Search results for: random loading
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3502

Search results for: random loading

3502 Fatigue Life Prediction under Variable Loading Based a Non-Linear Energy Model

Authors: Aid Abdelkrim

Abstract:

A method of fatigue damage accumulation based upon application of energy parameters of the fatigue process is proposed in the paper. Using this model is simple, it has no parameter to be determined, it requires only the knowledge of the curve W–N (W: strain energy density N: number of cycles at failure) determined from the experimental Wöhler curve. To examine the performance of nonlinear models proposed in the estimation of fatigue damage and fatigue life of components under random loading, a batch of specimens made of 6082 T 6 aluminium alloy has been studied and some of the results are reported in the present paper. The paper describes an algorithm and suggests a fatigue cumulative damage model, especially when random loading is considered. This work contains the results of uni-axial random load fatigue tests with different mean and amplitude values performed on 6082T6 aluminium alloy specimens. The proposed model has been formulated to take into account the damage evolution at different load levels and it allows the effect of the loading sequence to be included by means of a recurrence formula derived for multilevel loading, considering complex load sequences. It is concluded that a ‘damaged stress interaction damage rule’ proposed here allows a better fatigue damage prediction than the widely used Palmgren–Miner rule, and a formula derived in random fatigue could be used to predict the fatigue damage and fatigue lifetime very easily. The results obtained by the model are compared with the experimental results and those calculated by the most fatigue damage model used in fatigue (Miner’s model). The comparison shows that the proposed model, presents a good estimation of the experimental results. Moreover, the error is minimized in comparison to the Miner’s model.

Keywords: damage accumulation, energy model, damage indicator, variable loading, random loading

Procedia PDF Downloads 369
3501 Implant Guided Surgery and Immediate Loading

Authors: Omid Tavakol, Mahnaz Gholami

Abstract:

Introduction : In this oral presentation the main goal is discussing immediate loading in dental implants , from treatment planning and surgical guide designing to delivery , follow up and occlusal consideration . Methods and materials : first of all systematic reviews about immediate loading will be considered . besides , a comparison will be made between immediate loading and conventional loading in terms of success rate and complications . After that different methods , prosthetic options and materials best used in immediate loading will be explained. Particularly multi unit abutments and their mechanism of function will be explained .Digital impressions and designing the temporaries is the next topic we are to explicate .Next issue is the differences between single unit , multiple unit and full arch implantation in immediate loading .Following we are going to describe methods for tissue engineering and papilla formation after extraction . Last slides are about a full mouth rehabilitation via immediate loading technique from surgical designing to follow up .At the end we would talk about potential complications , how to prevent from occurrence and what to do if we face up with .

Keywords: guided surgery, digital implantology, immediate loading, digital dentistry

Procedia PDF Downloads 12
3500 Crack Growth Life Prediction of a Fighter Aircraft Wing Splice Joint Under Spectrum Loading Using Random Forest Regression and Artificial Neural Networks with Hyperparameter Optimization

Authors: Zafer Yüce, Paşa Yayla, Alev Taşkın

Abstract:

There are heaps of analytical methods to estimate the crack growth life of a component. Soft computing methods have an increasing trend in predicting fatigue life. Their ability to build complex relationships and capability to handle huge amounts of data are motivating researchers and industry professionals to employ them for challenging problems. This study focuses on soft computing methods, especially random forest regressors and artificial neural networks with hyperparameter optimization algorithms such as grid search and random grid search, to estimate the crack growth life of an aircraft wing splice joint under variable amplitude loading. TensorFlow and Scikit-learn libraries of Python are used to build the machine learning models for this study. The material considered in this work is 7050-T7451 aluminum, which is commonly preferred as a structural element in the aerospace industry, and regarding the crack type; corner crack is used. A finite element model is built for the joint to calculate fastener loads and stresses on the structure. Since finite element model results are validated with analytical calculations, findings of the finite element model are fed to AFGROW software to calculate analytical crack growth lives. Based on Fighter Aircraft Loading Standard for Fatigue (FALSTAFF), 90 unique fatigue loading spectra are developed for various load levels, and then, these spectrums are utilized as inputs to the artificial neural network and random forest regression models for predicting crack growth life. Finally, the crack growth life predictions of the machine learning models are compared with analytical calculations. According to the findings, a good correlation is observed between analytical and predicted crack growth lives.

