Control of Building Ventilation with CO2 Gas Sensors Based on Doped Magnesium Ferrite Nanoparticles for the Development of Construction and Infrastructure Industry
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32807
Control of Building Ventilation with CO2 Gas Sensors Based on Doped Magnesium Ferrite Nanoparticles for the Development of Construction and Infrastructure Industry

Authors: Maryam Kiani, Abdul Basit Kiani

Abstract:

To develop construction and infrastructure industry, sensors are highly desired to control building ventilation. Zinc doped magnesium ferrite nanoparticles (Z@MFO) (Zn = 0.0, 0.2, 0.3, 0.4) were prepared in this paper. Structural analyses confirmed the formation of spinel cubic nanostructures. X-Ray diffraction (XRD) data represent high reactive surface area due to small average particle size about 15 nm, which efficiently influences the gas sensing mechanism. The gas sensing property of Z@MFO for several gases was obtained by measuring the resistance as a function of different factors, such as composition and response time in air and in presence of gas. The sensitivity of spinel ferrite to CO2 at room temperature has been compared. The Z@MFO nano-structure exhibited high sensitivity represented good response time of (~1 min) to CO2, demonstrated that the material can be used in the field of gas sensors with high sensitivity and good selectivity at room temperature to control building ventilation. CO2 gas sensors play a vital role in ensuring the safety, comfort, and sustainability of modern building environments.

Keywords: MgFe2O4 nanoparticles, synthesis, gas sensing properties, X ray differentiation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 117

References:


