Search results for: iron oxide nanoparticles
544 The Catalytic Activity of Cu2O Microparticles
Authors: Kanda Wongwailikhit
Abstract:
Copper (I) oxide microparticles with the morphology of cubic and hollow sphere were synthesized with the assistance of surfactant as the shape controller. Both particles were then subjected to study the catalytic activity and observed the results of shape effects of catalysts on rate of catalytic reaction. The decolorizing reaction of crystal violet and sodium hydroxide was chosen and measured the decreasing of reactant with respect to times using spectrophotometer. The result revealed that morphology of crystal had no effect on the catalytic activity for crystal violet reaction but contributed to total surface area predominantly.Keywords: Copper (I) oxide, Catalytic activity, Crystal violet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2056543 Esterification of Free Fatty Acids in Crude Palm Oil Using Alumina-Doped Sulfated Tin Oxide as a Catalyst
Authors: Worawoot Prasitturattanachai, Kamchai Nuithitikul
Abstract:
The conventional production of biodiesel from crude palm oil which contains large amounts of free fatty acids in the presence of a homogeneous base catalyst confronts the problems of soap formation and very low yield of biodiesel. To overcome these problems, free fatty acids must be esterified to their esters in the presence of an acid catalyst prior to alkaline-catalyzed transesterification. Sulfated metal oxides are a promising group of catalysts due to their very high acidity. In this research, aluminadoped sulfated tin oxide (SO4 2-/Al2O3-SnO2) catalysts were prepared and used for esterification of free fatty acids in crude palm oil in a batch reactor. The SO4 2-/Al2O3-SnO2 catalysts were prepared from different Al precursors. The results showed that different Al precursors gave different activities of the SO4 2-/Al2O3-SnO2 catalysts. The esterification of free fatty acids in crude palm oil with methanol in the presence of SO4 2-/Al2O3-SnO2 catalysts followed first-order kinetics.
Keywords: Methyl ester, Biodiesel, Esterification, Sulfated tin oxide, Fatty acid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3060542 Improvement Plant Layout Using Systematic Layout Planning (SLP) for Increased Productivity
Authors: W. Wiyaratn, A. Watanapa
Abstract:
The objective of this research is to study plant layout of iron manufacturing based on the systematic layout planning pattern theory (SLP) for increased productivity. In this case study, amount of equipments and tools in iron production are studied. The detailed study of the plant layout such as operation process chart, flow of material and activity relationship chart has been investigated. The new plant layout has been designed and compared with the present plant layout. The SLP method showed that new plant layout significantly decrease the distance of material flow from billet cutting process until keeping in ware house.Keywords: Plant layout, Systematic Layout Planning, Flowanalysis, Activity relationship chart
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13900541 Synchrotron X-ray Based Investigation of Fe Environment in Porous Anode of Shewanella oneidensis Microbial Fuel Cell
Authors: Sunil Dehipawala, Gayathrie Amarasuriya, N. Gadura, G. Tremberger Jr, D. Lieberman, Harry Gafney, Todd Holden, T. Cheung
Abstract:
The iron environment in Fe-doped Vycor Anode was investigated with EXAFS using Brookhaven Synchrotron Light Source. The iron-reducing Shewanella oneidensis culture was grown in a microbial fuel cell under anaerobic respiration. The Fe bond length was found to decrease and correlate with the amount of biofilm growth on the Fe-doped Vycor Anode. The data suggests that Fe-doped Vycor Anode would be a good substrate to study the Shewanella oneidensis nanowire structure using EXAFS.Keywords: EXAFS, Fourier Transform, Microbial Fuel Cell, Shewanella oneidensis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1959540 Gradations in Concentration of Heavy and Mineral Elements with Distance and Depth of Soil in the Vicinity of Auto Mechanic Workshops in Sabon Gari, Kaduna State, Nigeria
Authors: E. D. Paul, H. Otanwa, O. F. Paul, A. J. Salifu, J. E. Toryila, C. E. Gimba
Abstract:
The concentration levels of six heavy metals (Cd, Cr, Fe, Ni, Pb and Zn) and two mineral elements (Ca and Mg) were determined in soil samples collected from the vicinity of two auto mechanic workshops in Sabon-Gari, Kaduna state, Nigeria, using Atomic Absorption Spectrometry (AAS), in order to compare the gradation of their concentrations with distance and depth of soil from the workshop sites. At site 1, concentrations of Lead, Chromium, Iron and Zinc were generally found to be above the World Health Organization limits, while those of Nickel and Cadmium fell within the limits. Iron had the highest concentration with a range of 176.274 ppm to 489.127 ppm at depths of 5 cm to 15 cm and a distance range of 5 m to 15 m, while the concentration of cadmium was least with a range of 0.001 ppm to 0.008 ppm at similar depth and distance ranges. In addition, there was more of calcium (11.521 ppm to 121.709 ppm), in all the samples, than magnesium (11.293 ppm to 21.635 ppm). Similar results were obtained for site II. The concentrations of all the metals analyzed showed a downward gradient with increase in depth and distance from both workshop sites except for iron and zinc at site 2. The immediate and remote implications of these findings on the biota are discussed.
