WASET
	@article{(Open Science Index):https://publications.waset.org/pdf/7399,
	  title     = {Modeling the Fischer-Tropsch Reaction In a Slurry Bubble Column Reactor},
	  author    = {F. Gholami and  M. Torabi Angaji and  Z. Gholami},
	  country	= {},
	  institution	= {},
	  abstract     = {Fischer-Tropsch synthesis is one of the most
important catalytic reactions that convert the synthetic gas to light
and heavy hydrocarbons. One of the main issues is selecting the type
of reactor. The slurry bubble reactor is suitable choice for Fischer-
Tropsch synthesis because of its good qualification to transfer heat
and mass, high durability of catalyst, low cost maintenance and
repair. The more common catalysts for Fischer-Tropsch synthesis are
Iron-based and Cobalt-based catalysts, the advantage of these
catalysts on each other depends on which type of hydrocarbons we
desire to produce. In this study, Fischer-Tropsch synthesis is modeled
with Iron and Cobalt catalysts in a slurry bubble reactor considering
mass and momentum balance and the hydrodynamic relations effect
on the reactor behavior. Profiles of reactant conversion and reactant
concentration in gas and liquid phases were determined as the
functions of residence time in the reactor. The effects of temperature,
pressure, liquid velocity, reactor diameter, catalyst diameter, gasliquid
and liquid-solid mass transfer coefficients and kinetic
coefficients on the reactant conversion have been studied. With 5%
increase of liquid velocity (with Iron catalyst), H2 conversions
increase about 6% and CO conversion increase about 4%, With 8%
increase of liquid velocity (with Cobalt catalyst), H2 conversions
increase about 26% and CO conversion increase about 4%. With
20% increase of gas-liquid mass transfer coefficient (with Iron
catalyst), H2 conversions increase about 12% and CO conversion
increase about 10% and with Cobalt catalyst H2 conversions increase
about 10% and CO conversion increase about 6%. Results show that
the process is sensitive to gas-liquid mass transfer coefficient and
optimum condition operation occurs in maximum possible liquid
velocity. This velocity must be more than minimum fluidization
velocity and less than terminal velocity in such a way that avoid
catalysts particles from leaving the fluidized bed.},
	    journal   = {International Journal of Chemical and Molecular Engineering},
	  volume    = {3},
	  number    = {1},
	  year      = {2009},
	  pages     = {67 - 70},
	  ee        = {https://publications.waset.org/pdf/7399},
	  url   	= {https://publications.waset.org/vol/25},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 25, 2009},
	}