Keywords: aircraft, fatigue, joint, life, optimization, prediction.

Procedia PDF Downloads 141
3499 Stochastic Simulation of Random Numbers Using Linear Congruential Method

Authors: Melvin Ballera, Aldrich Olivar, Mary Soriano

Abstract:

Digital computers nowadays must be able to have a utility that is capable of generating random numbers. Usually, computer-generated random numbers are not random given predefined values such as starting point and end points, making the sequence almost predictable. There are many applications of random numbers such business simulation, manufacturing, services domain, entertainment sector and other equally areas making worthwhile to design a unique method and to allow unpredictable random numbers. Applying stochastic simulation using linear congruential algorithm, it shows that as it increases the numbers of the seed and range the number randomly produced or selected by the computer becomes unique. If this implemented in an environment where random numbers are very much needed, the reliability of the random number is guaranteed.

Keywords: stochastic simulation, random numbers, linear congruential algorithm, pseudorandomness

Procedia PDF Downloads 286
3498 Existence Result of Third Order Functional Random Integro-Differential Inclusion

Authors: D. S. Palimkar

Abstract:

The FRIGDI (functional random integrodifferential inclusion) seems to be new and includes several known random differential inclusions already studied in the literature as special cases have been discussed in the literature for various aspects of the solutions. In this paper, we prove the existence result for FIGDI under the non-convex case of multi-valued function involved in it.Using random fixed point theorem of B. C. Dhage and caratheodory condition. This result is new to the theory of differential inclusion.

Keywords: caratheodory condition, random differential inclusion, random solution, integro-differential inclusion

Procedia PDF Downloads 437
3497 Existence Theory for First Order Functional Random Differential Equations

Authors: Rajkumar N. Ingle

Abstract:

In this paper, the existence of a solution of nonlinear functional random differential equations of the first order is proved under caratheodory condition. The study of the functional random differential equation has got importance in the random analysis of the dynamical systems of universal phenomena. Objectives: Nonlinear functional random differential equation is useful to the scientists, engineers, and mathematicians, who are engaged in N.F.R.D.E. analyzing a universal random phenomenon, govern by nonlinear random initial value problems of D.E. Applications of this in the theory of diffusion or heat conduction. Methodology: Using the concepts of probability theory, functional analysis, generally the existence theorems for the nonlinear F.R.D.E. are prove by using some tools such as fixed point theorem. The significance of the study: Our contribution will be the generalization of some well-known results in the theory of Nonlinear F.R.D.E.s. Further, it seems that our study will be useful to scientist, engineers, economists and mathematicians in their endeavors to analyses the nonlinear random problems of the universe in a better way.

Keywords: Random Fixed Point Theorem, functional random differential equation, N.F.R.D.E., universal random phenomenon

Procedia PDF Downloads 465
3496 A Very Efficient Pseudo-Random Number Generator Based On Chaotic Maps and S-Box Tables

Authors: M. Hamdi, R. Rhouma, S. Belghith

Abstract:

Generating random numbers are mainly used to create secret keys or random sequences. It can be carried out by various techniques. In this paper we present a very simple and efficient pseudo-random number generator (PRNG) based on chaotic maps and S-Box tables. This technique adopted two main operations one to generate chaotic values using two logistic maps and the second to transform them into binary words using random S-Box tables. The simulation analysis indicates that our PRNG possessing excellent statistical and cryptographic properties.