Keywords: AAS, Heavy Metals, Mechanic Workshops, Soils.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2131539 Inventive Synthesis and Characterization of a Cesium Molybdate Compound: CsBi(MoO4)2
Authors: F. Kurtuluş, G. Çelik Gül
Abstract:
Cesium molybdates with general formula CsMIII(MoO4)2, where MIII = Bi, Dy, Pr, Er, exhibit rich polymorphism, and crystallize in a layered structure. These properties cause intensive studies on cesium molybdates. CsBi(MoO4)2 was synthesized by microwave method by using cerium sulphate, bismuth oxide and molybdenum (VI) oxide in an appropriate molar ratio. Characterizations were done by x-ray diffraction (XRD), fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy/energy dispersive analyze (SEM/EDS), thermo gravimetric/differantial thermal analysis (TG/DTA).Keywords: Cesium bismuth dimolybdate, microwave synthesis, powder x-ray diffraction, rare earth dimolybdates.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2054538 In vivo Therapeutic Potential of Biologically Synthesized Silver Nanoparticles
Authors: Kalakotla Shanker, G. Krishna Mohan
Abstract:
Nowadays, nanoparticles are being used in pharmacological studies for their exclusive properties such as small size, more surface area, biocompatibility and enhanced solubility. In view of this, the present study aimed to evaluate the antihyperglycemic potential of biologically synthesized silver nanoparticles (BSSNPs) and Gymnema sylvestre (GS) extract. The SEM and SEM analysis divulges that the BSSNPs were spherical in shape. EDAX spectrum exhibits peaks for the presence of silver, carbon, and oxygen atoms in the range of 1.0-3.1 keV. FT-IR reveals the binding properties of active bio-constituents responsible for capping and stabilizing BSSNPs. The results showed increased blood glucose, huge loss in body weight and downturn in plasma insulin. The GS extract (200 mg/kg, 400 mg/kg), BSSNPs (100 mg/kg, 200 mg/kg) and metformin 50 mg/kg were administered to the diabetic rats. BSSNPs at a dose level of 200 mg/kg (b.wt.p.o.) showed significant inhibition of (p<0.001) blood glucose levels as compared with GS extract treated group. The results obtained from study indicate that the BSSNP shows potent anti-diabetic activity.Keywords: BSSNP, G.sylvetre, wistar rats, antihyperglycemic activity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1128537 Comparative Analysis of Pit Composting and Vermicomposting in a Tropical Environment
Authors: E. Ewemoje Oluseyi, T. A. Ewemoje, A. A. Adedeji
Abstract:
Biodegradable solid waste disposal and management has been a major problem in Nigeria and indiscriminate dumping of this waste either into watercourses or drains has led to environmental hazards affecting public health. The study investigated the nutrients level of pit composting and vermicomposting. Wooden bins 60 cm × 30 cm × 30 cm3 in size were constructed and bedding materials (sawdust, egg shell, paper and grasses) and red worms (Eisenia fetida) introduced to facilitate the free movement and protection of the worms against harsh weather. A pit of 100 cm × 100 cm × 100 cm3 was dug and worms were introduced into the pit, which was turned every two weeks. Food waste was fed to the red worms in the bin and pit, respectively. The composts were harvested after 100 days and analysed. The analyses gave: nitrogen has average value 0.87 % and 1.29 %; phosphorus 0.66 % and 1.78 %; potassium 4.35 % and 6.27 % for the pit and vermicomposting, respectively. Higher nutrient status of vermicomposting over pit composting may be attributed to the secretions in the intestinal tracts of worms which are more readily available for plant growth. However, iron and aluminium were more in the pit compost than the vermin compost and this may be attributed to the iron and aluminium already present in the soil before the composting took place. Other nutrients in ppm concentrations were aluminium 4,999.50 and 3,989.33; iron 2,131.83 and 633.40 for the pit and vermicomposting, respectively. These nutrients are only needed by plants in small quantities. Hence, vermicomposting has the higher concentration of essential nutrients necessary for healthy plant growth.