[1] N. Baig, I. Kammakakam, W. Falath “Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges” Mater. Adv., 2 (2021) 1821-1871
[2] A. Bag, N. E. Lee “Recent Advancements in Development of Wearable Gas Sensors” Adv. Mater. Technol. 6 (2021) 2000883
[3] N. Gantzler, E.A. Henle, P. K. Thallapally, X. Z. Fern, C. M. Simon, “Non-injective gas sensor arrays: identifying undetectable composition changes” J. Phys.: Condens. Matter 33 (2021) 464003
[4] J. F Olorunyomi, S.T Geh, R.A Caruso, C. M. Doherty “Metal-organic frameworks for chemical sensing devices” Mater. Horiz. 8 (2021) 2387-2419.
[5] E. H. Kwon, M. Kim, C. Y. Lee, M.Kim, Y.D. Park“Metal–Organic-Framework-Decorated Carbon Nanofibers with Enhanced Gas Sensitivity When Incorporated into an Organic Semiconductor-Based Gas Sensor” ACS Appl. Mater. Interfaces 14 (2022) 8
[6] A. Ali, H. H. D. AlTakroori, Y. E. Greish, A. Alzamly, L. A. Siddig, N. Qamhieh, S. T. Mahmoud “Flexible Cu3(HHTP)2 MOF Membranes for Gas Sensing Application at Room Temperature” Nanomaterials 12 (2022) 913
[7] B. Qi, X. Wang, X. Wang, J. Cheng, Y. Hang, “Synthesis and H2S-Sensing Properties of MOF-Derived Cu-Doped ZnO Nanocages” Nanomaterials 12 (2022) 2579
[8] F. G. Moscoso, J. Almeida, A. Sousaraei, T. L. Costa, A. M. G. Silva, J. C. Gonzalez, L. C. Silva, J. M. Pedrosa “Luminescent MOF crystals embedded in PMMA/PDMS transparent films as effective NO 2 gas sensors” Mol. Syst. Des. Eng., 5 (2020) 1048-1056.
[9] J. S. Jang, W. T. Koo, S. J. Choi, D. Kim “Metal Organic Framework-Templated Chemiresistor: Sensing Type Transition from P-to-N Using Hollow Metal Oxide Polyhedron via Galvanic Replacement” J. Am. Chem. Soc. 139 (2017) 11868−11876
[10] E. Fernandez, P. G. Saiz, N. Peřinka, S. Wuttke, R. Fernández de Luis, “Ionic Liquids: Printed Capacitive Sensors Based on Ionic Liquid/Metal-Organic Framework Composites for Volatile Organic Compounds Detection” Adv. Funct. Mater., 31 (2021) 2010703
[11] H. Lee, T. B. Nguyen, D. K. Nguyen, J. H. Kim, J. Y. Kim, B. T. Phan, S. S. Kim “Gas Sensing Properties of Mg-Incorporated Metal–Organic Frameworks” Sensors 19(2019) 3323; doi:10.3390/s19153323
[12] A. Ali, A. Alzamly, Y.E Greish, M. Bakiro, H. L. Nguyen, S. T. Mahmoud “A Highly Sensitive and Flexible Metal−Organic Framework Polymer Based H2S Gas Sensor” ACS Omega 6 (2021) 17690−17697
[13] K.J. Huang, J.Z. Zhang, J.L. Cai, “Preparation of porous layered molybdenum selenide-graphene composites on Ni foam for high-performance supercapacitor and electrochemical sensing” Electrochim. Acta 180 (2015) 770–777.
[14] G. Lu, E. L. Ocola, J. Chen, “Reduced graphene oxide for room-temperature gas sensors” Nanotechnology 20 (2009) 445502.
[15] K. J. Huang, H. L. Shuai, J. Z. Zhang, “Ultrasensitive sensing platform for platelet-derived growth factor BB detection based on layered molybdenum selenide–graphene composites and Exonuclease III assisted signal amplification” Biosens. Bioelectron. 77 (2016) 69–75.
[16] Y. Wang, S.W. Tong, X. F. Xu, B. Özyilmaz, K.P. Loh “Interface engineering of layer‐by‐layer stacked graphene anodes for high‐performance organic solar cells” Adv. Mater. 23 (2011) 1514–1518.
[17] G. Williams, B. Seger, P.V. Kamat, “TiO2-Graphene Nanocomposites. UV-Assisted Photocatalytic Reduction of Graphene Oxide” ACS Nano 2 (2008) 1487–1491.
[18] Y.L.T. Ngo, S.H. Hur, “Low-temperature NO2 gas sensor fabricated with NiO and reduced graphene oxide hybrid structure” Materials Research Bulletin 84 (2016) 168–176.
[19] C.M. Chang, M.H. Hon, I.C. Leu, “Influence of size and density of Au nanoparticles on ZnO nanorod arrays for sensing reducing gases” J. Electrochem. Soc.160 (2013) B170–B176
[20] S.D. Bakrania, M.S. Wooldridge, “The effects of the location of Au additives on combustion-generated SnO2 nanopowders for CO gas sensing” Sensors (Basel) 10 (2010) 7002–7017.
[21] T. J. Hsueh, S. J. Chang, C. L. Hsu, Y. R. Lin, I. C. Chen, “Highly sensitive ZnO nanowire ethanol sensor with Pd adsorption” Appl. Phys. Lett. 91 (2007) 053111.
[22] X. Liu, J. Zhang, X. Guo, S. Wang, S. Wu, “Core–shell α–Fe2O3@ SnO2/Au hybrid structures and their enhanced gas sensing properties” RSC Adv. 2 (2012) 1650.
[23] C. Liewhiran, S. Phanichphant, “Effects of palladium loading on the response of thick film flame-made ZnO gas sensor for detection of ethanol vapor” Sensors 7 (2007) 1159–1184.
[24] G. Korotcenkov, “Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches” Sens. Actuators B: Chem. 107 (2005) 209–232.
[25] L. Zhang, J. Zhao H. Lu, L. Li, J. Zheng, H. Li, Z. Zhu, “Facile synthesis and ultrahigh ethanol response of hierarchically porous ZnO nanosheets” Sens. Actuators B Chem. 161 (2012) 209–215.H.
[26] Li, K. Wang, Y. Sun, C. T. Lollar, J. Li, H.C. Zhou, “Recent advances in gas storage and separation using metal–organic frameworks” Materials Today, 21 (2018) 108-121.
[27] K. Kim, P. G. Choi, T. Itoh,Y. Masuda “Effect of Coordinatively Unsaturated Sites in MOF-Derived Highly Porous CuO for Catalyst-Free ppb-Level Gas Sensors” Advanced Materials Interfaces 8 (2021) 2100283. https://doi.org/10.1002/admi.202100283
[28] L. Wang, H. Xu, J. Gao, J. Yao, Q. Zhang, “Recent progress in metal-organic frameworks-based hydrogels and aerogels and their applications” Coord. Chem. Rev., 398 (2019) 213016.
[29] M. Ding, R. W. Flaig, H. L. Jiang, O. M. Yaghi, “Carbon capture and conversion using metal–organic frameworks and MOF-based materials” Chem. Soc. Rev., 48 (2019) 2783-2828.
[30] H. Y. Li, S. N. Zhao, S. Q. Zang, L. Jing, “Functional metal–organic frameworks as effective sensors of gases and volatile compounds” Chem. Soc. Rev., 49 (2020) 6364-6401.
[31] J. Houa, M. Yang, C. Ke, G. Wei, C. Priest, Z. Qiao, G. Wu, J. Zhang, “Platinum-group-metal catalysts for proton exchange membrane fuel cells: From catalyst design to electrode structure optimization” EnergyChem 2 (2020) 100023.
[32] W. T. Koo, J.S. Jang, D. Kim, ‘Metal-Organic Frameworks for Chemiresistive Sensors” Chem 5 (2019) 1938-1963.
[33] N. Garga, A. Deep, A. L. Sharmaa, “Metal-organic frameworks based nanostructure platforms for chemo-resistive sensing of gases” Coord. Chem. Rev., 445 (2021) 214073.
[34] X. Li, X.Yang, H. Xue, H. Pang,Q. Xu, “Metal–organic frameworks as a platform for clean energy applications” EnergyChem 2 (2020) 100027.
[35] W. T. Koo, S. J. Choi, S. J. Kim, J. S. Jang, H. L. Tuller, D. Kim “Heterogeneous Sensitization of Metal–Organic Framework Driven Metal@Metal Oxide Complex Catalysts on an Oxide Nanofiber Scaffold Toward Superior Gas Sensors” J. Am. Chem. Soc. 138 (2016) 13431−13437
[36] Y. Zhu, Y. Zhao, J. Ma, X. Cheng, J.Xie, P. Xu, H. Liu, H. Liu, H. Zhang, M. Wu, A. A. Elzatahry, A. Alghamdi, Y. Deng, D. Zhao “Mesoporous Tungsten Oxides with Crystalline Framework for Highly Sensitive and Selective Detection of Foodborne Pathogens” J. Am. Chem. Soc. 139 (2017) 10365−10373.
[37] M. N. Meeran S.P. Saravanan, M. Shkirc, S. K. Kannan “Fabrication of transition-metal (Zn, Mn, Cu)-based MOFs as efficient sensor materials for detection of H2 gas by clad modified fiber optic gas sensor technique” Optical Fiber Technology, (2021) 102614