Search results for: solid wastes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2590

Search results for: solid wastes

2350 Effect of Hollow and Solid Recycled-Poly Fibers on the Mechanical and Morphological Properties of Short-Fiber-Reinforced Polypropylene Composites

Authors: S. Kerakra, S. Bouhelal, M. Poncot

Abstract:

The aim of this study is to give a comprehensive overview of the effect of short hollow and solid recycled polyethylene terephthalate (PET) fibers in different breaking tenacities reinforced isotactic polypropylene (iPP) composites on the mechanical and morphological properties. Composites of iPP/3, 7and 10 wt% of solid and hollow recycled PET fibers were prepared by batched melt mixing in a Brabender. The incorporation of solid recycled-PET fibers in isotactic polypropylene increase Young’s modulus of iPP relatively, meanwhile it increased proportionally with hollow fibers content. An improvement of the storage modulus, and a shift up in glass transition temperatures of hollow fibers/iPP composites was determined by DMA results. The morphology of composites was determined by scanning electron microscope (SEM) and optical polarized microscopy (OM) showing a good dispersion of the hollow fibers. Also, their flexible aspect (folding, bending) was observed. But, one weak interaction between the polymer/fibers phases was shown. Polymers can be effectively reinforced with short hollow recycled PET fibers due to their characteristics like recyclability, lightweight and the flexible aspect, which allows the absorbance of the energy of a striker with a minimum damage of the matrix. Aiming to improve the affinity matrix–recycled hollow PET fibers, it is suggested the addition of compatibilizers, as maleic anhydride.

Keywords: isotactic polypropylene, hollow recycled PET fibers, solid recycled-PET fibers, composites, short fiber, scanning electron microscope

Procedia PDF Downloads 248
2349 Contamination by Heavy Metals of Some Environmental Objects in Adjacent Territories of Solid Waste Landfill

Authors: D. Kekelidze, G. Tsotadze, G. Maisuradze, L. Akhalbedashvili, M. Chkhaidze

Abstract:

Statement of Problem: The problem of solid wastes -dangerous sources of environmental pollution,is the urgent issue for Georgia as there are no waste-treatment and waste- incineration plants. Urban peripheral and rural areas, frequently along small rivers, are occupied by landfills without any permission. The study of the pollution of some environmental objects in the adjacent territories of solid waste landfill in Tbilisi carried out in 2020-2021, within the framework of project: “Ecological monitoring of the landfills surrounding areas and population health risk assessment”. Research objects: This research had goal to assess the ecological state of environmental objects (soil cover and surface water) in the territories, adjacent of solid waste landfill, on the base of changes heavy metals' (HM) concentration with distance from landfill. An open sanitary landfill for solid domestic waste in Tbilisi locates at suburb Lilo surrounded with densely populated villages. Content of following HM was determined in soil and river water samples: Pb, Cd, Cu, Zn, Ni, Co, Mn. Methodology: The HM content in samples was measured, using flame atomic absorption spectrophotometry (spectrophotometer of firm Perkin-Elmer AAnalyst 200) in accordance with ISO 11466 and GOST Р 53218-2008. Results and discussion: Data obtained confirmed migration of HM mainly in terms of the distance from the polygon that can be explained by their areal emissions and storage in open state, they could also get into the soil cover under the influence of wind and precipitation. Concentration of Pb, Cd, Cu, Zn always increases with approaching to landfill. High concentrations of Pb, Cd are characteristic of the soil covers of the adjacent territories around the landfill at a distance of 250, 500 meters.They create a dangerous zone, since they can later migrate into plants, enter in rivers and lakes. The higher concentrations, compared to the maximum permissible concentrations (MPC) for surface waters of Georgia, are observed for Pb, Cd. One of the reasons for the low concentration of HM in river water may be high turbidity – as is known, suspended particles are good natural sorbents that causes low concentration of dissolved forms. Concentration of Cu, Ni, Mn increases in winter, since in this season the rivers are switched to groundwater feeding. Conclusion: Soil covers of the areas adjacent to the landfill in Lilo are contaminated with HM. High concentrations in soils are characteristic of lead and cadmium. Elevated concentrations in comparison with the MPC for surface waters adopted in Georgia are also observed for Pb, Cd at checkpoints along and below (1000 m) of the landfill downstream. Data obtained confirm migration of HM to the adjacent territories of the landfill and to the Lochini River. Since the migration and toxicity of metals depends also on the presence of their mobile forms in water bodies, samples of bottom sediments should be taken too. Bottom sediments reflect a long-term picture of pollution, they accumulate HM and represent a constant source of secondary pollution of water bodies. The study of the physicochemical forms of metals is one of the priority areas for further research.

Keywords: landfill, pollution, heavy metals, migration

Procedia PDF Downloads 77
2348 Synthesis and Study of Structural, Morphological, and Electrochemical Properties of Ceria co-doped for SOFC Applications

Authors: Fatima Melit, Nedjemeddine Bounar

Abstract:

Polycrystalline samples of Ce1-xMxO2-δ (x=0.1, 0.15, 0.2)(M=Gd, Y) were prepared by solid-state chemical reaction from mixtures of pre-dried oxides powders of CeO2, Gd2O3 and Y2O3 in the appropriate stoichiometric ratio to explore their use as solid electrolytes for intermediate temperature solid oxide fuel cells (IT-SOFCs). Their crystal structures and ionic conductivities were characterised by X-ray powder diffraction (XRD) and AC complex impedance spectroscopy (EIS). The XRD analyses confirm that all the resulting synthesised co-doped cerium oxide powders are single-phase and crystallise in the cubic structure system with the space group Fm3m. On the one hand, the lattice parameter (a ) of the phases increases with increasing Gd content; on the other hand, with increasing Y-substitution rate, the latter decreases. The results of complex impedance conductivity measurements have shown that doping has a remarkable effect on conductivity. The co-doped cerium phases showed significant ionic conductivity values, making these materials excellent candidates for solid oxide electrolytes at intermediate temperatures.