Keywords: Food wastes, pit composting, plant nutrient status, tropical environment, vermicomposting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842536 Structural and Electrical Characterization of Polypyrrole and Cobalt Aluminum Oxide Nanocomposites
Authors: Sutar Rani Ananda, M. V. Murugendrappa
Abstract:
To investigate electrical properties of conducting polypyrrole (PPy) and cobalt aluminum oxide (CAO) nanocomposites, impedance analyzer in frequency range of 100 Hz to 5 MHz is used. In this work, PPy/CAO nanocomposites were synthesized by chemical oxidation polymerization method in different weight percent of CAO in PPy. The dielectric properties and AC conductivity studies were carried out for different nanocomposites in temperature range of room temperature to 180 °C. With the increase in frequency, the dielectric constant for all the nanocomposites was observed to decrease. AC conductivity of PPy was improved by addition of CAO nanopowder.Keywords: Polypyrrole, dielectric constant, dielectric loss, AC conductivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1405535 Butene Catalytic Cracking to Propylene over Iron and Phosphorus Modified HZSM-5
Authors: Jianwen Li, Hongfang Ma, Haitao Zhang, Qiwen Sun, Weiyong Ying
Abstract:
HZSM-5 zeolites modified by iron and phosphorus were applied in catalytic cracking of butene. N2 adsorption and NH3-TPD were employed to measure the structure and acidity of catalysts. The results indicate that increasing phosphorus loading decreased surface area, pore volume and strong acidity of catalysts. The addition of phosphorus significantly decreased butene conversion and promoted propylene selectivity. The catalytic performance of catalyst was strongly dependent on the reaction conditions. Appropriate reaction conditions could suppress side reactions and enhance propylene selectivity.Keywords: Butene catalytic cracking, HZSM-5, modification, reaction conditions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1922534 Predicting Effective Permeability of Nanodielectric Composites Bonded by Soft Magnetic Nanoparticles
Authors: A. Thabet, M. Repetto
Abstract:
Dielectric materials play an important role in broad applications, such as electrical and electromagnetic applications. This research studied the prediction of effective permeability of composite and nanocomposite dielectric materials based on theoretical analysis to specify the effects of embedded magnetic inclusions in enhancing magnetic properties of dielectrics. Effective permeability of Plastics and Glass nanodielectrics have been predicted with adding various types and percentages of magnetic nano-particles (Fe, Ni-Cu, Ni-Fe, MgZn_Ferrite, NiZn_Ferrite) for formulating new nanodielectric magnetic industrial materials. Soft nanoparticles powders that have been used in new nanodielectrics often possess the structure of a particle size in the range of micrometer- to nano-sized grains and magnetic isotropy, e.g., a random distribution of magnetic easy axes of the nanograins. It has been succeeded for enhancing characteristics of new nanodielectric magnetic industrial materials. The results have shown a significant effect of inclusions distribution on the effective permeability of nanodielectric magnetic composites, and so, explained the effect of magnetic inclusions types and their concentration on the effective permeability of nanodielectric magnetic materials.
Keywords: Nanoparticles, Nanodielectrics, Nanocomposites, Effective Permeability, Magnetic Properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2760533 Decay Heat Contribution Analyses of Curium Isotopes in the Mixed Oxide Nuclear Fuel
Authors: S. S. Nafee, A. K. Al-Ramady, S. A. Shaheen
Abstract:
The mixed oxide nuclear fuel (MOX) of U and Pu contains several percent of fission products and minor actinides, such as neptunium, americium and curium. It is important to determine accurately the decay heat from Curium isotopes as they contribute significantly in the MOX fuel. This heat generation can cause samples to melt very quickly if excessive quantities of curium are present. In the present paper, we introduce a new approach that can predict the decay heat from curium isotopes. This work is a part of the project funded by King Abdulaziz City of Science and Technology (KASCT), Long-Term Comprehensive National Plan for Science, Technology and Innovations, and take place in King Abdulaziz University (KAU), Saudi Arabia. The approach is based on the numerical solution of coupled linear differential equations that describe decays and buildups of many nuclides to calculate the decay heat produced after shutdown. Results show the consistency and reliability of the approach applied.