Keywords: Random Numbers, Chaotic map, S-box, cryptography, statistical tests

Procedia PDF Downloads 337
3495 Pull-Out Behavior of Mechanical Anchor Bolts by Cyclic Loading

Authors: Yoshinori Kitsutaka, Kusumi Shingo, Matsuzawa Koichi, Kunieda Yoichiro, Yagisawa Yasuei

Abstract:

In this study, the pull-out properties of various mechanical anchor bolts embedded in concrete were investigated. Five kinds of mechanical anchor bolts were selected which were ordinarily used for concrete anchoring. Tensile tests for mechanical anchor bolts embedded in φ300mm x 100mm size concrete were conducted to measure the load - load displacement curves. The loading conditions were a monotonous loading and a repeating loading. The fracture energy for each mechanical anchor bolts was estimated by the analysis of consumed energy calculated by the load - load displacement curve. The effect of the types of mechanical anchor bolts on the pull-out properties of concrete subjected in monotonous loading and a repeating loading was cleared.

Keywords: concrete, cyclic loading, mechanical anchor bolt, pull-out strength

Procedia PDF Downloads 234
3494 Heuristic to Generate Random X-Monotone Polygons

Authors: Kamaljit Pati, Manas Kumar Mohanty, Sanjib Sadhu

Abstract:

A heuristic has been designed to generate a random simple monotone polygon from a given set of ‘n’ points lying on a 2-Dimensional plane. Our heuristic generates a random monotone polygon in O(n) time after O(nℓogn) preprocessing time which is improved over the previous work where a random monotone polygon is produced in the same O(n) time but the preprocessing time is O(k) for n < k < n2. However, our heuristic does not generate all possible random polygons with uniform probability. The space complexity of our proposed heuristic is O(n).

Keywords: sorting, monotone polygon, visibility, chain

Procedia PDF Downloads 402
3493 Features of Rail Strength Analysis in Conditions of Increased Force Loading

Authors: G. Guramishvili, M. Moistsrapishvili, L. Andghuladze

Abstract:

In the article are considered the problems arising at increasing of transferring from rolling stock axles on rail loading from 210 KN up to 270 KN and is offered for rail strength analysis definition of rail force loading complex integral characteristic with taking into account all affecting force factors that is characterizing specific operation condition of rail structure and defines the working capability of structure. As result of analysis due mentioned method is obtained that in the conditions of 270 KN loading the rail meets the working assessment criteria of rail and rail structures: Strength, rail track stability, rail links stability and its transverse stability, traffic safety condition that is rather important for post-Soviet countries railways.

Keywords: axial loading, rail force loading, rail structure, rail strength analysis, rail track stability

Procedia PDF Downloads 400
3492 Modeling the Road Pavement Dynamic Response Due to Heavy Vehicles Loadings and Kinematic Excitations General Asymmetries

Authors: Josua K. Junias, Fillemon N. Nangolo, Petrina T. Johaness

Abstract:

The deterioration of pavement can lead to the formation of potholes, which cause the wheels of a vehicle to experience unusual and uneven movement. In addition, improper loading practices of heavy vehicles can result in dynamic loading of the pavement due to the vehicle's response to the irregular movement caused by the potholes. Previous studies have only focused on the effects of either the road's uneven surface or the asymmetrical loading of the vehicle, but not both. This study aimed to model the pavement's dynamic response to heavy vehicles under different loading configurations and wheel movements. A sample of 225 cases with symmetrical and asymmetrical loading and kinematic movements was used, and 27 validated 3D pavement-vehicle interactive models were developed using SIMWISE 4D. The study found that the type of kinematic movement experienced by the heavy vehicle affects the pavement's dynamic loading, with eccentrically loaded, asymmetrically kinematic heavy vehicles having a statistically significant impact. The study also suggests that the mass of the vehicle's suspension system plays a role in the pavement's dynamic loading.