Keywords: electrolyte, Ceria, X-ray diffraction, EIS, SEM, SOFC

Procedia PDF Downloads 111
2347 Effect of Different Porous Media Models on Drug Delivery to Solid Tumors: Mathematical Approach

Authors: Mostafa Sefidgar, Sohrab Zendehboudi, Hossein Bazmara, Madjid Soltani

Abstract:

Based on findings from clinical applications, most drug treatments fail to eliminate malignant tumors completely even though drug delivery through systemic administration may inhibit their growth. Therefore, better understanding of tumor formation is crucial in developing more effective therapeutics. For this purpose, nowadays, solid tumor modeling and simulation results are used to predict how therapeutic drugs are transported to tumor cells by blood flow through capillaries and tissues. A solid tumor is investigated as a porous media for fluid flow simulation. Most of the studies use Darcy model for porous media. In Darcy model, the fluid friction is neglected and a few simplified assumptions are implemented. In this study, the effect of these assumptions is studied by considering Brinkman model. A multi scale mathematical method which calculates fluid flow to a solid tumor is used in this study to investigate how neglecting fluid friction affects the solid tumor simulation. In this work, the mathematical model in our previous studies is developed by considering two model of momentum equation for porous media: Darcy and Brinkman. The mathematical method involves processes such as fluid flow through solid tumor as porous media, extravasation of blood flow from vessels, blood flow through vessels and solute diffusion, convective transport in extracellular matrix. The sprouting angiogenesis model is used for generating capillary network and then fluid flow governing equations are implemented to calculate blood flow through the tumor-induced capillary network. Finally, the two models of porous media are used for modeling fluid flow in normal and tumor tissues in three different shapes of tumors. Simulations of interstitial fluid transport in a solid tumor demonstrate that the simplifications used in Darcy model affect the interstitial velocity and Brinkman model predicts a lower value for interstitial velocity than the values that Darcy model does.

Keywords: solid tumor, porous media, Darcy model, Brinkman model, drug delivery

Procedia PDF Downloads 268
2346 Friction Stir Welding Process as a Solid State Joining -A Review

Authors: Mohd Anees Siddiqui, S. A. H. Jafri, Shahnawaz Alam

Abstract:

Through this paper an attempt is made to review a special welding technology of friction stir welding (FSW) which is a solid-state joining. Friction stir welding is used for joining of two plates which are applied compressive force by using fixtures over the work table. This is a non consumable type welding technique in which a rotating tool of cylindrical shape is used. Process parameters such as tool geometry, joint design and process speed are discussed in the paper. Comparative study of Friction stir welding with other welding techniques such as MIG, TIG & GMAW is also done. Some light is put on several major applications of friction stir welding in different industries. Quality and environmental aspects of friction stir welding is also discussed.

Keywords: friction stir welding (FSW), process parameters, tool, solid state joining processes

Procedia PDF Downloads 469
2345 Waste Management in a Hot Laboratory of Japan Atomic Energy Agency – 1: Overview and Activities in Chemical Processing Facility

Authors: Kazunori Nomura, Hiromichi Ogi, Masaumi Nakahara, Sou Watanabe, Atsuhiro Shibata

Abstract:

Chemical Processing Facility of Japan Atomic Energy Agency is a basic research field for advanced back-end technology developments with using actual high-level radioactive materials such as irradiated fuels from the fast reactor, high-level liquid waste from reprocessing plant. In the nature of a research facility, various kinds of chemical reagents have been offered for fundamental tests. Most of them were treated properly and stored in the liquid waste vessel equipped in the facility, but some were not treated and remained at the experimental space as a kind of legacy waste. It is required to treat the waste in safety. On the other hand, we formulated the Medium- and Long-Term Management Plan of Japan Atomic Energy Agency Facilities. This comprehensive plan considers Chemical Processing Facility as one of the facilities to be decommissioned. Even if the plan is executed, treatment of the “legacy” waste beforehand must be a necessary step for decommissioning operation. Under this circumstance, we launched a collaborative research project called the STRAD project, which stands for Systematic Treatment of Radioactive liquid waste for Decommissioning, in order to develop the treatment processes for wastes of the nuclear research facility. In this project, decomposition methods of chemicals causing a troublesome phenomenon such as corrosion and explosion have been developed and there is a prospect of their decomposition in the facility by simple method. And solidification of aqueous or organic liquid wastes after the decomposition has been studied by adding cement or coagulants. Furthermore, we treated experimental tools of various materials with making an effort to stabilize and to compact them before the package into the waste container. It is expected to decrease the number of transportation of the solid waste and widen the operation space. Some achievements of these studies will be shown in this paper. The project is expected to contribute beneficial waste management outcome that can be shared world widely.

Keywords: chemical processing facility, medium- and long-term management plan of JAEA facilities, STRAD project, treatment of radioactive waste

Procedia PDF Downloads 122
2344 An Overview of Sludge Utilization into Fired Clay Brick

Authors: Aeslina Binti Abdul Kadir, Ahmad Shayuti Bin Abdul Rahim

Abstract:

Brick is one of the most common masonry units used as building material. Due to the demand, different types of waste have been investigated to be incorporated into the bricks. Many types of sludge have been incorporated in fired clay brick for example marble sludge, stone sludge, water sludge, sewage sludge, and ceramic sludge. The utilization of these waste materials in fired clay bricks usually has positive effects on the properties such as lightweight bricks with improved shrinkage, porosity, and strength. This paper reviews on utilization of different types of sludge wastes into fired clay bricks. Previous investigations have demonstrated positive effects on the physical and mechanical properties as well as less impact towards the environment. Thus, the utilizations of sludge waste could produce a good quality of brick and could be one of alternative disposal methods for the sludge wastes.

Keywords: fired clay brick, sludge waste, compressive strength, shrinkage, water absorption

Procedia PDF Downloads 411
2343 Characterization of Emissions from the open burning of Municipal Solid Waste (MSW) under Tropical Environment

Authors: Anju Elizbath Peter, S. M. Shiva Nagendra, Indumathi M.Nambi

Abstract:

The deliberate fires initiated by dump managers and human scavengers to reduce the volume of waste and recovery of valuable metals/materials are common at municipal solid waste (MSW) disposal sites in developed country. A large amount of toxic gases released due to this act is responsible for the deterioration of regional and local air quality, which causes visibility impairment and acute respiratory diseases. The present study was aimed at the characterization of MSW and emission characteristics of burning of MSW in the laboratory. MSW samples were collected directly from the one of the open dumpsite located in Chennai city. Solid waste sampling and laboratory analysis were carried out according to American Society of Testing and Materials (ASTM) standards. Results indicated the values of moisture content, volatile solids (VS) and calorific values of solid waste samples were 16.67%,8%,9.17MJ/kg, respectively. The elemental composition showed that the municipal solid waste contains 25.84% of carbon, 3.69% of hydrogen, 1.57% of nitrogen and 0.26% of sulphur. The calorific value of MSW was found to be 9.17 MJ/Kg which is sufficient to facilitate self-combustion of waste. The characterization of emissions from the burning of 1 kg of MSW in the test chamber showed a total of 90 mg/kg of PM10 and 243 mg/kg of PM2.5. The current research study results will be useful for municipal authorities to formulate guideline and policy structure regarding the MSW management to reduce the impact of air emissions at an open dump site.