Keywords: Decay heat, Mixed oxide nuclear fuel, Numerical Solution of Linear Differential Equations, and Curium isotopes
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1889532 Preparation and Characterization of Self Assembled Gold Nanoparticles on Amino Functionalized SiO2 Dielectric Core
Authors: M.E.khosroshahi , M.S.Nourbakhsh
Abstract:
Wet chemistry methods are used to prepare the SiO2/Au nanoshells. The purpose of this research was to synthesize gold coated SiO2 nanoshells for biomedical applications. Tunable nanoshells were prepared by using different colloidal concentrations. The nanoshells are characterized by FTIR, XRD, UV-Vis spectroscopy and atomic force microscopy (AFM). The FTIR results confirmed the functionalization of the surfaces of silica nanoparticles with NH2 terminal groups. A tunable absorption was observed between 470-600 nm with a maximum range of 530-560 nm. Based on the XRD results three main peaks of Au (111), (200) and (220) were identified. Also AFM results showed that the silica core diameter was about 100 nm and the thickness of gold shell about 10 nm.Keywords: Gold nanoshells, Synthesis, UV-vis spectroscopy, XRD, AFM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3278531 Optimization of HALO Structure Effects in 45nm p-type MOSFETs Device Using Taguchi Method
Authors: F. Salehuddin, I. Ahmad, F. A. Hamid, A. Zaharim, H. A. Elgomati, B. Y. Majlis, P. R. Apte
Abstract:
In this study, the Taguchi method was used to optimize the effect of HALO structure or halo implant variations on threshold voltage (VTH) and leakage current (ILeak) in 45nm p-type Metal Oxide Semiconductor Field Effect Transistors (MOSFETs) device. Besides halo implant dose, the other process parameters which used were Source/Drain (S/D) implant dose, oxide growth temperature and silicide anneal temperature. This work was done using TCAD simulator, consisting of a process simulator, ATHENA and device simulator, ATLAS. These two simulators were combined with Taguchi method to aid in design and optimize the process parameters. In this research, the most effective process parameters with respect to VTH and ILeak are halo implant dose (40%) and S/D implant dose (52%) respectively. Whereas the second ranking factor affecting VTH and ILeak are oxide growth temperature (32%) and halo implant dose (34%) respectively. The results show that after optimizations approaches is -0.157V at ILeak=0.195mA/μm.
Keywords: Optimization, p-type MOSFETs device, HALO Structure, Taguchi Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2039530 Modeling the Fischer-Tropsch Reaction In a Slurry Bubble Column Reactor
Authors: F. Gholami, M. Torabi Angaji, Z. Gholami
Abstract:
Fischer-Tropsch synthesis is one of the most important catalytic reactions that convert the synthetic gas to light and heavy hydrocarbons. One of the main issues is selecting the type of reactor. The slurry bubble reactor is suitable choice for Fischer- Tropsch synthesis because of its good qualification to transfer heat and mass, high durability of catalyst, low cost maintenance and repair. The more common catalysts for Fischer-Tropsch synthesis are Iron-based and Cobalt-based catalysts, the advantage of these catalysts on each other depends on which type of hydrocarbons we desire to produce. In this study, Fischer-Tropsch synthesis is modeled with Iron and Cobalt catalysts in a slurry bubble reactor considering mass and momentum balance and the hydrodynamic relations effect on the reactor behavior. Profiles of reactant conversion and reactant concentration in gas and liquid phases were determined as the functions of residence time in the reactor. The effects of temperature, pressure, liquid velocity, reactor diameter, catalyst diameter, gasliquid and liquid-solid mass transfer coefficients and kinetic coefficients on the reactant conversion have been studied. With 5% increase of liquid velocity (with Iron catalyst), H2 conversions increase about 6% and CO conversion increase about 4%, With 8% increase of liquid velocity (with Cobalt catalyst), H2 conversions increase about 26% and CO conversion increase about 4%. With 20% increase of gas-liquid mass transfer coefficient (with Iron catalyst), H2 conversions increase about 12% and CO conversion increase about 10% and with Cobalt catalyst H2 conversions increase about 10% and CO conversion increase about 6%. Results show that the process is sensitive to gas-liquid mass transfer coefficient and optimum condition operation occurs in maximum possible liquid velocity. This velocity must be more than minimum fluidization velocity and less than terminal velocity in such a way that avoid catalysts particles from leaving the fluidized bed.Keywords: Modeling, Fischer-Tropsch Synthesis, Slurry Bubble Column Reactor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3019529 Lattice Boltzmann Simulation of MHD Natural Convection in a Nanofluid-Filled Enclosure with Non-Uniform Heating on Both Side Walls
Authors: Imen Mejri, Ahmed Mahmoudi, Mohamed A. Abbassi, Ahmed Omri
Abstract:
This paper examines the natural convection in a square enclosure filled with a water-Al2O3 nanofluid and is subjected to a magnetic field. The side walls of the cavity have spatially varying sinusoidal temperature distributions. The horizontal walls are adiabatic. Lattice Boltzmann method (LBM) is applied to solve the coupled equations of flow and temperature fields. This study has been carried out for the pertinent parameters in the following ranges: Rayleigh number of the base fluid, Ra=103 to 106, Hartmann number varied from Ha=0 to 90, phase deviation (γ=0, π/4, π/2, 3π/4 and π) and the solid volume fraction of the nanoparticles between Ø = 0 and 6%. The results show that the heat transfer rate increases with an increase of the Rayleigh number but it decreases with an increase of the Hartmann number. For γ=π/2 and Ra=105 the magnetic field augments the effect of nanoparticles. At Ha=0, the greatest effects of nanoparticles are obtained at γ = 0 and π/4 for Ra=104 and 105 respectively.