Keywords: eccentricities, pavement dynamic loading, vertical displacement dynamic response, heavy vehicles

Procedia PDF Downloads 48
3491 Safety System Design and Overfill Protection for Loading Asphalt onto Trucks

Authors: Wendy Ampadu, Ray Diezmos, Hassan Malik, Jeremy Hyslob

Abstract:

There are several technologies out there for use as high-level switches as part of a system for shutting down flow to a vessel. Given that the asphalt truck loading poses issues such as poor visibility, coating, condensation, and fumes, a solution that is robust enough to last in these conditions is often needed in industries. Furthermore, the design of the loading arm, rack, and process equipment should allow for the safety of workers. The objective of this report includes the redesign of structures for use at loading facilities and selecting an overflow technology protection from hot bitumen. The report is based on loading facilities at a Canadian bitumen production company. The engineering design approach was used to create multiple redesign concepts for the loading dock system. Research on overfill systems was also completed by surveying the existing market for technologies and securing quotes from over 20 Canadian and United States instrumentation companies. A final loading dock redesign and level transmitter for overfill protection solution were chosen.

Keywords: bitumen, reliability engineering, safety system, process safety management, asphalt, loading docks, tanker trucks

Procedia PDF Downloads 113
3490 Loading Factor Performance of a Centrifugal Compressor Impeller: Specific Features and Way of Modeling

Authors: K. Soldatova, Y. Galerkin

Abstract:

A loading factor performance is necessary for the modeling of centrifugal compressor gas dynamic performance curve. Measured loading factors are linear function of a flow coefficient at an impeller exit. The performance does not depend on the compressibility criterion. To simulate loading factor performances, the authors present two parameters: a loading factor at zero flow rate and an angle between an ordinate and performance line. The calculated loading factor performances of non-viscous are linear too and close to experimental performances. Loading factor performances of several dozens of impellers with different blade exit angles, blade thickness and number, ratio of blade exit/inlet height, and two different type of blade mean line configuration. There are some trends of influence, which are evident – comparatively small blade thickness influence, and influence of geometry parameters is more for impellers with bigger blade exit angles, etc. Approximating equations for both parameters are suggested. The next phase of work will be simulating of experimental performances with the suggested approximation equations as a base.

Keywords: loading factor performance, centrifugal compressor, impeller, modeling

Procedia PDF Downloads 316
3489 Full Analytical Procedure to Derive P-I Diagram of a Steel Beam under Blast Loading

Authors: L. Hamra, J. F. Demonceau, V. Denoël

Abstract:

The aim of this paper is to study a beam extracted from a frame and subjected to blast loading. The demand of ductility depends on six dimensionless parameters: two related to the blast loading, two referring to the bending behavior of the beam and two corresponding to the dynamic behavior of the rest of the structure. We develop a full analytical procedure that provides the ductility demand as a function of these six dimensionless parameters.

Keywords: analytical procedure, blast loading, membrane force, P-I diagram

Procedia PDF Downloads 401
3488 Kinematic Behavior of Geogrid Reinforcements during Earthquakes

Authors: Ahmed Hosny Abdel-Rahman, Mohamed Abdel-Moneim

Abstract:

Reinforced earth structures are generally subjected to cyclic loading generated from earthquakes. This paper presents a summary of the results and analyses of a testing program carried out in a large-scale multi-function geosynthetic testing apparatus that accommodates soil samples up to 1.0 m3. This apparatus performs different shear and pullout tests under both static and cyclic loading. The testing program was carried out to investigate the controlling factors affecting soil/geogrid interaction under cyclic loading. The extensibility of the geogrids, the applied normal stresses, the characteristics of the cyclic loading (frequency, and amplitude), and initial static load within the geogrid sheet were considered in the testing program. Based on the findings of the testing program, the effect of these parameters on the pullout resistance of geogrids, as well as the displacement mobility under cyclic loading were evaluated. Conclusions and recommendations for the design of reinforced earth walls under cyclic loading are presented.

Keywords: geogrid, soil, interface, cyclic loading, pullout, large scale testing

Procedia PDF Downloads 591
3487 Viscoelastic Modeling of Hot Mix Asphalt (HMA) under Repeated Loading by Using Finite Element Method

Authors: S. A. Tabatabaei, S. Aarabi

Abstract:

Predicting the hot mix asphalt (HMA) response and performance is a challenging task because of the subjectivity of HMA under the complex loading and environmental condition. The behavior of HMA is a function of temperature of loading and also shows the time and rate-dependent behavior directly affecting design criteria of mixture. Velocity of load passing make the time and rate. The viscoelasticity illustrates the reaction of HMA under loading and environmental conditions such as temperature and moisture effect. The behavior has direct effect on design criteria such as tensional strain and vertical deflection. In this paper, the computational framework for viscoelasticity and implementation in 3D dimensional HMA model is introduced to use in finite element method. The model was lied under various repeated loading conditions at constant temperature. The response of HMA viscoelastic behavior is investigated in loading condition under speed vehicle and sensitivity of behavior to the range of speed and compared to HMA which is supposed to have elastic behavior as in conventional design methods. The results show the importance of loading time pulse, unloading time and various speeds on design criteria. Also the importance of memory fading of material to storing the strain and stress due to repeated loading was shown. The model was simulated by ABAQUS finite element package

Keywords: viscoelasticity, finite element method, repeated loading, HMA

Procedia PDF Downloads 372
3486 Displacement Fields in Footing-Sand Interactions under Cyclic Loading

Authors: S. Joseph Antony, Z. K. Jahanger

Abstract:

Soils are subjected to cyclic loading in situ in situations such as during earthquakes and in the compaction of pavements. Investigations on the local scale measurement of the displacements of the grain and failure patterns within the soil bed under the cyclic loading conditions are rather limited. In this paper, using the digital particle image velocimetry (DPIV), local scale displacement fields of a dense sand medium interacting with a rigid footing are measured under the plane-strain condition for two commonly used types of cyclic loading, and the quasi-static loading condition for the purposes of comparison. From the displacement measurements of the grains, the failure envelopes of the sand media are also presented. The results show that, the ultimate cyclic bearing capacity (qultcyc) occurred corresponding to a relatively higher settlement value when compared with that of under the quasi-static loading. For the sand media under the cyclic loading conditions considered here, the displacement fields in the soil media occurred more widely in the horizontal direction and less deeper along the vertical direction when compared with that of under the quasi-static loading. The 'dead zone' in the sand grains beneath the footing is identified for all types of the loading conditions studied here. These grain-scale characteristics have implications on the resulting bulk bearing capacity of the sand media in footing-sand interaction problems.

Keywords: cyclic loading, DPIV, settlement, soil-structure interactions, strip footing

Procedia PDF Downloads 138
3485 Study of Crashworthiness Behavior of Thin-Walled Tube under Axial Loading by Using Computational Mechanics

Authors: M. Kamal M. Shah, Noorhifiantylaily Ahmad, O. Irma Wani, J. Sahari

Abstract:

This paper presents the computationally mechanics analysis of energy absorption for cylindrical and square thin wall tubed structure by using ABAQUS/explicit. The crashworthiness behavior of AISI 1020 mild steel thin-walled tube under axial loading has been studied. The influence effects of different model’s cross-section, as well as model length on the crashworthiness behavior of thin-walled tube, are investigated. The model was placed on loading platform under axial loading with impact velocity of 5 m/s to obtain the deformation results of each model under quasi-static loading. The results showed that model undergoes different deformation mode exhibits different energy absorption performance.

Keywords: axial loading, computational mechanics, energy absorption performance, crashworthiness behavior, deformation mode

Procedia PDF Downloads 408
3484 Random Vertical Seismic Vibrations of the Long Span Cantilever Beams

Authors: Sergo Esadze

Abstract:

Seismic resistance norms require calculation of cantilevers on vertical components of the base seismic acceleration. Long span cantilevers, as a rule, must be calculated as a separate construction element. According to the architectural-planning solution, functional purposes and environmental condition of a designing buildings/structures, long span cantilever construction may be of very different types: both by main bearing element (beam, truss, slab), and by material (reinforced concrete, steel). A choice from these is always linked with bearing construction system of the building. Research of vertical seismic vibration of these constructions requires individual approach for each (which is not specified in the norms) in correlation with model of seismic load. The latest may be given both as deterministic load and as a random process. Loading model as a random process is more adequate to this problem. In presented paper, two types of long span (from 6m – up to 12m) reinforcement concrete cantilever beams have been considered: a) bearing elements of cantilevers, i.e., elements in which they fixed, have cross-sections with large sizes and cantilevers are made with haunch; b) cantilever beam with load-bearing rod element. Calculation models are suggested, separately for a) and b) types. They are presented as systems with finite quantity degree (concentrated masses) of freedom. Conditions for fixing ends are corresponding with its types. Vertical acceleration and vertical component of the angular acceleration affect masses. Model is based on assumption translator-rotational motion of the building in the vertical plane, caused by vertical seismic acceleration. Seismic accelerations are considered as random processes and presented by multiplication of the deterministic envelope function on stationary random process. Problem is solved within the framework of the correlation theory of random process. Solved numerical examples are given. The method is effective for solving the specific problems.

Keywords: cantilever, random process, seismic load, vertical acceleration

Procedia PDF Downloads 160
3483 Optimizing Skill Development in Golf Putting: An Investigation of Blocked, Random, and Increasing Practice Schedules

Authors: John White

Abstract:

This study investigated the effects of practice schedules on learning and performance in golf putting, specifically focusing on the impact of increasing contextual interference (CI). University students (n=7) were randomly assigned to blocked, random, or increasing practice schedules. During acquisition, participants performed 135 putting trials using different weighted golf balls. The blocked group followed a specific sequence of ball weights, while the random group practiced with the balls in a random order. The increasing group started with a blocked schedule, transitioned to a serial schedule, and concluded with a random schedule. Retention and transfer tests were conducted 24 hours later. The results indicated that high levels of CI (random practice) were more beneficial for learning than low levels of CI (blocked practice). The increasing practice schedule, incorporating blocked, serial, and random practice, demonstrated advantages over traditional blocked and random schedules. Additionally, EEG was used to explore the neurophysiological effects of the increasing practice schedule.

Keywords: skill acquisition, motor control, learning, contextual interference

Procedia PDF Downloads 63
3482 Mechanical Model of Gypsum Board Anchors Subjected Cyclic Shear Loading

Authors: Yoshinori Kitsutaka, Fumiya Ikedo

Abstract:

In this study, the mechanical model of various anchors embedded in gypsum board subjected cyclic shear loading were investigated. Shear tests for anchors embedded in 200 mm square size gypsum board were conducted to measure the load - load displacement curves. The strength of the gypsum board was changed for three conditions and 12 kinds of anchors were selected which were ordinary used for gypsum board anchoring. The loading conditions were a monotonous loading and a cyclic loading controlled by a servo-controlled hydraulic loading system to achieve accurate measurement. The fracture energy for each of the anchors was estimated by the analysis of consumed energy calculated by the load - load displacement curve. The effect of the strength of gypsum board and the types of anchors on the shear properties of gypsum board anchors was cleared. A numerical model to predict the load-unload curve of shear deformation of gypsum board anchors caused by such as the earthquake load was proposed and the validity on the model was proved.

Keywords: gypsum board, anchor, shear test, cyclic loading, load-unload curve

Procedia PDF Downloads 363
3481 Determining Optimal Number of Trees in Random Forests

Authors: Songul Cinaroglu

Abstract:

Background: Random Forest is an efficient, multi-class machine learning method using for classification, regression and other tasks. This method is operating by constructing each tree using different bootstrap sample of the data. Determining the number of trees in random forests is an open question in the literature for studies about improving classification performance of random forests. Aim: The aim of this study is to analyze whether there is an optimal number of trees in Random Forests and how performance of Random Forests differ according to increase in number of trees using sample health data sets in R programme. Method: In this study we analyzed the performance of Random Forests as the number of trees grows and doubling the number of trees at every iteration using “random forest” package in R programme. For determining minimum and optimal number of trees we performed Mc Nemar test and Area Under ROC Curve respectively. Results: At the end of the analysis it was found that as the number of trees grows, it does not always means that the performance of the forest is better than forests which have fever trees. In other words larger number of trees only increases computational costs but not increases performance results. Conclusion: Despite general practice in using random forests is to generate large number of trees for having high performance results, this study shows that increasing number of trees doesn’t always improves performance. Future studies can compare different kinds of data sets and different performance measures to test whether Random Forest performance results change as number of trees increase or not.

Keywords: classification methods, decision trees, number of trees, random forest

Procedia PDF Downloads 373
3480 [Keynote Talk]: Existence of Random Fixed Point Theorem for Contractive Mappings

Authors: D. S. Palimkar

Abstract:

Random fixed point theory has received much attention in recent years, and it is needed for the study of various classes of random equations. The study of random fixed point theorems was initiated by the Prague school of probabilistic in the 1950s. The existence and uniqueness of fixed points for the self-maps of a metric space by altering distances between the points with the use of a control function is an interesting aspect in the classical fixed point theory. In a new category of fixed point problems for a single self-map with the help of a control function that alters the distance between two points in a metric space which they called an altering distance function. In this paper, we prove the results of existence of random common fixed point and its uniqueness for a pair of random mappings under weakly contractive condition for generalizing alter distance function in polish spaces using Random Common Fixed Point Theorem for Generalized Weakly Contractions.

Keywords: Polish space, random common fixed point theorem, weakly contractive mapping, altering function

Procedia PDF Downloads 246
3479 Parallel Random Number Generation for the Modern Supercomputer Architectures

Authors: Roman Snytsar

Abstract:

Pseudo-random numbers are often used in scientific computing such as the Monte Carlo Simulations or the Quantum Inspired Optimization. Requirements for a parallel random number generator running in the modern multi-core vector environment are more stringent than those for sequential random number generators. As well as passing the usual quality tests, the output of the parallel random number generator must be verifiable and reproducible throughout the concurrent execution. We propose a family of vectorized Permuted Congruential Generators. Implementations are available for multiple modern vector modern computer architectures. Besides demonstrating good single core performance, the generators scale easily across many processor cores and multiple distributed nodes. We provide performance and parallel speedup analysis and comparisons between the implementations.

Keywords: pseudo-random numbers, quantum optimization, SIMD, parallel computing

Procedia PDF Downloads 87
3478 Study of the Behavior of Geogrid Mechanically Stabilized Earth Walls Under Cyclic Loading

Authors: Yongzhe Zhao, Ying Liu, Zhiyong Liu, Hui You

Abstract:

The soil behind retaining wall is normally subjected to cyclic loading, for example traffic loading. Geotextile has been widely used to reinforce the soil for the purpose of reducing the settlement of the soil. A series of physical model tests were performed to investigate the settlement of footing under cyclic loading. The settlement of the footing, ground deformation and the vertical earth pressure in subsoil were presented and discussed under different types of geotextiles. The results indicate that including geotextiles significantly decreases the footing settlement and the stiffer the geotextile, the less the settlement. Under cyclic loading, the soil below the footing shows dilation within certain depths and beyond that it experiences contraction. The location of footing relative to the retaining wall has important effects on the deformation behavior of the soil in the ground, and the closer the footing to the retaining wall, the greater the contraction soil shows. This is because the retaining wall experienced greater lateral displacement.

Keywords: physical model tests, reinforced retaining wall, cyclic loading, footing

Procedia PDF Downloads 134
3477 Behaviour of Rc Column under Biaxial Cyclic Loading-State of the Art

Authors: L. Pavithra, R. Sharmila, Shivani Sridhar

Abstract:

Columns severe structural damage needs proportioning a significant portion of earthquake energy can be dissipated yielding in the beams. Presence of axial load along with cyclic loading has a significant influence on column. The objective of this paper is to present the analytical results of columns subjected to biaxial cyclic loading.