Keywords: characterization, MSW, open burning, PM10, PM2.5

Procedia PDF Downloads 311
2342 Plasma Technology for Hazardous Biomedical Waste Treatment

Authors: V. E. Messerle, A. L. Mosse, O. A. Lavrichshev, A. N. Nikonchuk, A. B. Ustimenko

Abstract:

One of the most serious environmental problems today is pollution by biomedical waste (BMW), which in most cases has undesirable properties such as toxicity, carcinogenicity, mutagenicity, fire. Sanitary and hygienic survey of typical solid BMW, made in Belarus, Kazakhstan, Russia and other countries shows that their risk to the environment is significantly higher than that of most chemical wastes. Utilization of toxic BMW requires use of the most universal methods to ensure disinfection and disposal of any of their components. Such technology is a plasma technology of BMW processing. To implement this technology a thermodynamic analysis of the plasma processing of BMW was fulfilled and plasma-box furnace was developed. The studies have been conducted on the example of the processing of bone. To perform thermodynamic calculations software package Terra was used. Calculations were carried out in the temperature range 300 - 3000 K and a pressure of 0.1 MPa. It is shown that the final products do not contain toxic substances. From the organic mass of BMW synthesis gas containing combustible components 77.4-84.6% was basically produced, and mineral part consists mainly of calcium oxide and contains no carbon. Degree of gasification of carbon reaches 100% by the temperature 1250 K. Specific power consumption for BMW processing increases with the temperature throughout its range and reaches 1 kWh/kg. To realize plasma processing of BMW experimental installation with DC plasma torch of 30 kW power was developed. The experiments allowed verifying the thermodynamic calculations. Wastes are packed in boxes weighing 5-7 kg. They are placed in the box furnace. Under the influence of air plasma flame average temperature in the box reaches 1800 OC, the organic part of the waste is gasified and inorganic part of the waste is melted. The resulting synthesis gas is continuously withdrawn from the unit through the cooling and cleaning system. Molten mineral part of the waste is removed from the furnace after it has been stopped. Experimental studies allowed determining operating modes of the plasma box furnace, the exhaust gases was analyzed, samples of condensed products were assembled and their chemical composition was determined. Gas at the outlet of the plasma box furnace has the following composition (vol.%): CO - 63.4, H2 - 6.2, N2 - 29.6, S - 0.8. The total concentration of synthesis gas (CO + H2) is 69.6%, which agrees well with the thermodynamic calculation. Experiments confirmed absence of the toxic substances in the final products.

Keywords: biomedical waste, box furnace, plasma torch, processing, synthesis gas

Procedia PDF Downloads 492
2341 Formulation and Evaluation of Glimepiride (GMP)-Solid Nanodispersion and Nanodispersed Tablets

Authors: Ahmed. Abdel Bary, Omneya. Khowessah, Mojahed. al-jamrah

Abstract:

Introduction: The major challenge with the design of oral dosage forms lies with their poor bioavailability. The most frequent causes of low oral bioavailability are attributed to poor solubility and low permeability. The aim of this study was to develop solid nanodispersed tablet formulation of Glimepiride for the enhancement of the solubility and bioavailability. Methodology: Solid nanodispersions of Glimepiride (GMP) were prepared using two different ratios of 2 different carriers, namely; PEG6000, pluronic F127, and by adopting two different techniques, namely; solvent evaporation technique and fusion technique. A full factorial design of 2 3 was adopted to investigate the influence of formulation variables on the prepared nanodispersion properties. The best chosen formula of nanodispersed powder was formulated into tablets by direct compression. The Differential Scanning Calorimetry (DSC) analysis and Fourier Transform Infra-Red (FTIR) analysis were conducted for the thermal behavior and surface structure characterization, respectively. The zeta potential and particle size analysis of the prepared glimepiride nanodispersions was determined. The prepared solid nanodispersions and solid nanodispersed tablets of GMP were evaluated in terms of pre-compression and post-compression parameters, respectively. Results: The DSC and FTIR studies revealed that there was no interaction between GMP and all the excipients used. Based on the resulted values of different pre-compression parameters, the prepared solid nanodispersions powder blends showed poor to excellent flow properties. The resulted values of the other evaluated pre-compression parameters of the prepared solid nanodispersion were within the limits of pharmacopoeia. The drug content of the prepared nanodispersions ranged from 89.6 ± 0.3 % to 99.9± 0.5% with particle size ranged from 111.5 nm to 492.3 nm and the resulted zeta potential (ζ ) values of the prepared GMP-solid nanodispersion formulae (F1-F8) ranged from -8.28±3.62 mV to -78±11.4 mV. The in-vitro dissolution studies of the prepared solid nanodispersed tablets of GMP concluded that GMP- pluronic F127 combinations (F8), exhibited the best extent of drug release, compared to other formulations, and to the marketed product. One way ANOVA for the percent of drug released from the prepared GMP-nanodispersion formulae (F1- F8) after 20 and 60 minutes showed significant differences between the percent of drug released from different GMP-nanodispersed tablet formulae (F1- F8), (P<0.05). Conclusion: Preparation of glimepiride as nanodispersed particles proven to be a promising tool for enhancing the poor solubility of glimepiride.

Keywords: glimepiride, solid Nanodispersion, nanodispersed tablets, poorly water soluble drugs

Procedia PDF Downloads 462
2340 Development of a Feedback Control System for a Lab-Scale Biomass Combustion System Using Programmable Logic Controller

Authors: Samuel O. Alamu, Seong W. Lee, Blaise Kalmia, Marc J. Louise Caballes, Xuejun Qian

Abstract:

The application of combustion technologies for thermal conversion of biomass and solid wastes to energy has been a major solution to the effective handling of wastes over a long period of time. Lab-scale biomass combustion systems have been observed to be economically viable and socially acceptable, but major concerns are the environmental impacts of the process and deviation of temperature distribution within the combustion chamber. Both high and low combustion chamber temperature may affect the overall combustion efficiency and gaseous emissions. Therefore, there is an urgent need to develop a control system which measures the deviations of chamber temperature from set target values, sends these deviations (which generates disturbances in the system) in the form of feedback signal (as input), and control operating conditions for correcting the errors. In this research study, major components of the feedback control system were determined, assembled, and tested. In addition, control algorithms were developed to actuate operating conditions (e.g., air velocity, fuel feeding rate) using ladder logic functions embedded in the Programmable Logic Controller (PLC). The developed control algorithm having chamber temperature as a feedback signal is integrated into the lab-scale swirling fluidized bed combustor (SFBC) to investigate the temperature distribution at different heights of the combustion chamber based on various operating conditions. The air blower rates and the fuel feeding rates obtained from automatic control operations were correlated with manual inputs. There was no observable difference in the correlated results, thus indicating that the written PLC program functions were adequate in designing the experimental study of the lab-scale SFBC. The experimental results were analyzed to study the effect of air velocity operating at 222-273 ft/min and fuel feeding rate of 60-90 rpm on the chamber temperature. The developed temperature-based feedback control system was shown to be adequate in controlling the airflow and the fuel feeding rate for the overall biomass combustion process as it helps to minimize the steady-state error.

Keywords: air flow, biomass combustion, feedback control signal, fuel feeding, ladder logic, programmable logic controller, temperature

Procedia PDF Downloads 98
2339 Failure Analysis: Solid Rocket Motor Type “Candy” - Explosion in a Static Test

Authors: Diego Romero, Fabio Rojas, J. Alejandro Urrego

Abstract:

The sounding rockets are aerospace vehicles that were developed in the mid-20th century, and Colombia has been involved in research that was carried out with the aim of innovating with this technology. The rockets are university research programs with the collaboration of the local government, with a simple strategy, develop and reduce the greatest costs associated with the production of a kind type of technology. In this way, in this document presents the failure analysis of a solid rocket motor, with the real compatibly to reach the thermosphere with a low-cost fuel. This solid rocket motor is the latest development of the Uniandes Aerospace Project (PUA for its Spanish acronym), an undergraduate and postgraduate research group at Universidad de los Andes (Bogotá, Colombia), dedicated to incurring in this type of technology. This motor has been carried out on Candy-type solid fuel, which is a compound of potassium nitrate and sorbitol, and the investigation has allowed the production of solid motors powerful enough to reach space, and which represents a unique technological advance in Latin America and an important development in experimental rocketry.To outline the main points the explosion in a static test is an important to explore and demonstrate the ways to develop technology, methodologies, production and manufacturing, being a solid rocket motor with 30 kN of thrust. In conclusion, this analysis explores different fields such as: design, manufacture, materials, production, first fire and more, with different engineering tools with principal objective find root failure. Following the engineering analysis methodology, was possible to design a new version of motor, with learned lessons new manufacturing specification, therefore, when publishing this project, it is intended to be a reference for future research in this field and benefit the industry.

Keywords: candy propellant, candy rockets, explosion, failure analysis, static test, solid rocket motor

Procedia PDF Downloads 132
2338 Waste Burial to the Pressure Deficit Areas in the Eastern Siberia

Authors: L. Abukova, O. Abramova, A. Goreva, Y. Yakovlev

Abstract:

Important executive decisions on oil and gas production stimulation in Eastern Siberia have been recently taken. There are unique and large fields of oil, gas, and gas-condensate in Eastern Siberia. The Talakan, Koyumbinskoye, Yurubcheno-Tahomskoye, Kovykta, Chayadinskoye fields are supposed to be developed first. It will result in an abrupt increase in environmental load on the nature of Eastern Siberia. In Eastern Siberia, the introduction of ecological imperatives in hydrocarbon production is still realistic. Underground water movement is the one of the most important factors of the ecosystems condition management. Oil and gas production is associated with the forced displacement of huge water masses, mixing waters of different composition, and origin that determines the extent of anthropogenic impact on water drive systems and their protective reaction. An extensive hydrogeological system of the depression type is identified in the pre-salt deposits here. Pressure relieve here is steady up to the basement. The decrease of the hydrodynamic potential towards the basement with such a gradient resulted in reformation of the fields in process of historical (geological) development of the Nepsko-Botuobinskaya anteclise. The depression hydrodynamic systems are characterized by extremely high isolation and can only exist under such closed conditions. A steady nature of water movement due to a strictly negative gradient of reservoir pressure makes it quite possible to use environmentally-harmful liquid substances instead of water. Disposal of the most hazardous wastes is the most expedient in the deposits of the crystalline basement in certain structures distant from oil and gas fields. The time period for storage of environmentally-harmful liquid substances may be calculated by means of the geological time scales ensuring their complete prevention from releasing into environment or air even during strong earthquakes. Disposal of wastes of chemical and nuclear industries is a matter of special consideration. The existing methods of storage and disposal of wastes are very expensive. The methods applied at the moment for storage of nuclear wastes at the depth of several meters, even in the most durable containers, constitute a potential danger. The enormous size of the depression system of the Nepsko-Botuobinskaya anteclise makes it possible to easily identify such objects at the depth below 1500 m where nuclear wastes will be stored indefinitely without any environmental impact. Thus, the water drive system of the Nepsko-Botuobinskaya anteclise is the ideal object for large-volume injection of environmentally harmful liquid substances even if there are large oil and gas accumulations in the subsurface. Specific geological and hydrodynamic conditions of the system allow the production of hydrocarbons from the subsurface simultaneously with the disposal of industrial wastes of oil and gas, mining, chemical, and nuclear industries without any environmental impact.

Keywords: Eastern Siberia, formation pressure, underground water, waste burial

Procedia PDF Downloads 231
2337 Effect of Core Puncture Diameter on Bio-Char Kiln Efficiency

Authors: W. Intagun, T. Khamdaeng, P. Prom-ngarm, N. Panyoyai

Abstract:

Biochar has been used as a soil amendment since it has high porous structure and has proper nutrients and chemical properties for plants. Product yields produced from biochar kiln are dependent on process parameters and kiln types used. The objective of this research is to investigate the effect of core puncture diameter on biochar kiln efficiency, i.e., yields of biochar and produced gas. Corncobs were used as raw material to produce biochar. Briquettes from agricultural wastes were used as fuel. Each treatment was performed by changing the core puncture diameter. From the experiment, it is revealed that the yield of biochar at the core puncture diameter of 3.18 mm, 4.76 mm, and 6.35 mm was 10.62 wt. %, 24.12 wt. %, and 12.24 wt. %, of total solid yields, respectively. The yield of produced gas increased with increasing the core puncture diameter. The maximum percentage by weight of the yield of produced gas was 81.53 wt. % which was found at the core puncture diameter of 6.35 mm. The core puncture diameter was furthermore found to affect the temperature distribution inside the kiln and its thermal efficiency. In conclusion, the high efficient biochar kiln can be designed and constructed by using the proper core puncture diameter.