Keywords: Lattice Boltzmann Method, magnetic field, Natural convection, nanofluid, Sinusoidal temperature distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3014528 Economic Optimization of Shell and Tube Heat Exchanger Using Nanofluid
Authors: Hassan Hajabdollahi
Abstract:
Economic optimization of shell and tube heat exchanger (STHE) is presented in this paper. To increase the rate of heat transfer, copper oxide (CuO) nanoparticle is added into the tube side fluid and their optimum results are compared with the case of without additive nanoparticle. Total annual cost (TAC) is selected as fitness function and nine decision variables related to the heat exchanger parameters as well as concentration of nanoparticle are considered. Optimization results reveal the noticeable improvement in the TAC and in the case of heat exchanger working with nanofluid compared with the case of base fluid (8.9%). Comparison of the results between two studied cases also reveal that the lower tube diameter, tube number, and baffle spacing are needed in the case of heat exchanger working with nanofluid compared with the case of base fluid.
Keywords: Shell and tube heat exchanger, nanoparticles additive, total annual cost, particle volumetric concentration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1119527 A CFD Study of Heat Transfer Enhancement in Pipe Flow with Al2O3 Nanofluid
Authors: P.Kumar
Abstract:
Fluids are used for heat transfer in many engineering equipments. Water, ethylene glycol and propylene glycol are some of the common heat transfer fluids. Over the years, in an attempt to reduce the size of the equipment and/or efficiency of the process, various techniques have been employed to improve the heat transfer rate of these fluids. Surface modification, use of inserts and increased fluid velocity are some examples of heat transfer enhancement techniques. Addition of milli or micro sized particles to the heat transfer fluid is another way of improving heat transfer rate. Though this looks simple, this method has practical problems such as high pressure loss, clogging and erosion of the material of construction. These problems can be overcome by using nanofluids, which is a dispersion of nanosized particles in a base fluid. Nanoparticles increase the thermal conductivity of the base fluid manifold which in turn increases the heat transfer rate. In this work, the heat transfer enhancement using aluminium oxide nanofluid has been studied by computational fluid dynamic modeling of the nanofluid flow adopting the single phase approach.Keywords: Heat transfer intensification, nanofluid, CFD, friction factor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3796526 Synthesis and Characterization of Nickel and Sulphur Sensitized Zinc Oxide Structures
Authors: Ella C. Linganiso, Bonex W. Mwakikunga, Trilock Singh, Sanjay Mathur, Odireleng M. Ntwaeaborwa
Abstract:
The use of nanostructured semiconducting material to catalyze degradation of environmental pollutants still receives much attention to date. One of the desired characteristics for pollutant degradation under ultra-violet visible light is the materials with extended carrier charge separation that allows for electronic transfer between the catalyst and the pollutants. In this work, zinc oxide n-type semiconductor vertically aligned structures were fabricated on silicon (100) substrates using the chemical bath deposition method. The as-synthesized structures were treated with nickel and sulphur. X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy were used to characterize the phase purity, structural dimensions and elemental composition of the obtained structures respectively. Photoluminescence emission measurements showed a decrease in both the near band edge emission as well as the defect band emission upon addition of nickel and sulphur with different concentrations. This was attributed to increased charger-carrier-separation due to the presence of Ni-S material on ZnO surface, which is linked to improved charge transfer during photocatalytic reactions.
Keywords: Carrier-charge-separation, nickel, sulphur, zinc oxide, photoluminescence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 855525 Gate Tunnel Current Calculation for NMOSFET Based on Deep Sub-Micron Effects
Authors: Ashwani K. Rana, Narottam Chand, Vinod Kapoor
Abstract:
Aggressive scaling of MOS devices requires use of ultra-thin gate oxides to maintain a reasonable short channel effect and to take the advantage of higher density, high speed, lower cost etc. Such thin oxides give rise to high electric fields, resulting in considerable gate tunneling current through gate oxide in nano regime. Consequently, accurate analysis of gate tunneling current is very important especially in context of low power application. In this paper, a simple and efficient analytical model has been developed for channel and source/drain overlap region gate tunneling current through ultra thin gate oxide n-channel MOSFET with inevitable deep submicron effect (DSME).The results obtained have been verified with simulated and reported experimental results for the purpose of validation. It is shown that the calculated tunnel current is well fitted to the measured one over the entire oxide thickness range. The proposed model is suitable enough to be used in circuit simulator due to its simplicity. It is observed that neglecting deep sub-micron effect may lead to large error in the calculated gate tunneling current. It is found that temperature has almost negligible effect on gate tunneling current. It is also reported that gate tunneling current reduces with the increase of gate oxide thickness. The impact of source/drain overlap length is also assessed on gate tunneling current.
Keywords: Gate tunneling current, analytical model, gate dielectrics, non uniform poly gate doping, MOSFET, fringing field effect and image charges.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1732524 Control of Building Ventilation with CO2 Gas Sensors Based on Doped Magnesium Ferrite Nanoparticles for the Development of Construction and Infrastructure Industry
Authors: Maryam Kiani, Abdul Basit Kiani
Abstract:
To develop construction and infrastructure industry, sensors are highly desired to control building ventilation. Zinc doped magnesium ferrite nanoparticles (Z@MFO) (Zn = 0.0, 0.2, 0.3, 0.4) were prepared in this paper. Structural analyses confirmed the formation of spinel cubic nanostructures. X-Ray diffraction (XRD) data represent high reactive surface area due to small average particle size about 15 nm, which efficiently influences the gas sensing mechanism. The gas sensing property of Z@MFO for several gases was obtained by measuring the resistance as a function of different factors, such as composition and response time in air and in presence of gas. The sensitivity of spinel ferrite to CO2 at room temperature has been compared. The Z@MFO nano-structure exhibited high sensitivity represented good response time of (~1 min) to CO2, demonstrated that the material can be used in the field of gas sensors with high sensitivity and good selectivity at room temperature to control building ventilation. CO2 gas sensors play a vital role in ensuring the safety, comfort, and sustainability of modern building environments.
Keywords: MgFe2O4 nanoparticles, synthesis, gas sensing properties, X ray differentiation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 202523 An Advanced Technology for Renovation of Extruding Shafts
Authors: Dimitar Karastoyanov, Vladimir Monov
Abstract:
The paper is concerned with the technological process of renovation of shafts used in industrial manufacturing for extruding of sheet material. In the classical renovation technologies, a chrome based coating is applied to the working surface of the shaft in galvanic baths. The process, however, is known to be exclusively harmful due to the waste cyanide products. In this work, we present an advanced nanotechnology based on nonelectric chemical laying of a nickel coating with included nanoparticles. The technology is environmentally harmless and the new coating features an increased hardness and wear resistance. Results from experimental tests of the nanostructured nickel coating are presented and discussed.Keywords: Materials processing, nanoparticles, nickel coating, shafts renovation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1871522 Quartz Crystal Microbalance Based Hydrophobic Nanosensor for Lysozyme Detection
Authors: F. Yilmaz, Y. Saylan, A. Derazshamshir, S. Atay, A. Denizli
Abstract:
A quartz crystal microbalance (QCM) nanosensor was developed to detect lysozyme enzyme by functionalizing its gold surface with the attachment of poly(methacroyl-L-phenylalanine) (PMAPA) nanoparticles. PMAPA was chosen as a hydrophobic matrix. The hydrophobic nanoparticles were synthesized by micro-emulsion polymerization method. Hydrophobic QCM nanosensor was tested for real time detection of lysozyme enzyme from aqueous solution. The kinetic and affinity studies were determined by using lysozyme solutions with different concentrations. The responses related with mass (Δm) and frequency (Δf) shifts were used to evaluate adsorption properties.
Keywords: HIC, lysozyme, nanosensor, QCM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2171521 Effect of Field Dielectric Material on Performance of InGaAs Power LDMOSFET
Authors: Yashvir Singh, Swati Chamoli
Abstract:
In this paper, a power laterally-diffused metal-oxide-semiconductor field-effect transistor (LDMOSFET) on In0.53Ga0.47As is presented. The device utilizes a thicker field-oxide with low dielectric constant under the field-plate in order to achieve possible reduction in device capacitances and reduced-surface-field effect. Using 2D numerical simulations, performance of the proposed device is analyzed and compared with that of the conventional LDMOSFET. The proposed structure provides 50% increase in the breakdown voltage, 21% increase in transit frequency, and 72% improvement in figure-of-merit over the conventional device for same cell pitch.
Keywords: InGaAs, dielectric, lateral, power MOSFET.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910520 Using 3-Glycidoxypropyltrimethoxysilane Functionalized SiO2 Nanoparticles to Improve Flexural Properties of Glass Fibers/Epoxy Grid-Stiffened Composite Panels
Authors: Reza Eslami-Farsani, Hamed Khosravi, Saba Fayazzadeh
Abstract:
Lightweight and efficient structures have the aim to enhance the efficiency of the components in various industries. Toward this end, composites are one of the most widely used materials because of durability, high strength and modulus, and low weight. One type of the advanced composites is grid-stiffened composite (GSC) structures, which have been extensively considered in aerospace, automotive, and aircraft industries. They are one of the top candidates for replacing some of the traditional components, which are used here. Although there are a good number of published surveys on the design aspects and fabrication of GSC structures, little systematic work has been reported on their material modification to improve their properties, to our knowledge. Matrix modification using nanoparticles is an effective method to enhance the flexural properties of the fibrous composites. In the present study, a silanecoupling agent (3-glycidoxypropyltrimethoxysilane/3-GPTS) was introduced onto the silica (SiO2) nanoparticle surface and its effects on the three-point flexural response of isogrid E-glass/epoxy composites were assessed. Based on the Fourier Transform Infrared Spectrometer (FTIR) spectra, it was inferred that the 3-GPTS coupling agent was successfully grafted onto the surface of SiO2 nanoparticles after modification. Flexural test revealed an improvement of 16%, 14%, and 36% in stiffness, maximum load and energy absorption of the isogrid specimen filled with 3 wt.% 3- GPTS/SiO2 compared to the neat one. It would be worth mentioning that in these structures, considerable energy absorption was observed after the primary failure related to the load peak. In addition, 3- GPTMS functionalization had a positive effect on the flexural behavior of the multiscale isogrid composites. In conclusion, this study suggests that the addition of modified silica nanoparticles is a promising method to improve the flexural properties of the gridstiffened fibrous composite structures.Keywords: Isogrid-stiffened composite panels, silica nanoparticles, surface modification, flexural properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3008519 A Multistage Sulphidisation Flotation Procedure for a Low Grade Malachite Copper Ore
Authors: Tebogo P. Phetla, Edison Muzenda
Abstract:
This study was carried out to develop a flotation procedure for an oxide copper ore from a Region in Central Africa for producing an 18% copper concentrate for downstream processing at maximum recovery from a 4% copper feed grade. The copper recoveries achieved from the test work were less than 50% despite changes in reagent conditions (multistage sulphidisation, use of RCA emulsion and mixture, use of AM 2, etc). The poor recoveries were attributed to the mineralogy of the ore from which copper silicates accounted for approximately 70% (mass) of the copper minerals in the ore. These can be complex and difficult to float using conventional flotation methods. Best results were obtained using basic sulphidisation procedures, a high flotation temperature and extended flotation residence time.Keywords: Froth flotation, Sulphidisation, Copper oxide ore, Mineralogy, Recovery
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5828518 Heterophase Polymerization of Pyrrole and Thienyl End Capped Ethoxylated Nonyl Phenol by Iron (III) Chloride
Authors: Görkem Ülkü, Esin A. Güvel, Nesrin Köken, Nilgün Kızılcan
Abstract:
This study presents synthesis of novel block copolymers of thienyl end capped ethoxylated nonyl phenol and pyrrole via chemical oxidative polymerization. Ethoxylated nonyl phenol (ENP) was reacted with 2-thiophenecarbonyl chloride in order to synthesize a macromonomer containing thienyl end-group (ENPThC). Then copolymers of ENP-ThC and pyrrole were synthesized by chemical oxidative polymerization using iron (III) chloride as an oxidant. ENP-ThC served both as a macromonomer and an emulsifier for pyrrole with poor solubility in water. The synthesized block copolymers (ENP-ThC-b-PPy) were characterized by spectroscopic analysis and the electrical conductivities were investigated with 4-point probe technique.
