Search results for: quadrature amplitude modulation (QAM)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1066

Search results for: quadrature amplitude modulation (QAM)

286 Three-Dimensional Vibration Characteristics of Piezoelectric Semi-Spherical Shell

Authors: Yu-Hsi Huang, Ying-Der Tsai

Abstract:

Piezoelectric circular plates can provide out-of-plane vibrational displacements on low frequency and in-plane vibrational displacements on high frequency. Piezoelectric semi-spherical shell, which is double-curvature structure, can induce three-dimensional vibrational displacements over a large frequency range. In this study, three-dimensional vibrational characteristics of piezoelectric semi-spherical shells with free boundary conditions are investigated using three experimental methods and finite element numerical modeling. For the experimental measurements, amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI) is used to obtain resonant frequencies and radial and azimuthal mode shapes. This optical technique utilizes a full-field and non-contact optical system that measures both the natural frequency and corresponding vibration mode shape simultaneously in real time. The second experimental technique used, laser displacement meter is a point-wise displacement measurement method that determines the resonant frequencies of the piezoelectric shell. An impedance analyzer is used to determine the in-plane resonant frequencies of the piezoelectric semi-spherical shell. The experimental results of the resonant frequencies and mode shapes for the piezoelectric shell are verified with the result from finite element analysis. Excellent agreement between the experimental measurements and numerical calculation is presented on the three-dimensional vibrational characteristics of the piezoelectric semi-spherical shell.

Keywords: piezoelectric semi-spherical shell, mode shape, resonant frequency, electronic speckle pattern interferometry, radial vibration, azimuthal vibration

Procedia PDF Downloads 198
285 Analysis of the Cutting Force with Ultrasonic Assisted Manufacturing of Steel (S235JR)

Authors: Philipp Zopf, Franz Haas

Abstract:

Manufacturing of very hard and refractory materials like ceramics, glass or carbide poses particular challenges on tools and machines. The company Sauer GmbH developed especially for this application area ultrasonic tool holders working in a frequency range from 15 to 60 kHz and superimpose the common tool movement in the vertical axis. This technique causes a structural weakening in the contact area and facilitates the machining. The possibility of the force reduction for these special materials especially in drilling of carbide with diamond tools up to 30 percent made the authors try to expand the application range of this method. To make the results evaluable, the authors decide to start with existing processes in which the positive influence of the ultrasonic assistance is proven to understand the mechanism. The comparison of a grinding process the Institute use to machine materials mentioned in the beginning and steel could not be more different. In the first case, the authors use tools with geometrically undefined edges. In the second case, the edges are geometrically defined. To get valid results of the tests, the authors decide to investigate two manufacturing methods, drilling and milling. The main target of the investigation is to reduce the cutting force measured with a force measurement platform underneath the workpiece. Concerning to the direction of the ultrasonic assistance, the authors expect lower cutting forces and longer endurance of the tool in the drilling process. To verify the frequencies and the amplitudes an FFT-analysis is performed. It shows the increasing damping depending on the infeed rate of the tool. The reducing of amplitude of the cutting force comes along.

Keywords: drilling, machining, milling, ultrasonic

Procedia PDF Downloads 244
284 Subsurface Structures Related to the Hydrocarbon Migration and Accumulation in the Afghan Tajik Basin, Northern Afghanistan: Insights from Seismic Attribute Analysis

Authors: Samim Khair Mohammad, Takeshi Tsuji, Chanmaly Chhun

Abstract:

The Afghan Tajik (foreland) basin, located in the depression zone between mountain axes, is under compression and deformation during the collision of India with the Eurasian plate. The southern part of the Afghan Tajik basin in the Northern part of Afghanistan has not been well studied and explored, but considered for the significant potential for oil and gas resources. The Afghan Tajik basin depositional environments (< 8km) resulted from mixing terrestrial and marine systems, which has potential prospects of Jurrasic (deep) and Tertiary (shallow) petroleum systems. We used 2D regional seismic profiles with a total length of 674.8 km (or over an area of 2500 km²) in the southern part of the basin. To characterize hydrocarbon systems and structures in this study area, we applied advanced seismic attributes such as spectral decomposition (10 - 60Hz) based on time-frequency analysis with continuous wavelet transform. The spectral decomposition results yield the (averaging 20 - 30Hz group) spectral amplitude anomaly. Based on this anomaly result, seismic, and structural interpretation, the potential hydrocarbon accumulations were inferred around the main thrust folds in the tertiary (Paleogene+Neogene) petroleum systems, which appeared to be accumulated around the central study area. Furthermore, it seems that hydrocarbons dominantly migrated along the main thrusts and then concentrated around anticline fold systems which could be sealed by mudstone/carbonate rocks.

Keywords: The Afghan Tajik basin, seismic lines, spectral decomposition, thrust folds, hydrocarbon reservoirs

Procedia PDF Downloads 64
283 Acoustic Emission Techniques in Monitoring Low-Speed Bearing Conditions

Authors: Faisal AlShammari, Abdulmajid Addali, Mosab Alrashed

Abstract:

It is widely acknowledged that bearing failures are the primary reason for breakdowns in rotating machinery. These failures are extremely costly, particularly in terms of lost production. Roller bearings are widely used in industrial machinery and need to be maintained in good condition to ensure the continuing efficiency, effectiveness, and profitability of the production process. The research presented here is an investigation of the use of acoustic emission (AE) to monitor bearing conditions at low speeds. Many machines, particularly large, expensive machines operate at speeds below 100 rpm, and such machines are important to the industry. However, the overwhelming proportion of studies have investigated the use of AE techniques for condition monitoring of higher-speed machines (typically several hundred rpm, or even higher). Few researchers have investigated the application of these techniques to low-speed machines ( < 100 rpm). This paper addressed this omission and has established which, of the available, AE techniques are suitable for the detection of incipient faults and measurement of fault growth in low-speed bearings. The first objective of this paper program was to assess the applicability of AE techniques to monitor low-speed bearings. It was found that the measured statistical parameters successfully monitored bearing conditions at low speeds (10-100 rpm). The second objective was to identify which commonly used statistical parameters derived from the AE signal (RMS, kurtosis, amplitude and counts) could identify the onset of a fault in the out race. It was found that these parameters effectually identify the presence of a small fault seeded into the outer races. Also, it is concluded that rotational speed has a strong influence on the measured AE parameters but that they are entirely independent of the load under such load and speed conditions.

Keywords: acoustic emission, condition monitoring, NDT, statistical analysis

Procedia PDF Downloads 221
282 Anti-TNF: Possibilities of Rising Anti-Phosphorylcholine Antibodies

Authors: Md. Mizanur Rahman, Anquan Liu, Anna Frostegård, Johan Frostegård

Abstract:

The role of the human immune system is essential in cardiovascular diseases and atherosclerosis. Activated cells in atherosclerosis produce abundant amounts of cytokines, but the exact mechanisms involved in the effects of these inflammatory cytokines are not clear in atherosclerosis. In a large clinical cohort, we have previously determined that antibodies against phosphorylcholine (anti-PC) are negatively and independently associated with both development of atherosclerosis and also a low risk of cardiovascular disease. Further, we reported that rheumatoid arthritis patients who were non-responders to TNF-inhibitors, where those with low anti-PC levels. Upon anti-TNF treatment, anti-PC levels increased. We, therefore, hypothesised that proinflammatory cytokines such as TNF could play a role in anti-PC regulation. Peripheral blood mononuclear cells (PBMC) were cultured with or without TNF and anti-TNF. The cell supernatants were collected after six days for ELISA measurements. In separate experiments, cells were cultured for 24 hours in both polystyrene plates and ELISPOT plates under a similar condition for ELISA and ELISPOT assays respectively. Total RNA was extracted after 6 hours of cell culture to perform RT-qPCR. Cell viability was confirmed by trypan blue staining and MTT assays. ELISA measurements detected less than 40% of anti-PC in TNF-treated cells, in comparison to control cells, whereas anti-PC production was recovered by anti-TNF treatment. ELISPOT assays showed that TNF suppresses anti-PC production by inhibiting anti-PC producing B-cells. In addition, RT-qPCR and ELISA showed that TNF also has effects also on B-cell activation as BAFF expression was inhibited by TNF treatment. Atherosclerosis is a major cause of cardiovascular diseases, but anti-PC is a protection marker for atherosclerosis development. Our findings show that TNF is a negative regulator of anti-PC production. Immune modulation and rising of anti-PC could be of major significance for the patients.

Keywords: anti-PC, Anti-TNF, atherosclerosis, cardiovascular diseases, phosphorylecholine

Procedia PDF Downloads 216
281 Phosphate Regulation of Arbuscular Mycorrhiza Symbiosis in Rice

Authors: Debatosh Das, Moxian Chen, Jianhua Zhang, Caroline Gutjahr

Abstract:

Arbuscular mycorrhiza (AM) is a mutualistic symbiosis between plant roots and Glomeromycotina fungi, which is activated under low but inhibited by high phosphate. The effect of phosphate on AM development has been observed for many years, but mechanisms regulating it under contrasting phosphate levels remain unknown. Based on previous observations that promoters of several AM functional genes contain PHR binding motifs, we hypothesized that PHR2, a master regulator of phosphate starvation response in rice, was recruited to regulate AM symbiosis development. We observed a drastic reduction in root colonization and significant AM transcriptome modulation in phr2. PHR2 targets genes required for root colonization and AM signaling. The role of PHR2 in improving root colonization, mycorrhizal phosphate uptake, and growth response was confirmed in field soil. In conclusion, rice PHR2, which is considered a master regulator of phosphate starvation responses, acts as a positive regulator of AM symbiosis between Glomeromycotina fungi and rice roots. PHR2 directly targets the transcription of plant strigolactone and AM genes involved in the establishment of this symbiosis. Our work facilitates an understanding of ways to enhance AMF propagule populations introduced in field soils (as a biofertilizer) in order to restore the natural plant-AMF networks disrupted by modern agricultural practices. We show that PHR2 is required for AM-mediated improvement of rice yield in low phosphate paddy field soil. Thus, our work contributes knowledge for rational application of AM in sustainable agriculture. Our data provide important insights into the regulation of AM by the plant phosphate status, which has a broad significance in agriculture and terrestrial ecosystems.

Keywords: biofertilizer, phosphate, mycorrhiza, rice, sustainable, symbiosis

Procedia PDF Downloads 101
280 Plant Growth, Symbiotic Performance and Grain Yield of 63 Common Bean Genotypes Grown Under Field Conditions at Malkerns Eswatini

Authors: Rotondwa P. Gunununu, Mustapha Mohammed, Felix D. Dakora

Abstract:

Common bean is the most importantly high protein grain legume grown in Southern Africa for human consumption and income generation. Although common bean can associate with rhizobia to fix N₂ for bacterial use and plant growth, it is reported to be a poor nitrogen fixer when compared to other legumes. N₂ fixation can vary with legume species, genotype and rhizobial strain. Therefore, screening legume germplasm can reveal rhizobia/genotype combinations with high N₂-fixing efficiency for use by farmers. This study assessed symbiotic performance and N₂ fixation in 63 common bean genotypes under field conditions at Malkerns Station in Eswatini, using the ¹⁵N natural abundance technique. The shoots of common bean genotypes were sampled at a pod-filling stage, oven-dried (65oC for 72h), weighed, ground into a fine powder (0.50 mm sieve), and subjected to ¹⁵N/¹⁴N isotopic analysis using mass spectrometry. At maturity, plants from the inner rows were harvested for the determination of grain yield. The results revealed significantly higher modulation (p≤0.05) in genotypes MCA98 and CIM-RM01-97-8 relative to the other genotypes. Shoot N concentration was highest in genotype MCA 98, followed by KAB 10 F2.8-84, with most genotypes showing shoot N concentrations below 2%. Percent N derived from atmospheric N₂ fixation (%Ndfa) differed markedly among genotypes, with CIM-RM01-92-3 and DAB 174, respectively, recording the highest values of 66.65% and 66.22 % N derived from fixation. There were also significant differences in grain yield, with CIM-RM02-79-1 producing the highest yield (3618.75 kg/ha). These results represent an important contribution in the profiling of symbiotic functioning of common bean germplasm for improved N₂ fixation.

Keywords: nitrogen fixation, %Ndfa, ¹⁵N natural abundance, grain yield

Procedia PDF Downloads 183
279 Modeling of Thermo Acoustic Emission Memory Effect in Rocks of Varying Textures

Authors: Vladimir Vinnikov

Abstract:

The paper proposes a model of an inhomogeneous rock mass with initially random distribution of microcracks on mineral grain boundaries. It describes the behavior of cracks in a medium under the effect of thermal field, the medium heated instantaneously to a predetermined temperature. Crack growth occurs according to the concept of fracture mechanics provided that the stress intensity factor K exceeds the critical value of Kc. The modeling of thermally induced acoustic emission memory effects is based on the assumption that every event of crack nucleation or crack growth caused by heating is accompanied with a single acoustic emission event. Parameters of the thermally induced acoustic emission memory effect produced by cyclic heating and cooling (with the temperature amplitude increasing from cycle to cycle) were calculated for several rock texture types (massive, banded, and disseminated). The study substantiates the adaptation of the proposed model to humidity interference with the thermally induced acoustic emission memory effect. The influence of humidity on the thermally induced acoustic emission memory effect in quasi-homogeneous and banded rocks is estimated. It is shown that such modeling allows the structure and texture of rocks to be taken into account and the influence of interference factors on the distinctness of the thermally induced acoustic emission memory effect to be estimated. The numerical modeling can be used to obtain information about the thermal impacts on rocks in the past and determine the degree of rock disturbance by means of non-destructive testing.

Keywords: crack growth, cyclic heating and cooling, rock texture, thermo acoustic emission memory effect

Procedia PDF Downloads 247
278 A Parametric Study of the Effect of Size, Position, and Number of Flexible Membranes Attached to a Circular Cylinder on the Fluid Flow Behavior

Authors: Nabaouia.Maktouf, Ali Ben Moussa, Saïd Turki

Abstract:

This paper discusses the effect of an attached flexible membrane on the control of fluid around a circular cylinder. A parametric study has been investigated for different positions, sizes, modes as well as frequencies of oscillation of the flexible membrane. The numerical investigation was conducted for a Reynolds number equal to 150 using the commercial code Fluent 16.0 and parallel calculation into 4 processors. The motion of the flexible membrane was managed by the dynamic mesh and compiled into Fluent as a user-defined function. The first part of this paper discusses the effect of changing the position of a flexible membrane sized 8° as an angle of aperture on the aerodynamic coefficients. Results show that the flexible membrane placed at 110° from the stagnation point presents more non-linearity on the behavior of the drag coefficient compared to the drag behavior when placed at 180°, relative to the stagnation point. The effect of the size of the flexible surface was studied for the corresponding angles of aperture: 32° and 42°, respectively. The effect of modes (modes 1, 2, and 3) of vibrations has been investigated at a constant frequency of vibration f=2Hz for angles 32° and 42°. All the calculations have been done with a constant amplitude A =0.001m. A non-linearity of the drag coefficient was clearly observed for all the sizes, modes as well as frequencies of excitation. The Fast Fourier transformation shows the appearance of the natural shedding frequency and the multiples of the frequency of excitation. An increase in the modes of oscillation leads to a more linear behavior of the drag coefficient.

Keywords: fluid flow control, numerical simulation, dynamic mesh, aerodynamic forces, flexible membrane

Procedia PDF Downloads 50
277 Fatigue Life Prediction under Variable Loading Based a Non-Linear Energy Model

Authors: Aid Abdelkrim

Abstract:

A method of fatigue damage accumulation based upon application of energy parameters of the fatigue process is proposed in the paper. Using this model is simple, it has no parameter to be determined, it requires only the knowledge of the curve W–N (W: strain energy density N: number of cycles at failure) determined from the experimental Wöhler curve. To examine the performance of nonlinear models proposed in the estimation of fatigue damage and fatigue life of components under random loading, a batch of specimens made of 6082 T 6 aluminium alloy has been studied and some of the results are reported in the present paper. The paper describes an algorithm and suggests a fatigue cumulative damage model, especially when random loading is considered. This work contains the results of uni-axial random load fatigue tests with different mean and amplitude values performed on 6082T6 aluminium alloy specimens. The proposed model has been formulated to take into account the damage evolution at different load levels and it allows the effect of the loading sequence to be included by means of a recurrence formula derived for multilevel loading, considering complex load sequences. It is concluded that a ‘damaged stress interaction damage rule’ proposed here allows a better fatigue damage prediction than the widely used Palmgren–Miner rule, and a formula derived in random fatigue could be used to predict the fatigue damage and fatigue lifetime very easily. The results obtained by the model are compared with the experimental results and those calculated by the most fatigue damage model used in fatigue (Miner’s model). The comparison shows that the proposed model, presents a good estimation of the experimental results. Moreover, the error is minimized in comparison to the Miner’s model.

Keywords: damage accumulation, energy model, damage indicator, variable loading, random loading

Procedia PDF Downloads 369
276 Integration of Polarization States and Color Multiplexing through a Singular Metasurface

Authors: Tarik Sipahi

Abstract:

Photonics research continues to push the boundaries of optical science, and the development of metasurface technology has emerged as a transformative force in this domain. The work presents the intricacies of a unified metasurface design tailored for efficient polarization and color control in optical systems. The proposed unified metasurface serves as a singular, nanoengineered optical element capable of simultaneous polarization modulation and color encoding. Leveraging principles from metamaterials and nanophotonics, this design allows for unprecedented control over the behavior of light at the subwavelength scale. The metasurface's spatially varying architecture enables seamless manipulation of both polarization states and color wavelengths, paving the way for a paradigm shift in optical system design. The advantages of this unified metasurface are diverse and impactful. By consolidating functions that traditionally require multiple optical components, the design streamlines optical systems, reducing complexity and enhancing overall efficiency. This approach is particularly promising for applications where compactness, weight considerations, and multifunctionality are crucial. Furthermore, the proposed unified metasurface design not only enhances multifunctionality but also addresses key challenges in optical system design, offering a versatile solution for applications demanding compactness and lightweight structures. The metasurface's capability to simultaneously manipulate polarization and color opens new possibilities in diverse technological fields. The research contributes to the evolution of optical science by showcasing the transformative potential of metasurface technology, emphasizing its role in reshaping the landscape of optical system architectures. This work represents a significant step forward in the ongoing pursuit of pushing the boundaries of photonics, providing a foundation for future innovations in compact and efficient optical devices.

Keywords: metasurface, nanophotonics, optical system design, polarization control

Procedia PDF Downloads 20
275 Cognitive Effects of Repetitive Transcranial Magnetic Stimulation in Patients with Parkinson's Disease

Authors: Ana Munguia, Gerardo Ortiz, Guadalupe Gonzalez, Fiacro Jimenez

Abstract:

Parkinson's disease (PD) is a neurodegenerative disorder that causes motor and cognitive symptoms. The first-choice treatment for these patients is pharmacological, but this generates several side effects. Because of that new treatments were introduced such as Repetitive Transcranial Magnetic Stimulation (rTMS) in order to improve the life quality of the patients. Several studies suggest significant changes in motor symptoms. However, there is a great diversity in the number of pulses, amplitude, frequency and stimulation targets, which results in inconsistent data. In addition, these studies do not have an analysis of the neuropsychological effects of the treatment. The main purpose of this study is to evaluate the impact of rTMS on the cognitive performance of 6 patients with H&Y III and IV (45-65 years, 3 men and 3 women). An initial neuropsychological and neurological evaluation was performed. Patients were randomized into two groups; in the first phase one received rTMS in the supplementary motor area, the other group in the dorsolateral prefrontal cortex contralateral to the most affected hemibody. In the second phase, each group received the stimulation in the area that he had not been stimulated previously. Reassessments were carried out at the beginning, at the end of each phase and a follow-up was carried out 6 months after the conclusion of the stimulation. In these preliminary results, it is reported that there's no statistically significant difference before and after receiving rTMS in the neuropsychological test scores of the patients, which suggests that the cognitive performance of patients is not detrimental. There are even tendencies towards an improvement in executive functioning after the treatment. What added to motor improvement, showed positive effects in the activities of the patients' daily life. In a later and more detailed analysis, will be evaluated the effects in each of the patients separately in relation to the functionality of the patients in their daily lives.

Keywords: Parkinson's disease, rTMS, cognitive, treatment

Procedia PDF Downloads 122
274 Peculiarities of Internal Friction and Shear Modulus in 60Co γ-Rays Irradiated Monocrystalline SiGe Alloys

Authors: I. Kurashvili, G. Darsavelidze, T. Kimeridze, G. Chubinidze, I. Tabatadze

Abstract:

At present, a number of modern semiconductor devices based on SiGe alloys have been created in which the latest achievements of high technologies are used. These devices might cause significant changes to networking, computing, and space technology. In the nearest future new materials based on SiGe will be able to restrict the A3B5 and Si technologies and firmly establish themselves in medium frequency electronics. Effective realization of these prospects requires the solution of prediction and controlling of structural state and dynamical physical –mechanical properties of new SiGe materials. Based on these circumstances, a complex investigation of structural defects and structural-sensitive dynamic mechanical characteristics of SiGe alloys under different external impacts (deformation, radiation, thermal cycling) acquires great importance. Internal friction (IF) and shear modulus temperature and amplitude dependences of the monocrystalline boron-doped Si1-xGex(x≤0.05) alloys grown by Czochralski technique is studied in initial and 60Co gamma-irradiated states. In the initial samples, a set of dislocation origin relaxation processes and accompanying modulus defects are revealed in a temperature interval of 400-800 ⁰C. It is shown that after gamma-irradiation intensity of relaxation internal friction in the vicinity of 280 ⁰C increases and simultaneously activation parameters of high temperature relaxation processes reveal clear rising. It is proposed that these changes of dynamical mechanical characteristics might be caused by a decrease of the dislocation mobility in the Cottrell atmosphere enriched by the radiation defects.

Keywords: internal friction, shear modulus, gamma-irradiation, SiGe alloys

Procedia PDF Downloads 112
273 In vitro Modulation of Cytokine Expression by an Aqueous Licorice Extract in Canine

Authors: A. Watson, G. Telford, D. I. Pritchard

Abstract:

Objective: We investigated the immunomodulatory ability of licorice (Glycyrrhiza glabra). Such activities could have value for the management of common immunological diseases in dogs, such as environmental allergy. This study investigated the potential of a Licorice root extract (LRE) to influence the relative expression of Th-1, Th-2, and Th-17 cytokines in canine peripheral blood mononuclear cells (PBMC). Methods: A LRE was prepared using an alcoholic-aqueous-based solvent method. The extract was tested in three in vitro assays using canine leukocytes to determine its toxicity and immunoregulatory profile. Extract toxicity was assessed using the human T-lymphocyte cell line, Jurkat E6.1. The impact of the extract on the proliferation of concanavalin-activated canine PBMC was also determined. Finally, the extract was assessed for its ability to influence cytokine release in activated PBMC, measuring culture medium concentrations of interleukin-17, interferon gamma, and interleukin-4. One-way ANOVA followed by Dunnett’s post-test was used for statistics using concanavalin positive control as reference (p ≤ 0.05). Results: There was evidence that the LRE had specific immunomodulatory properties, causing significant inhibition of IL4 expression over a non-toxic/non-cytostatic concentration range (p < 0.001). In the same cell incubations, there was no significant impact on IL17 nor IFNg over the same non-toxic/non-cytostatic concentration range. Conclusion: The study provides in vitro evidence that LRE preferentially reduces the expression of a Th-2-type cytokine, IL4. The dog population, as with humans, is prone to conditions associated with a Th-2 bias of the immune system, such as environmental allergy. Based on these results, licorice merits further evaluation as a useful immune modulator for such allergic diseases.

Keywords: cytokine, Glycyrrhiza glabra, peripheral blood mononuclear cells, T-cell activation

Procedia PDF Downloads 76
272 Inter-Annual Variations of Sea Surface Temperature in the Arabian Sea

Authors: K. S. Sreejith, C. Shaji

Abstract:

Though both Arabian Sea and its counterpart Bay of Bengal is forced primarily by the semi-annually reversing monsoons, the spatio-temporal variations of surface waters is very strong in the Arabian Sea as compared to the Bay of Bengal. This study focuses on the inter-annual variability of Sea Surface Temperature (SST) in the Arabian Sea by analysing ERSST dataset which covers 152 years of SST (January 1854 to December 2002) based on the ICOADS in situ observations. To capture the dominant SST oscillations and to understand the inter-annual SST variations at various local regions of the Arabian Sea, wavelet analysis was performed on this long time-series SST dataset. This tool is advantageous over other signal analysing tools like Fourier analysis, based on the fact that it unfolds a time-series data (signal) both in frequency and time domain. This technique makes it easier to determine dominant modes of variability and explain how those modes vary in time. The analysis revealed that pentadal SST oscillations predominate at most of the analysed local regions in the Arabian Sea. From the time information of wavelet analysis, it was interpreted that these cold and warm events of large amplitude occurred during the periods 1870-1890, 1890-1910, 1930-1950, 1980-1990 and 1990-2005. SST oscillations with peaks having period of ~ 2-4 years was found to be significant in the central and eastern regions of Arabian Sea. This indicates that the inter-annual SST variation in the Indian Ocean is affected by the El Niño-Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) events.

Keywords: Arabian Sea, ICOADS, inter-annual variation, pentadal oscillation, SST, wavelet analysis

Procedia PDF Downloads 257
271 Redirection of Cytokine Production Patterns by Dydrogesterone, an Orally-Administered Progestogen

Authors: Raj Raghupathy

Abstract:

Recurrent Spontaneous Miscarriage (RSM) is a common form of pregnancy loss, 50% of which are due to ‘unexplained’ causes. Evidence exists to suggest that RSM may be caused by immunologic factors such as cytokines which are critical molecules of the immune system, with an impressive array of capabilities. An association appears to exist between Th2-type reactivity (mediated by Th2 or anti-inflammatory cytokines) and normal, successful pregnancy, and between unexplained RSM and Th1 cytokine dominance. If pro-inflammatory cytokines are indeed associated with pregnancy loss, the suppression of these cytokines, and thus the ‘redirection’ of maternal reactivity, may help prevent cytokine-mediated pregnancy loss. The objective of this study was to explore the possibility of modulating cytokine production using Dydrogesterone (Duphaston®), an orally-administered progestogen. Peripheral blood mononuclear cells from 34 women with a history of at least 3 unexplained recurrent miscarriages were stimulated in vitro with a mitogen (to elicit cytokine production) in the presence and absence of dydrogesterone. Levels of selected pro- and anti-inflammatory cytokines produced by peripheral blood mononuclear cells were measured after exposure to these progestogens. Dydrogesterone down-regulates the production of pro-inflammatory cytokines and up-regulates the production of anti-inflammatory cytokines. The ratios of Th2 to Th1 cytokines are markedly elevated in the presence of dydrogesterone, indicating a shift from potentially harmful maternal Th1 reactivity to a more pregnancy-conducive Th2 profile. We used a progesterone receptor antagonist to show that this cytokine-modulating effect of dydrogesterone is mediated via the progesterone receptor. Dydrogesterone also induces the production of the Progesterone-Induced Blocking Factor (PIBF); lymphocytes exposed to PIBF produce higher levels of Th2 cytokines, affecting a Th1 → Th2 cytokine shift which could be favourable to the success of pregnancy. We conclude that modulation of maternal cytokine production profiles is possible with dydrogesterone which has the merits that it can be administered orally and that it is safe.

Keywords: cytokines, dydrogesterone, progesterone, recurrent spontaneous miscarriage

Procedia PDF Downloads 261
270 Prospects of Milk Protein as a Potential Alternative of Natural Antibiotic

Authors: Syeda Fahria Hoque Mimmi

Abstract:

Many new and promising treatments for reducing or diminishing the adverse effects of microorganisms are being discovered day by day. On the other hand, the dairy industry is accelerating the economic wheel of Bangladesh. Considering all these facts, new thoughts were developed to isolate milk proteins by the present experiment for opening up a new era of developing natural antibiotics from milk. Lactoferrin, an iron-binding glycoprotein with multifunctional properties, is crucial to strengthening the immune system and also useful for commercial applications. The protein’s iron-binding capacity makes it undoubtedly advantageous to immune system modulation and different bacterial strains. For fulfilling the purpose, 4 of raw and 17 of commercially available milk samples were collected from different farms and stores in Bangladesh (Dhaka, Chittagong, and Cox’s Bazar). Protein quantification by nanodrop technology has confirmed that raw milk samples have better quantities of protein than the commercial ones. All the samples were tested for their antimicrobial activity against 18 pathogens, where raw milk samples showed a higher percentage of antibacterial activity. In addition to this, SDS-PAGE (Sodium Dodecyl Sulfate–Polyacrylamide Gel Electrophoresis) was performed to identify lactoferrin in the milk samples. Lactoferrin was detected in 9 samples from which 4 were raw milk samples. Interestingly, Streptococcus pyogenes, Klebsiella pneumoniae, Bacillus cereus, Pseudomonas aeruginosa, Vibrio cholera, Staphylococcus aureus, and enterotoxigenic E. coli significantly displayed sensitivity against lactoferrin collected from raw milk. Only Bacillus cereus, Pseudomonas aeruginosa, Streptococcus pneumonia, Enterococcus faecalis, and ETEC (Enterotoxigenic Escherichia coli) were susceptible to lactoferrin obtained from a commercial one. This study suggested that lactoferrin might be used as the potential alternative of antibiotics for many diseases and also can be used to reduce microbial deterioration in the food and feed industry.

Keywords: alternative of antibiotics, commercially available milk, lactoferrin, nanodrop technology, pathogens, raw milk

Procedia PDF Downloads 141
269 Design and Implementation of 3kVA Grid-Tied Transformerless Power Inverter for Solar Photovoltaic Application

Authors: Daniel O. Johnson, Abiodun A. Ogunseye, Aaron Aransiola, Majors Samuel

Abstract:

Power Inverter is a very important device in renewable energy use particularly for solar photovoltaic power application because it is the effective interface between the DC power generator and the load or the grid. Transformerless inverter is getting more and more preferred to the power converter with galvanic isolation transformer and may eventually supplant it. Transformerless inverter offers advantages of improved DC to AC conversion and power delivery efficiency; and reduced system cost, weight and complexity. This work presents thorough analysis of the design and prototyping of 3KVA grid-tie transformerless inverter. The inverter employs electronic switching method with minimised heat generation in the system and operates based on the principle of pulse-width modulation (PWM). The design is such that it can take two inputs, one from PV arrays and the other from Battery Energy Storage BES and addresses the safety challenge of leakage current. The inverter system was designed around microcontroller system, modeled with Proteus® software for simulation and testing of the viability of the designed inverter circuit. The firmware governing the operation of the grid-tied inverter is written in C language and was developed using MicroC software by Mikroelectronica® for writing sine wave signal code for synchronization to the grid. The simulation results show that the designed inverter circuit performs excellently with very high efficiency, good quality sinusoidal output waveform, negligible harmonics and gives very stable performance under voltage variation from 36VDC to 60VDC input. The prototype confirmed the simulated results and was successfully synchronized with the utility supply. The comprehensive analyses of the circuit design, the prototype and explanation on overall performance will be presented.

Keywords: grid-tied inverter, leakage current, photovoltaic system, power electronic, transformerless inverter

Procedia PDF Downloads 260
268 Reduced Glycaemic Impact by Kiwifruit-Based Carbohydrate Exchanges Depends on Both Available Carbohydrate and Non-Digestible Fruit Residue

Authors: S. Mishra, J. Monro, H. Edwards, J. Podd

Abstract:

When a fruit such as kiwifruit is consumed its tissues are released from the physical /anatomical constraints existing in the fruit. During digestion they may expand several-fold to achieve a hydrated solids volume far greater than the original fruit, and occupy the available space in the gut, where they surround and interact with other food components. Within the cell wall dispersion, in vitro digestion of co-consumed carbohydrate, diffusion of digestion products, and mixing responsible for mass transfer of nutrients to the gut wall for absorption, were all retarded. All of the foregoing processes may be involved in the glycaemic response to carbohydrate foods consumed with kiwifruit, such as breakfast cereal. To examine their combined role in reducing the glycaemic response to wheat cereal consumed with kiwifruit we formulated diets containing equal amounts of breakfast cereal, with the addition of either kiwifruit, or sugars of the same composition and quantity as in kiwifruit. Therefore, the only difference between the diets was the presence of non-digestible fruit residues. The diet containing the entire disperse kiwifruit significantly reduced the glycaemic response amplitude and the area under the 0-120 min incremental blood glucose response curve (IAUC), compared with the equicarbohydrate diet containing the added kiwifruit sugars. It also slightly but significantly increased the 120-180 min IAUC by preventing a postprandial overcompensation, indicating improved homeostatic blood glucose control. In a subsequent study in which we used kiwifruit in a carbohydrate exchange format, in which the kiwifruit carbohydrate partially replaced breakfast cereal in equal carbohydrate meals, the blood glucose was further reduced without a loss of satiety, and with a reduction in insulin demand. The results show that kiwifruit may be a valuable component in low glycaemic impact diets.

Keywords: carbohydrate, digestion, glycaemic response, kiwifruit

Procedia PDF Downloads 465
267 Genetic Association and Functional Significance of Matrix Metalloproteinase-14 Promoter Variants rs1004030 and rs1003349 in Gallbladder Cancer Pathogenesis

Authors: J. Vinay , Kusumbati Besra, Niharika Pattnaik, Shivaram Prasad Singh, Manjusha Dixit

Abstract:

Gallbladder cancer (GBC) is rare but highly malignant cancer; its prevalence is more in certain geographical regions and ethnic groups, which include the Northern and Eastern states of India. Previous studies in India have reported genetic predisposition as one of the risk factors in GBC pathogenesis. Although the matrix metalloproteinase-14 (MMP14) is a well-known modulator of the tumor microenvironment and tumorigenesis and TCGA data also suggests its upregulation yet, its role in the genetic predisposition for GBC is completely unknown. We elucidated the role of MMP14 promoter variants as genetic risk factors and their implications in expression modulation. We screened MMP14 promoter variants association with GBC using Sanger’s sequencing in approximately 300 GBC and 300 control subjects and 26 GBC tissue samples of Indian ethnicity. The immunohistochemistry was used to check the MMP14 protein expression in GBC tissue samples. The role of promoter variants on expression levels was elucidated using a luciferase reporter assay. The variants rs1004030 (p-value = 0.0001) and rs1003349 (p-value = 0.0008) were significantly associated with gallbladder cancer. The luciferase assay in two different cell lines, HEK-293 (p = 0.0006) and TGBC1TKB (p = 0.0036) showed a significant increase in relative luciferase activity in the presence of risk alleles for both the single nucleotide polymorphisms (SNPs). Similarly, genotype-phenotype correlation in patients samples confirmed that the presence of risk alleles at rs1004030 and rs1003349 increased MMP14 expression. Overall, this study unravels the genetic association of MMP14 promoter variants with gallbladder cancer, which may contribute to pathogenesis by increasing its expression.

Keywords: gallbladder cancer, matrix metalloproteinase-14, single nucleotide polymorphism, case control study, genetic association study

Procedia PDF Downloads 146
266 Anti-Parasite Targeting with Amino Acid-Capped Nanoparticles Modulates Multiple Cellular Processes in Host

Authors: Oluyomi Stephen Adeyemi, Kentaro Kato

Abstract:

Toxoplasma gondii is the etiological agent of toxoplasmosis, a common parasitic disease capable of infecting a range of hosts, including nearly one-third of the human population. Current treatment options for toxoplasmosis patients are limited. In consequence, toxoplasmosis represents a large global burden that is further enhanced by the shortcomings of the current therapeutic options. These factors underscore the need for better anti-T. gondii agents and/or new treatment approach. In the present study, we sought to find out whether preparing and capping nanoparticles (NPs) in amino acids, would enhance specificity toward the parasite versus the host cell. The selection of amino acids was premised on the fact that T. gondii is auxotrophic for some amino acids. The amino acid-nanoparticles (amino-NPs) were synthesized, purified and characterized following established protocols. Next, we tested to determine the anti-T. gondii activity of the amino-NPs using in vitro experimental model of infection. Overall, our data show evidence that supports enhanced and excellent selective action against the parasite versus the host cells by amino-NPs. The findings are promising and provide additional support that warrants exploring the prospects of NPs as alternative anti-parasite agents. In addition, the anti-parasite action by amino-NPs indicates that nutritional requirement of parasite may represent a viable target in the development of better alternative anti-parasite agents. Furthermore, data suggest the anti-parasite mechanism of the amino-NPs involves multiple cellular processes including the production of reactive oxygen species (ROS), modulation of hypoxia-inducing factor-1 alpha (HIF-1α) as well as the activation of kynurenine pathway. Taken together, findings highlight further, the prospects of NPs as alternative source of anti-parasite agents.

Keywords: drug discovery, infectious diseases, mode of action, nanomedicine

Procedia PDF Downloads 84
265 Bifurcations of a System of Rotor-Ball Bearings with Waviness and Squeeze Film Dampers

Authors: Sina Modares Ahmadi, Mohamad Reza Ghazavi, Mandana Sheikhzad

Abstract:

Squeeze film damper systems (SFD) are often used in machines with high rotational speed to reduce non-periodic behavior by creating external damping. These types of systems are frequently used in aircraft gas turbine engines. There are some structural parameters which are of great importance in designing these kinds of systems, such as oil film thickness, C, and outer race mass, mo. Moreover, there is a crucial parameter associated with manufacturing process, under the title of waviness. Geometric imperfections are often called waviness if its wavelength is much longer than Hertzian contact width which is a considerable source of vibration in ball bearings. In this paper, a system of a flexible rotor and two ball bearings with floating ring squeeze film dampers and consideration of waviness has been modeled and solved by a numerical integration method, namely Runge-Kutta method to investigate the dynamic response of the system. The results show that by increasing the number of wave lobes, which is due to inappropriate manufacturing, non- periodic and chaotic behavior increases. This result reveals the importance of manufacturing accuracy. Moreover, as long as C< 1.5×10-4 m, by increasing the oil film thickness, unwanted vibrations and non-periodic behavior of the system have been reduced, On the other hand, when C>1.5×10-4 m, increasing the outer oil film thickness results in the increasing chaotic and non-periodic responses. This result shows that although the presence of oil film results in reduction the non-periodic and chaotic behaviors, but the oil film has an optimal thickness. In addition, with increasing mo, the disc displacement amplitude increases. This result reveals the importance of utilizing light materials in manufacturing the squeeze film dampers.

Keywords: squeeze-film damper, waviness, ball bearing, bifurcation

Procedia PDF Downloads 357
264 Chikungunya Virus Detection Utilizing an Origami Based Electrochemical Paper Analytical Device

Authors: Pradakshina Sharma, Jagriti Narang

Abstract:

Due to the critical significance in the early identification of infectious diseases, electrochemical sensors have garnered considerable interest. Here, we develop a detection platform for the chikungunya virus by rationally implementing the extremely high charge-transfer efficiency of a ternary nanocomposite of graphene oxide, silver, and gold (G/Ag/Au) (CHIKV). Because paper is an inexpensive substrate and can be produced in large quantities, the use of electrochemical paper analytical device (EPAD) origami further enhances the sensor's appealing qualities. A cost-effective platform for point-of-care diagnostics is provided by paper-based testing. These types of sensors are referred to as eco-designed analytical tools due to their efficient production, usage of the eco-friendly substrate, and potential to reduce waste management after measuring by incinerating the sensor. In this research, the paper's foldability property has been used to develop and create 3D multifaceted biosensors that can specifically detect the CHIKVX-ray diffraction, scanning electron microscopy, UV-vis spectroscopy, and transmission electron microscopy (TEM) were used to characterize the produced nanoparticles. In this work, aptamers are used since they are thought to be a unique and sensitive tool for use in rapid diagnostic methods. Cyclic voltammetry (CV) and linear sweep voltammetry (LSV), which were both validated with a potentiostat, were used to measure the analytical response of the biosensor. The target CHIKV antigen was hybridized with using the aptamer-modified electrode as a signal modulation platform, and its presence was determined by a decline in the current produced by its interaction with an anionic mediator, Methylene Blue (MB). Additionally, a detection limit of 1ng/ml and a broad linear range of 1ng/ml-10µg/ml for the CHIKV antigen were reported.