Keywords: anila stove, bio-char, soil conditioning materials, temperature distribution

Procedia PDF Downloads 189
2336 Microwave Heating and Catalytic Activity of Iron/Carbon Materials for H₂ Production from the Decomposition of Plastic Wastes

Authors: Peng Zhang, Cai Liang

Abstract:

The non-biodegradable plastic wastes have posed severe environmental and ecological contaminations. Numerous technologies, such as pyrolysis, incineration, and landfilling, have already been employed for the treatment of plastic waste. Compared with conventional methods, microwave has displayed unique advantages in the rapid production of hydrogen from plastic wastes. Understanding the interaction between microwave radiation and materials would promote the optimization of several parameters for the microwave reaction system. In this work, various carbon materials have been investigated to reveal microwave heating performance and the ensuing catalytic activity. Results showed that the diversity in the heating characteristic was mainly due to the dielectric properties and the individual microstructures. Furthermore, the gaps and steps among the surface of carbon materials would lead to the distortion of the electromagnetic field, which correspondingly induced plasma discharging. The intensity and location of local plasma were also studied. For high-yield H₂ production, iron nanoparticles were selected as the active sites, and a series of iron/carbon bifunctional catalysts were synthesized. Apart from the high catalytic activity, the iron particles in nano-size close to the microwave skin depth would transfer microwave irradiation to the heat, intensifying the decomposition of plastics. Under microwave radiation, iron is supported on activated carbon material with 10wt.% loading exhibited the best catalytic activity for H₂ production. Specifically, the plastics were rapidly heated up and subsequently converted into H₂ with a hydrogen efficiency of 85%. This work demonstrated a deep understanding of microwave reaction systems and provided the optimization for plastic treatment.

Keywords: plastic waste, recycling, hydrogen, microwave

Procedia PDF Downloads 37
2335 Conversion of Jatropha curcas Oil to Ester Biolubricant Using Solid Catalyst Derived from Saltwater Clam Shell Waste (SCSW)

Authors: Said Nurdin, Fatimah A. Misebah, Rosli M. Yunus, Mohd S. Mahmud, Ahmad Z. Sulaiman

Abstract:

The discarded clam shell waste, fossil and edible oil as biolubricant feedstocks create environmental impacts and food chain dilemma, thus this work aims to circumvent these issues by using activated saltwater clam shell waste (SCSW) as solid catalyst for conversion of Jatropha curcas oil as non-edible sources to ester biolubricant. The characterization of solid catalyst was done by Differential Thermal Analysis-Thermo Gravimetric Analysis (DTA-TGA), X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), Brunauer-Emmett-Teller (BET), Field Emission Scanning Electron Microscopy (FESEM) and Fourier Transformed Infrared Spectroscopy (FTIR) analysis. The calcined catalyst was used in the transesterification of Jatropha oil to methyl ester as the first step, and the second stage was involved the reaction of Jatropha methyl ester (JME) with trimethylolpropane (TMP) based on the various process parameters. The formated biolubricant was analyzed using the capillary column (DB-5HT) equipped Gas Chromatography (GC). The conversion results of Jatropha oil to ester biolubricant can be found nearly 96.66%, and the maximum distribution composition mainly contains 72.3% of triester (TE).

Keywords: conversion, Jatropha curcas oil, ester biolubricant, solid catalyst

Procedia PDF Downloads 336
2334 Energy and Exergy Analysis of Anode-Supported and Electrolyte–Supported Solid Oxide Fuel Cells Gas Turbine Power System

Authors: Abdulrazzak Akroot, Lutfu Namli

Abstract:

Solid oxide fuel cells (SOFCs) are one of the most promising technologies since they can produce electricity directly from fuel and generate a lot of waste heat that is generally used in the gas turbines to promote the general performance of the thermal power plant. In this study, the energy, and exergy analysis of a solid oxide fuel cell/gas turbine hybrid system was proceed in MATLAB to examine the performance characteristics of the hybrid system in two different configurations: anode-supported model and electrolyte-supported model. The obtained results indicate that if the fuel utilization factor reduces from 0.85 to 0.65, the overall efficiency decreases from 64.61 to 59.27% for the anode-supported model whereas it reduces from 58.3 to 56.4% for the electrolyte-supported model. Besides, the overall exergy reduces from 53.86 to 44.06% for the anode-supported model whereas it reduces from 39.96 to 33.94% for the electrolyte-supported model. Furthermore, increasing the air utilization factor has a negative impact on the electrical power output and the efficiencies of the overall system due to the reduction in the O₂ concentration at the cathode-electrolyte interface.

Keywords: solid oxide fuel cell, anode-supported model, electrolyte-supported model, energy analysis, exergy analysis

Procedia PDF Downloads 122
2333 The Causes and Effects of Poor Household Sanitation: Case Study of Kansanga Parish

Authors: Rosine Angelique Uwacu

Abstract:

Poor household sanitation is rife in Uganda, especially in Kampala. This study was carried out with he goal of establishing the main causes and effects of poor household sanitation in Kansanga parish. The study objectively sought to: To identify various ways through which wastes are generated and disposed of in Kansanga parish, identify different hygiene procedures/behaviors of waste handling in Kansanga parish and assess health effects of poor household sanitation and suggest the recommended appropriate measures of addressing cases of lack of hygiene in Kansanga parish. The study used a survey method where cluster sampling was employed. This is because there is no register of population or sufficient information, or geographic distribution of individuals is widely scattered. Data was collected through the use of interviews accompanied by observation and questionnaires. The study involved a sample of 100 households. The study revealed that; some households use wheeled bin collection, skip hire and roll on/off contained others take their wastes to refuse collection vehicles. Surprisingly, majority of the households submitted that they use polythene bags 'Kavera' and at times plastic sacs to dispose of their wastes which are dumped in drainage patterns or dustbins and other illegal dumping site. The study showed that washing hands with small jerrycans after using the toilet was being adopted by most households as there were no or few other alternatives. The study revealed that the common health effects that come as a result of poor household sanitation in Kansanga Parish are diseases outbreaks such as malaria, typhoid and diarrhea. Finally, the study gave a number of recommendations or suggestions on maintaining and achieving an adequate household sanitation in Kansanga Parish such as sensitization of community members by their leaders like Local Counselors could help to improve the situation, establishment of community sanitation days for people to collectively and voluntarily carry out good sanitation practices like digging trenches, burning garbage and proper waste management and disposal. Authorities like Kampala Capital City Authority should distribute dumping containers or allocate dumping sites where people can dispose of their wastes preferably at a minimum cost for proper management.

