Search results for: intracellular adhesion molecule-1
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 656

Search results for: intracellular adhesion molecule-1

446 Cell Surface Display of Xylanase on Escherichia coli by TibA Autotransporter

Authors: Yeng Min Yi, Rosli Md Illias, Salehhuddin Hamdan

Abstract:

Industrial biocatalysis is mainly based on the use of cell free or intracellular enzyme systems. However, the expensive cost and relatively lower operational stability of free enzymes limit practical use in industries. Cell surface display system can be used as a cost-efficient alternative to overcome the laborious purification and substrate transport limitation. In this research, TibA autotransporter from E. coli was used to display Aspergillus fumigatus xylanase (xyn). The amplified xyn was fused in between N-terminal signal peptide and C-terminal β-barrel of TibA. The cloned was transformed and expressed in E. coli BL21 (DE3). Outer membrane localization of TibA-xyn fusion protein was confirmed by SDS PAGE and western blot with expected size of 62.5 kDa. Functional display of xyn was examined by activity assay. Cell surface displayed xyn exhibited the highest activity at 37 °c, 0.3 mM IPTG. As a summary, TibA displaying system has the potential for further industrial applications. Moreover, this is the first report of the display of xylanase using TibA on the surface of E. coli.

Keywords: biocatalysis, cell surface display, Escherichia coli, TibA autotransporter

Procedia PDF Downloads 253
445 Immunoliposome-Mediated Drug Delivery to Plasmodium-Infected and Non-Infected Red Blood Cells as a Dual Therapeutic/Prophylactic Antimalarial Strategy

Authors: Ernest Moles, Patricia Urbán, María Belén Jiménez-Díaz, Sara Viera-Morilla, Iñigo Angulo-Barturen, Maria Antònia Busquets, Xavier Fernàndez-Busquets

Abstract:

Bearing in mind the absence of an effective vaccine against malaria and its severe clinical manifestations causing nearly half a million deaths every year, this disease represents nowadays a major threat to life. Besides, the basic rationale followed by currently marketed antimalarial approaches is based on the administration of drugs on their own, promoting the emergence of drug-resistant parasites owing to the limitation in delivering drug payloads into the parasitized erythrocyte high enough to kill the intracellular pathogen while minimizing the risk of causing toxic side effects to the patient. Such dichotomy has been successfully addressed through the specific delivery of immunoliposome (iLP)-encapsulated antimalarials to Plasmodium falciparum-infected red blood cells (pRBCs). Unfortunately, this strategy has not progressed towards clinical applications, whereas in vitro assays rarely reach drug efficacy improvements above 10-fold. Here, we show that encapsulation efficiencies reaching >96% can be achieved for the weakly basic drugs chloroquine (CQ) and primaquine using the pH gradient active loading method in liposomes composed of neutrally charged, saturated phospholipids. Targeting antibodies are best conjugated through their primary amino groups, adjusting chemical crosslinker concentration to retain significant antigen recognition. Antigens from non-parasitized RBCs have also been considered as targets for the intracellular delivery of drugs not affecting the erythrocytic metabolism. Using this strategy, we have obtained unprecedented nanocarrier targeting to early intraerythrocytic stages of the malaria parasite for which there is a lack of specific extracellular molecular tags. Polyethylene glycol-coated liposomes conjugated with monoclonal antibodies specific for the erythrocyte surface protein glycophorin A (anti-GPA iLP) were capable of targeting 100% RBCs and pRBCs at the low concentration of 0.5 μM total lipid in the culture, with >95% of added iLPs retained into the cells. When exposed for only 15 min to P. falciparum in vitro cultures synchronized at early stages, free CQ had no significant effect over parasite viability up to 200 nM drug, whereas iLP-encapsulated 50 nM CQ completely arrested its growth. