ping Zeng, Conjugate gradient menthod for the linear complementarity problem with S-martix, Math. and Computer Modelling, 48 (2008) 918-928.
[13] G. Alefeld and U. Scha fer, Karlsruhe, Iterative Methods for Linear Complementarity Problems with Interval Data, Computing, 70 (2003) 235-259.
[14] C. Wang, T.-Z. Huang, Chun Wen, An algorithm for linear complementarity problems with interval data, submitted.
[15] R.S. Varga, Matrix Iterative Analysis, Prentice Hall, London 1962.
[16] Uwe Schafer, A Linear Complementarity Problem with a P-Matrix, SIAM Review, 46(2004) 189-201.