Keywords: household sanitation, kansanga parish, Uganda, waste

Procedia PDF Downloads 162
2332 Parametric Analysis of Solid Oxide Fuel Cell Using Lattice Boltzmann Method

Authors: Abir Yahya, Hacen Dhahri, Khalifa Slimi

Abstract:

The present paper deals with a numerical simulation of temperature field inside a solid oxide fuel cell (SOFC) components. The temperature distribution is investigated using a co-flow planar SOFC comprising the air and fuel channel and two-ceramic electrodes, anode and cathode, separated by a dense ceramic electrolyte. The Lattice Boltzmann method (LBM) is used for the numerical simulation of the physical problem. The effects of inlet temperature, anode thermal conductivity and current density on temperature distribution are discussed. It was found that temperature distribution is very sensitive to the inlet temperature and the current density.

Keywords: heat sources, Lattice Boltzmann method, solid oxide fuel cell, temperature

Procedia PDF Downloads 273
2331 Dissolution Leaching Kinetics of Ulexite in Disodium Hydrogen Phosphate Solutions

Authors: Betül Özgenç, Soner Kuşlu, Sabri Çolak, Turan Çalban

Abstract:

The aim of this study was investigate the leaching kinetics of ulexite in disodium hydrogen phosphate solutions in a mechanical agitation system. Reaction temperature, concentration of disodium hydrogen phosphate solutions, stirring speed, solid/liquid ratio and ulexite particle size were selected as parameters. The experimental results were successfully correlated by linear regression using Statistica program. Dissolution curves were evaluated shrinking core models for solid-fluid systems. It was observed that increase in the reaction temperature and decrease in the solid/liquid ratio causes an increase the dissolution rate of ulexite. The activation energy was found to be 63.4 kJ/mol. The leaching of ulexite was controlled by chemical reaction.

Keywords: ulexite, disodium hydrogen phosphate, leaching kinetics

Procedia PDF Downloads 378
2330 Design and Characterization of Ecological Materials Based on Demolition and Concrete Waste, Casablanca (Morocco)

Authors: Mourad Morsli, Mohamed Tahiri, Azzedine Samdi

Abstract:

The Cities are the urbanized territories most favorable to the consumption of resources (materials, energy). In Morocco, the economic capital Casablanca is one of them, with its 4M inhabitants and its 60% share in the economic and industrial activity of the kingdom. In the absence of legal status in force, urban development has favored the generation of millions of tons of demolition and construction waste scattered in open spaces causing a significant nuisance to the environment and citizens. Hence the main objective of our work is to valorize concrete waste. The representative wastes are mainly concrete, concrete, and fired clay bricks, ceramic tiles, marble panels, gypsum, and scrap metal. The work carried out includes: geolocation with a combination of artificial intelligence, GIS, and Google Earth, which allowed the estimation of the quantity of these wastes per site; then the sorting, crushing, grinding, and physicochemical characterization of the collected samples allowed the definition of the exploitation ways for each extracted fraction for integrated management of the said wastes. In the present work, we proceeded to the exploitation of the fractions obtained after sieving the representative samples to incorporate them in the manufacture of new ecological materials for construction. These formulations prepared studies have been tested and characterized: physical criteria (specific surface, resistance to flexion and compression) and appearance (cracks, deformation). We will present in detail the main results of our research work and also describe the specific properties of each material developed.

Keywords: demolition and construction waste, GIS combination software, inert waste recovery, ecological materials, Casablanca, Morocco

Procedia PDF Downloads 99
2329 A Study on Long Life Hybrid Battery System Consists of Ni-63 Betavoltaic Battery and All Solid Battery

Authors: Bosung Kim, Youngmok Yun, Sungho Lee, Chanseok Park

Abstract:

There is a limitation to power supply and operation by the chemical or physical battery in the space environment. Therefore, research for utilizing nuclear energy in the universe has been in progress since the 1950s, around the major industrialized countries. In this study, the self-rechargeable battery having a long life relative to the half-life of the radioisotope is suggested. The hybrid system is composed of betavoltaic battery, all solid battery and energy harvesting board. Betavoltaic battery can produce electrical power at least 10 years over using the radioisotope from Ni-63 and the silicon-based semiconductor. The electrical power generated from the betavoltaic battery is stored in the all-solid battery and stored power is used if necessary. The hybrid system board is composed of input terminals, boost circuit, charging terminals and output terminals. Betavoltaic and all solid batteries are connected to the input and output terminal, respectively. The electric current of 10 µA is applied to the system board by using the high-resolution power simulator. The system efficiencies are measured from a boost up voltage of 1.8 V, 2.4 V and 3 V, respectively. As a result, the efficiency of system board is about 75% after boosting up the voltage from 1V to 3V.

Keywords: isotope, betavoltaic, nuclear, battery, energy harvesting

Procedia PDF Downloads 292
2328 Fire Smoke Removal over Cu-Mn-Ce Oxide Catalyst with CO₂ Sorbent Addition: Co Oxidation and in-situ CO₂ Sorption

Authors: Jin Lin, Shouxiang Lu, Kim Meow Liew

Abstract:

In a fire accident, fire smoke often poses a serious threat to human safety especially in the enclosed space such as submarine and space-crafts environment. Efficient removal of the hazardous gas products particularly a large amount of CO and CO₂ gases from these confined space is critical for the security of the staff and necessary for the post-fire environment recovery. In this work, Cu-Mn-Ce composite oxide catalysts coupled with CO₂ sorbents were prepared using wet impregnation method, solid-state impregnation method and wet/solid-state impregnation method. The as-prepared samples were tested dynamically and isothermally for CO oxidation and CO₂ sorption and further characterized by the X-ray diffraction (XRD), nitrogen adsorption and desorption, and field emission scanning electron microscopy (FE-SEM). The results showed that all the samples were able to catalyze CO into CO₂ and capture CO₂ in situ by chemisorption. Among all the samples, the sample synthesized by the wet/solid-state impregnation method showed the highest catalytic activity toward CO oxidation and the fine ability of CO₂ sorption. The sample prepared by the solid-state impregnation method showed the second CO oxidation performance, while the coupled sample using the wet impregnation method exhibited much poor CO oxidation activity. The various CO oxidation and CO₂ sorption properties of the samples might arise from the different dispersed states of the CO₂ sorbent in the CO catalyst, owing to the different preparation methods. XRD results confirmed the high-dispersed sorbent phase in the samples prepared by the wet and solid impregnation method, while that of the sample prepared by wet/solid-state impregnation method showed the larger bulk phase as indicated by the high-intensity diffraction peaks. Nitrogen adsorption and desorption results further revealed that the latter sample had a higher surface area and pore volume, which were beneficial for the CO oxidation over the catalyst. Hence, the Cu-Mn-Ce oxide catalyst coupled with CO₂ sorbent using wet/solid-state impregnation method could be a good choice for fire smoke removal in the enclosed space.