Keywords: RC column, Seismic behaviour, cyclic behaviour, biaxial testing, ductile behaviour

Procedia PDF Downloads 329
3476 Attitude Stabilization of Satellites Using Random Dither Quantization

Authors: Kazuma Okada, Tomoaki Hashimoto, Hirokazu Tahara

Abstract:

Recently, the effectiveness of random dither quantization method for linear feedback control systems has been shown in several papers. However, the random dither quantization method has not yet been applied to nonlinear feedback control systems. The objective of this paper is to verify the effectiveness of random dither quantization method for nonlinear feedback control systems. For this purpose, we consider the attitude stabilization problem of satellites using discrete-level actuators. Namely, this paper provides a control method based on the random dither quantization method for stabilizing the attitude of satellites using discrete-level actuators.

Keywords: quantized control, nonlinear systems, random dither quantization

Procedia PDF Downloads 214
3475 Study on Effect of Reverse Cyclic Loading on Fracture Resistance Curve of Equivalent Stress Gradient (ESG) Specimen

Authors: Jaegu Choi, Jae-Mean Koo, Chang-Sung Seok, Byungwoo Moon

Abstract:

Since massive earthquakes in the world have been reported recently, the safety of nuclear power plants for seismic loading has become a significant issue. Seismic loading is the reverse cyclic loading, consisting of repeated tensile and compression by longitudinal and transverse wave. Up to this time, the study on characteristics of fracture toughness under reverse cyclic loading has been unsatisfactory. Therefore, it is necessary to obtain the fracture toughness under reverse cyclic load for the integrity estimation of nuclear power plants under seismic load. Fracture resistance (J-R) curves, which are used for determination of fracture toughness or integrity estimation in terms of elastic-plastic fracture mechanics, can be derived by the fracture resistance test using single specimen technique. The objective of this paper is to study the effects of reverse cyclic loading on a fracture resistance curve of ESG specimen, having a similar stress gradient compared to the crack surface of the real pipe. For this, we carried out the fracture toughness test under the reverse cyclic loading, while changing incremental plastic displacement. Test results showed that the J-R curves were decreased with a decrease of the incremental plastic displacement.

Keywords: reverse cyclic loading, j-r curve, ESG specimen, incremental plastic displacement

Procedia PDF Downloads 360
3474 Physical and Mechanical Phenomena Associated with Rock Failure in Brazilian Disc Specimens

Authors: Hamid Reza Nejati, Amin Nazerigivi, Ahmad Reza Sayadi

Abstract:

Failure mechanism of rocks is one of the fundamental aspects to study rock engineering stability. Rock is a material that contains flaws, initial damage, micro-cracks, etc. Failure of rock structure is largely due to tensile stress and was influenced by various parameters. In the present study, the effect of brittleness and loading rate on the physical and mechanical phenomena produced in rock during loading sequences is considered. For this purpose, Acoustic Emission (AE) technique is used to monitor fracturing process of three rock types (onyx marble, sandstone and soft limestone) with different brittleness and sandstone samples under different loading rate. The results of experimental tests revealed that brittleness and loading rate have a significant effect on the mode and number of induced fracture in rocks. An increase in rock brittleness increases the frequency of induced cracks, and the number of tensile fracture decreases when loading rate increases.

Keywords: brittleness, loading rate, acoustic emission, tensile fracture, shear fracture

Procedia PDF Downloads 429
3473 Asymptotic Spectral Theory for Nonlinear Random Fields

Authors: Karima Kimouche

Abstract:

In this paper, we consider the asymptotic problems in spectral analysis of stationary causal random fields. We impose conditions only involving (conditional) moments, which are easily verifiable for a variety of nonlinear random fields. Limiting distributions of periodograms and smoothed periodogram spectral density estimates are obtained and applications to the spectral domain bootstrap are given.

Keywords: spatial nonlinear processes, spectral estimators, GMC condition, bootstrap method

Procedia PDF Downloads 423