Keywords: biosensors, ePAD, arboviral infections, point of care

Procedia PDF Downloads 66
263 Crab Shell Waste Chitosan-Based Thin Film for Acoustic Sensor Applications

Authors: Maydariana Ayuningtyas, Bambang Riyanto, Akhiruddin Maddu

Abstract:

Industrial waste of crustacean shells, such as shrimp and crab, has been considered as one of the major issues contributing to environmental pollution. The waste processing mechanisms to form new, practical substances with added value have been developed. Chitosan, a derived matter from chitin, which is obtained from crab and shrimp shells, performs prodigiously in broad range applications. A chitosan composite-based diaphragm is a new inspiration in fiber optic acoustic sensor advancement. Elastic modulus, dynamic response, and sensitivity to acoustic wave of chitosan-based composite film contribute great potentials of organic-based sound-detecting material. The objective of this research was to develop chitosan diaphragm application in fiber optic microphone system. The formulation was conducted by blending 5% polyvinyl alcohol (PVA) solution with dissolved chitosan at 0%, 1% and 2% in 1:1 ratio, respectively. Composite diaphragms were characterized for the morphological and mechanical properties to predict the desired acoustic sensor sensitivity. The composite with 2% chitosan indicated optimum performance with 242.55 µm thickness, 67.9% relative humidity, and 29-76% light transmittance. The Young’s modulus of 2%-chitosan composite material was 4.89×104 N/m2, which generated the voltage amplitude of 0.013V and performed sensitivity of 3.28 mV/Pa at 1 kHz. Based on the results above, chitosan from crustacean shell waste can be considered as a viable alternative material for fiber optic acoustic sensor sensing pad development. Further, the research in chitosan utilisation is proposed as novel optical microphone development in anthropogenic noise controlling effort for environmental and biodiversity conservation.

Keywords: acoustic sensor, chitosan, composite, crab shell, diaphragm, waste utilisation

Procedia PDF Downloads 225
262 Enhancement of Primary User Detection in Cognitive Radio by Scattering Transform

Authors: A. Moawad, K. C. Yao, A. Mansour, R. Gautier

Abstract:

The detecting of an occupied frequency band is a major issue in cognitive radio systems. The detection process becomes difficult if the signal occupying the band of interest has faded amplitude due to multipath effects. These effects make it hard for an occupying user to be detected. This work mitigates the missed-detection problem in the context of cognitive radio in frequency-selective fading channel by proposing blind channel estimation method that is based on scattering transform. By initially applying conventional energy detection, the missed-detection probability is evaluated, and if it is greater than or equal to 50%, channel estimation is applied on the received signal followed by channel equalization to reduce the channel effects. In the proposed channel estimator, we modify the Morlet wavelet by using its first derivative for better frequency resolution. A mathematical description of the modified function and its frequency resolution is formulated in this work. The improved frequency resolution is required to follow the spectral variation of the channel. The channel estimation error is evaluated in the mean-square sense for different channel settings, and energy detection is applied to the equalized received signal. The simulation results show improvement in reducing the missed-detection probability as compared to the detection based on principal component analysis. This improvement is achieved at the expense of increased estimator complexity, which depends on the number of wavelet filters as related to the channel taps. Also, the detection performance shows an improvement in detection probability for low signal-to-noise scenarios over principal component analysis- based energy detection.

Keywords: channel estimation, cognitive radio, scattering transform, spectrum sensing

Procedia PDF Downloads 175
261 Cucurbita pepo L. Attenuates Diabetic Neuropathy by Targeting Oxidative Stress in STZ-Nicotinamide Induced Diabetic Rats

Authors: Navpreet Kaur, Randhir Singh

Abstract:

Diabetic neuropathy is one of the most common microvascular complications of diabetes mellitus which affects more than 50% of diabetic patients. The present study targeted oxidative stress mediated nerve damage in diabetic rats using a hydro-alcohol extract of Cucurbita pepo L. (Family: Cucurbitaceae) and its potential in treatment of diabetic neuropathy. Diabetes neuropathy was induced in Wistar rats by injection of streptozotocin (65 mg/kg, i.p.) 15 min after Nicotinamide (230 mg/kg, i.p.) administration. Hydro-alcohol extract of C. pepo seeds was assessed by oral administration at 100, 200 and 400 mg/kg in STZ-nicotinamide induced diabetic rats. Thermal hyperalgesia (Eddy's hot plate and tail immersion), mechanical hyperalgesia (Randall-Selitto) and tactile allodynia (Von Frey hair tests) were evaluated in all groups of streptozotocin diabetic rats to assess the extent of neuropathy. Tissue (sciatic nerve) antioxidant enzymes (SOD, CAT, GSH and LPO) levels were measured along with the formation of AGEs in serum to assess the effect of hydro-alcohol extract of C. pepo in ameliorating oxidative stress. Diabetic rats exhibited significantly decreased tail-flick latency in the tail-immersion test and decreased paw withdrawal threshold in both Randall-Selitto and von-Frey hair test. A decrease in the nociceptive threshold was accompanied by significantly increased oxidative stress in sciatic nerve of diabetic rats. Treatment with the C. pepo hydro-alcohol extract significantly attenuated all the behavioral and biochemical alterations in a dose-dependent manner. C. pepo attenuated the diabetic condition and also reversed neuropathic pain through modulation of oxidative stress and thus it may find application as a possible therapeutic agent against diabetic neuropathy.

Keywords: advanced glycation end products, antioxidant enzymes, cucurbita pepo, hyperglycemia

Procedia PDF Downloads 265
260 Improving the Corrosion Resistance of Magnesium by Application of TiO₂-MgO Coatings

Authors: Eric Noe Hernandez Rodriguez, Cristian Esneider Penuela Cruz

Abstract:

Magnesium is a biocompatible and biodegradable material that has gained increased interest for application in resorbable orthopedic implants. However, to date, much research is being conducted to overcome the main disadvantage: its low corrosion resistance. In this work, we report our findings on the development and application of TiO₂-MgO coatings to improve and modulate the corrosion resistance of magnesium pieces. The plasma electrolytic oxidation (PEO) technique was employed to obtain the TiO₂-MgO coatings. The effect of the experimental parameters on the modulation of the TiO₂:MgO ratio was investigated. The most critical parameters were the chemical composition of the precursor electrolytic solution and the current density. According to scanning electron microscopy (SEM) observations, the coatings were porous; however, they become more compact as the current density increases. XRD measurements showed that the coatings are formed by a composite consisting of TiO₂ and MgO oxides, whose ratio can be changed by the experimental conditions. TiO₂ had the anatase crystalline structure, while the MgO had the FCC crystalline structure. The corrosion resistance was evaluated through the corrosion current (Icorr) measured at room temperature by the polarization technique (Tafel). For doing it, Hank's solution was used in order to simulate the body fluids. Also, immersion tests were conducted. Tafel curves showed an improvement of the corrosion resistance at some coated magnesium pieces in contrast to control pieces (uncoated). Corrosion currents were lower, and the corrosion potential changed to positive values. It was observed that the experimental parameters allowed to modulate the protective capacity of the coatings by changing the TiO₂:MgO ratio. Coatings with a higher content of TiO₂ (measured by energy dispersive spectroscopy) showed higher corrosion resistance. Results showed that TiO₂-MgO coatings can be successfully applied to improve the corrosion resistance of Mg pieces in simulated body fluid; even more, the corrosion resistance can be tuned by changing the TiO₂:MgO ratio.

Keywords: biomaterials, PEO, corrosion resistance, magnesium

Procedia PDF Downloads 79
259 Modeling of Thermally Induced Acoustic Emission Memory Effects in Heterogeneous Rocks with Consideration for Fracture Develo

Authors: Vladimir A. Vinnikov

Abstract:

The paper proposes a model of an inhomogeneous rock mass with initially random distribution of microcracks on mineral grain boundaries. It describes the behavior of cracks in a medium under the effect of thermal field, the medium heated instantaneously to a predetermined temperature. Crack growth occurs according to the concept of fracture mechanics provided that the stress intensity factor K exceeds the critical value of Kc. The modeling of thermally induced acoustic emission memory effects is based on the assumption that every event of crack nucleation or crack growth caused by heating is accompanied by a single acoustic emission event. Parameters of the thermally induced acoustic emission memory effect produced by cyclic heating and cooling (with the temperature amplitude increasing from cycle to cycle) were calculated for several rock texture types (massive, banded, and disseminated). The study substantiates the adaptation of the proposed model to humidity interference with the thermally induced acoustic emission memory effect. The influence of humidity on the thermally induced acoustic emission memory effect in quasi-homogeneous and banded rocks is estimated. It is shown that such modeling allows the structure and texture of rocks to be taken into account and the influence of interference factors on the distinctness of the thermally induced acoustic emission memory effect to be estimated. The numerical modeling can be used to obtain information about the thermal impacts on rocks in the past and determine the degree of rock disturbance by means of non-destructive testing.

Keywords: degree of rock disturbance, non-destructive testing, thermally induced acoustic emission memory effects, structure and texture of rocks

Procedia PDF Downloads 235
258 Applications of High Intensity Ultrasound to Modify Millet Protein Concentrate Functionality

Authors: B. Nazari, M. A. Mohammadifar, S. Shojaee-Aliabadi, L. Mirmoghtadaie

Abstract:

Millets as a new source of plant protein were not used in food applications due to its poor functional properties. In this study, the effect of high intensity ultrasound (frequency: 20 kHz, with contentious flow) (US) in 100% amplitude for varying times (5, 12.5, and 20 min) on solubility, emulsifying activity index (EAI), emulsion stability (ES), foaming capacity (FC), and foaming stability (FS) of millet protein concentrate (MPC) were evaluated. In addition, the structural properties of best treatments such as molecular weight and surface charge were compared with the control sample to prove the US effect. The US treatments significantly (P<0.05) increased the solubility of the native MPC (65.8±0.6%) at all sonicated times with the maximum solubility that is recorded at 12.5 min treatment (96.9±0.82 %). The FC of MPC was also significantly affected by the US treatment. Increase in sonicated time up to 12.5 min significantly increased the FC of native MPC (271.03±4.51 ml), but higher increase reduced it significantly. Minimal improvements were observed in the FS of all sonicated MPC compared to the native MPC. Sonicated time for 12.5 min affected the EAI and ES of the native MPC more markedly than 5 and 20 min that may be attributed to higher increase in proteins tendency to adsorption at the oil and water interfaces after the US treatment at this time. SDS-PAGE analysis showed changes in the molecular weight of MPC that attributed to shearing forces created by cavitation phenomenon. Also, this phenomenon caused an increase in the exposure of more amino acids with negative charge in the surface of US treated MPC, that was demonstrated by Zetasizer data. High intensity ultrasound, as a green technology, can significantly increase the functional properties of MPC and can make this usable for food applications.

Keywords: functional properties, high intensity ultrasound, millet protein concentrate, structural properties

Procedia PDF Downloads 214
257 Transcranial Magnetic Stimulation as a Potentiator in the Rehabilitation of Fine Motor Skills: A Literature Review

Authors: Ana Lucia Molina

Abstract:

Introduction: Fine motor skills refer to the use of the hands and coordination of the small muscles that control the fingers. A deficiency in fine motor skills is as important as a change in global movements, as fine motor skills directly affect activities of daily living. Fine movements are involved in some functions, such as motor control of the extremities, sensitivity, strength and tonus of the hands. A growing interest in the effects of non-invasive neuromodulation, such as transcranial stimulation technologies, through transcranial magnetic stimulation (TMS), has been observed in the scientific literature, with promising results in fine motor rehabilitation, as it provides modulation of the corresponding cortical activity in the area primary motor skills of the hands in both hemispheres (according to the International System 10-20, corresponding to C3 and C4). Objectives: to carry out a literature review about the effects of TMS on the cortical motor area corresponding to hand motricity. Methodology: This is a bibliographic survey carried out between October 2022 and March 2023 at Pubmed, Google Scholar, Lillacs and Virtual Health Library (BVS), with a national and international database. Some books on neuromodulation were included. Results: 28 articles and 5 books were initially found, and after reading the abstracts, only 14 articles and 3 books were selected, with publication dates between 2008 and 2022, to compose the literature review since it suited the purpose of this study. Conclusion: TMS has shown promising results in the treatment of fine motor rehabilitation, such as improving coordination, muscle strength and range of motion of the hands, being a complementary technique to existing treatments and thus providing more potent results for manual skills in activities of daily living. It is important to emphasize the need for more specific studies on the application of TMS for the treatment of manual disorders, which describe the uniqueness of each movement.

Keywords: transcranial magnetic stimulation, fine motor skills, motor rehabilitation, non-invasive neuromodulation

Procedia PDF Downloads 36