Keywords: CO oxidation, CO₂ sorption, preparation methods, smoke removal

Procedia PDF Downloads 107
2327 Valorization of Beer Brewing Wastes by Composting

Authors: M. E. Silva, I. Brás

Abstract:

The aim of this work was to study the viability of recycling the residual yeast and diatomaceous earth (RYDE) slurry generated by the beer brewing industry by composting with animal manures, as well as to evaluate the quality of the composts obtained. Two pilot composting trials were carried out with different mixes: cow manure/RYDE slurry (Pile CM) and sheep manure/RYDE slurry (Pile SM). For all piles, wood chips were applied as bulking agent. The process was monitored by evaluating standard physical and chemical parameters. The compost quality was assessed by the heavy metals content and phytotoxicity. Both piles reached a thermophilic phase in the first day, however having different trends. The pH showed a slight alkaline character. The C/N reached values lower than 19 at the end of composting process. Generally, all the piles exhibited absence of heavy metals. However, the pile SM exhibited phytotoxicity. This study showed that RYDE slurry can be valorized by composting with cow manure.

Keywords: beer brewing wastes, compost, valorization, quality

Procedia PDF Downloads 415
2326 The Effect of Feedstock Type and Slow Pyrolysis Temperature on Biochar Yield from Coconut Wastes

Authors: Adilah Shariff, Nur Syairah Mohamad Aziz, Norsyahidah Md Saleh, Nur Syuhada Izzati Ruzali

Abstract:

The first objective of this study is to investigate the suitability of coconut frond (CF) and coconut husk (CH) as feedstocks using a laboratory-scale slow pyrolysis experimental setup. The second objective is to investigate the effect of pyrolysis temperature on the biochar yield. The properties of CF and CH feedstocks were compared. The properties of the CF and CH feedstocks were investigated using proximate and elemental analysis, lignocellulosic determination, and also thermogravimetric analysis (TGA). The CF and CH feedstocks were pyrolysed at 300, 400, 500, 600 and 700 °C for 2 hours at 10 °C/min heating rate. The proximate analysis showed that CF feedstock has 89.96 mf wt% volatile matter, 4.67 mf wt% ash content and 5.37 mf wt% fixed carbon. The lignocelluloses analysis showed that CF feedstock contained 21.46% lignin, 39.05% cellulose and 22.49% hemicelluloses. The CH feedstock contained 84.13 mf wt% volatile matter, 0.33 mf wt% ash content, 15.54 mf wt% fixed carbon, 28.22% lignin, 33.61% cellulose and 22.03% hemicelluloses. Carbon and oxygen are the major component of the CF and CH feedstock compositions. Both of CF and CH feedstocks contained very low percentage of sulfur, 0.77% and 0.33%, respectively. TGA analysis indicated that coconut wastes are easily degraded. It may be due to their high volatile content. Between the temperature ranges of 300 and 800 °C, the TGA curves showed that the weight percentage of CF feedstock is lower than CH feedstock by 0.62%-5.88%. From the D TGA curves, most of the weight loss occurred between 210 and 400 °C for both feedstocks. The maximum weight loss for both CF and CH are 0.0074 wt%/min and 0.0061 wt%/min, respectively, which occurred at 324.5 °C. The yield percentage of both CF and CH biochars decreased significantly as the pyrolysis temperature was increased. For CF biochar, the yield decreased from 49.40 wt% to 28.12 wt% as the temperature increased from 300 to 700 °C. The yield for CH biochars also decreased from 52.18 wt% to 28.72 wt%. The findings of this study indicated that both CF and CH are suitable feedstock for slow pyrolysis of biochar.

Keywords: biochar, biomass, coconut wastes, slow pyrolysis

Procedia PDF Downloads 174
2325 Comparison of Filamentous Fungus (Monascus purpureus)Growth in Submerged and Solid State Culture

Authors: Shafieeh Mansoori, Fatemeh Yazdian, Ashrafsadat Hatamian, Majid Azizi

Abstract:

Monascus purpureus, which has a special metabolite with many therapeutic and medicinal properties including antioxidant, antibiotic, anti-hypercholesterolemia, and immunosuppressive properties, is a traditional Chinese fermentation fungus and is used as a natural dietary supplement. Production of desired metabolites actually determined by optimized growth which is supported by some factors such as substrates and Monascus strains type, moisture content of the fermentation mixture, aeration, and control of contamination issues. In this experiment, M. purpureus PTCC5305 was cultured in both the liquid and solid culture medium. The former medium contain YMP (yeast extract, maltose and peptone), PGC (peptone, glucose complex), and GYP (glucose, yeast extract and peptone) medium. After 8 days, the best medium for the cell production was PGC agar medium on solid culture with 0.28 g dry weight of cell mass whereas the best liquid culture was GYP medium with 3.5 g/l dry weight of cell mass. The lowest cell production was on YMP agar with 0.1 g dry weight of cell mass and then YMP medium with 2.5 g/l dry cell weight.