Keywords: End capped polymer, ethoxylated nonyl phenol, heterophase polymerization, polypyrrole.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2527517 Treatment of Olive Mill Wastewater by Electrocoagulation Processes and Water Resources Management
Authors: Walid K. M. Bani Salameh, Hesham Ahmad, Mohammad Al-Shannag
Abstract:
In Jordan having deficit atmospheric precipitation, an increase in water demand occurs during summer months. Jordan can be regarded with a relatively high potential for wastewater recycling and reuse. The main purpose of this paper was to investigate the removal of total suspended solids (TSS) and chemical oxygen demand (COD) for olive mill wastewater (OMW) by electrocoagulation (EC) process. In the combination of electrocoagulation by using coupled iron–aluminum electrodes, the optimum working pH was found to be around 6. Results indicated that the electrocoagulation process allowed removal of TSS and COD of about 82.5% and 47.5%, respectively at 45 mA/cm2 after 70 minutes by using coupled iron–aluminum electrodes. It was demonstrated that the maximum TSS and COD removals were obtained at some optimum experimental parameters for current density, pH, and reaction time.
Keywords: Olive Mill Wastewater, Electrode, Electrocoagulation (EC), TSS, COD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2732516 Chitosan Nanoparticle as a Novel Delivery System for A/H1n1 Influenza Vaccine: Safe Property and Immunogenicity in Mice
Authors: Nguyen Anh Dzung, Nguyen Thi Ngoc Hà, Dang Thi Hong Van, Nguyen Thi Lan Phuong, Nguyen Thi Nhu Quynh, Dinh Minh Hiep, Le Van Hiep
Abstract:
The aims of this paper are to study the efficacy of chitosan nanoparticles in stimulating specific antibody against A/H1N1 influenza antigen in mice. Chitosan nanoparticles (CSN) were characterized by TEM. The results showed that the average size of CSN was from 80nm to 106nm. The efficacy of A/H1N1 influenza vaccine loaded on the surface of CSN showed that loading efficiency of A/H1N1 influenza antigen on CSN was from 93.75 to 100%. Safe property of the vaccine were tested. In 10 days post vaccination, group of CSN 30 kDa and 300 kDa loaded A/H1N1 influenza antigen were the rate of immune response on mice to be 100% (9/9) higher than Al(OH)3 and other adjuvant. 100% mice in the experiment of all groups had immune response in 20 days post vaccination. The results also showed that HI titer of the group using CSN 300 kDa as an adjuvant increased significantly up to 3971 HIU, over three-fold higher than the Al(OH)3 adjuvant, chitosan (CS), and one hundredfold than the A/H1N1 antigen only. Stability of the vaccine formulation was investigated.Keywords: Chitosan nanoparticles, A/H1N1 influenza antigen, vaccine, immunogenicity, adjuvant, antibody titer
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2488515 Preparation and Investigation of Photocatalytic Properties of ZnO Nanocrystals: Effect of Operational Parameters and Kinetic Study
Authors: N. Daneshvar, S. Aber, M. S. Seyed Dorraji, A. R. Khataee, M. H. Rasoulifard
Abstract:
ZnO nanocrystals with mean diameter size 14 nm have been prepared by precipitation method, and examined as photocatalyst for the UV-induced degradation of insecticide diazinon as deputy of organic pollutant in aqueous solution. The effects of various parameters, such as illumination time, the amount of photocatalyst, initial pH values and initial concentration of insecticide on the photocatalytic degradation diazinon were investigated to find desired conditions. In this case, the desired parameters were also tested for the treatment of real water containing the insecticide. Photodegradation efficiency of diazinon was compared between commercial and prepared ZnO nanocrystals. The results indicated that UV/ZnO process applying prepared nanocrystalline ZnO offered electrical energy efficiency and quantum yield better than commercial ZnO. The present study, on the base of Langmuir-Hinshelwood mechanism, illustrated a pseudo first-order kinetic model with rate constant of surface reaction equal to 0.209 mg l-1 min-1 and adsorption equilibrium constant of 0.124 l mg-1.Keywords: Zinc oxide nanopowder, Electricity consumption, Quantum yield, Nanoparticles, Photodegradation, Kinetic model, Insecticide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3566