Keywords: Monascus purpureus, solid state fermentation, submerged culture, Chinese fermentation fungus

Procedia PDF Downloads 380
2324 Electrical Resistivity of Solid and Liquid Pt: Insight into Electrical Resistivity of ε-Fe

Authors: Innocent C. Ezenwa, Takashi Yoshino

Abstract:

Knowledge of the transport properties of Fe and its alloys at extreme high pressure (P), temperature (T) conditions are essential for understanding the generation and sustainability of the magnetic field of the rocky planets with a metallic core. Since Pt, an unfilled d-band late transition metal with an electronic structure of Xe4f¹⁴5d⁹6s¹, is paramagnetic and remains close-packed structure at ambient conditions and high P-T, it is expected that its transport properties at these conditions would be similar to those of ε-Fe. We investigated the T-dependent electrical resistivity of solid and liquid Pt up to 8 GPa and found it constant along its melting curve both on the liquid and solid sides in agreement with theoretical prediction and experimental results estimated from thermal conductivity measurements. Our results suggest that the T-dependent resistivity of ε-Fe is linear and would not saturate at high P, T conditions. This, in turn, suggests that the thermal conductivity of liquid Fe at Earth’s core conditions may not be as high as previously suggested by models employing saturation resistivity. Hence, thermal convection could have powered the geodynamo before the birth of the inner core. The electrical resistivity and thermal conductivity on the liquid and solid sides of the inner core boundary of the Earth would be significantly different in values.

Keywords: electrical resistivity, thermal conductivity, transport properties, geodynamo and geomagnetic field

Procedia PDF Downloads 105
2323 Physico-Mechanical Properties of Wood-Plastic Composites Produced from Polyethylene Terephthalate Plastic Bottle Wastes and Sawdust of Three Tropical Hardwood Species

Authors: Amos Olajide Oluyege, Akpanobong Akpan Ekong, Emmanuel Uchechukwu Opara, Sunday Adeniyi Adedutan, Joseph Adeola Fuwape, Olawale John Olukunle

Abstract:

This study was carried out to evaluate the influence of wood species and wood plastic ratio on the physical and mechanical properties of wood plastic composites (WPCs) produced from polyethylene terephthalate (PET) plastic bottle wastes and sawdust from three hardwood species, namely, Terminalia superba, Gmelina arborea, and Ceiba pentandra. The experimental WPCs were prepared from sawdust particle size classes of ≤ 0.5, 0.5 – 1.0, and 1.0 – 2.0 mm at wood/plastic ratios of 40:60, 50:50 and 60:40 (percentage by weight). The WPCs for each study variable combination were prepared in 3 replicates and laid out in a randomized complete block design (RCBD). The physical properties investigated water absorption (WA), linear expansion (LE) and thickness swelling (TS) while the mechanical properties evaluated were Modulus of Elasticity (MOE) and Modulus of Rupture (MOR). The mean values for WA, LE and TS ranged from 1.07 to 34.04, 0.11 to 1.76 and 0.11 to 4.05 %, respectively. The mean values of the three physical properties increased with decrease in wood plastic ratio. Wood plastic ratio of 40:60 at each particle size class generally resulted in the lowest values while wood plastic ratio of 60:40 had the highest values for each of the three species. For each of the physical properties, T. superba had the least mean values followed by G. arborea, while the highest values were observed C. pentandra. The mean values for MOE and MOR ranged from 458.17 to 1875.67 and 2.64 to 18.39 N/mm2, respectively. The mean values of the two mechanical properties decreased with increase in wood plastic ratio. Wood plastic ratio of 40:60 at each wood particle size class generally had the highest values while wood plastic ratio of 60:40 had the least values for each of the three species. For each of the mechanical properties, C. pentandra had the highest mean values followed by G. arborea, while the least values were observed T. superba. There were improvements in both the physical and mechanical properties due to decrease in sawdust particle size class with the particle size class of ≤ 0.5 mm giving the best result. The results of the Analysis of variance revealed significant (P < 0.05) effects of the three study variables – wood species, sawdust particle size class and wood/plastic ratio on all the physical and mechanical properties of the WPCs. It can be concluded from the results of this study that wood plastic composites from sawdust particle size ≤ 0.5 and PET plastic bottle wastes with acceptable physical and mechanical properties are better produced using 40:60 wood/plastic ratio, and that at this ratio, all the three species are suitable for the production of wood plastic composites.

Keywords: polyethylene terephthalate plastic bottle wastes, wood plastic composite, physical properties, mechanical properties

Procedia PDF Downloads 165
2322 Effect of Aeration on Co-Composting of Mixture of Food Waste with Sawdust and Sewage Sludge from Nicosia Waste Water Treatment Plant

Authors: Azad Khalid, Ime Akanyeti

Abstract:

About 68% of the urban solid waste generated in Turkish Republic of Northern Cyprus TRNC is household solid waste, at present, its disposal in landfills. In other hand more than 3000 ton per year of sewage sludge produces in Nicosia waste water treatment plant, the produced sludge piled up without any processing. Co-composting of organic fraction of municipal solid waste and sewage sludge is diverting of municipal solid waste from landfills and best disposal of wastewater sewage sludge. Three 10 L insulated bioreactor R1, R2 and R3 obtained with aeration rate 0.05 m3/h.kg for R2 and R3, R1 was without aeration. The mixture was destined with ratio of sewage sludge: food waste: sawdust; 1:5:0.8 (w/w). The effective of aeration monitored during 42 days of process through investigation in key parameter moisture, C/N ratio, temperature and pH. Results show that the high moisture content cause problem and around 60% recommend, C/N ratio decreased about 17% in aerated reactors and 10% in without aeration and mixture volume reduced in volume 40% in final compost with size of 1.00 to 20.0 mm. temperature in reactors with aeration reached thermophilic phase above 50 °C and <40 °C in without aeration. The final pH is 6.1 in R1, 8.23 in R2 and 8.1 in R3.

Keywords: aeration, sewage sludge, food waste, sawdust, composting

Procedia PDF Downloads 42
2321 The Implementation of a Numerical Technique to Thermal Design of Fluidized Bed Cooler

Authors: Damiaa Saad Khudor

Abstract:

The paper describes an investigation for the thermal design of a fluidized bed cooler and prediction of heat transfer rate among the media categories. It is devoted to the thermal design of such equipment and their application in the industrial fields. It outlines the strategy for the fluidization heat transfer mode and its implementation in industry. The thermal design for fluidized bed cooler is used to furnish a complete design for a fluidized bed cooler of Sodium Bicarbonate. The total thermal load distribution between the air-solid and water-solid along the cooler is calculated according to the thermal equilibrium. The step by step technique was used to accomplish the thermal design of the fluidized bed cooler. It predicts the load, air, solid and water temperature along the trough. The thermal design for fluidized bed cooler revealed to the installation of a heat exchanger consists of (65) horizontal tubes with (33.4) mm diameter and (4) m length inside the bed trough.

Keywords: fluidization, powder technology, thermal design, heat exchangers

Procedia PDF Downloads 472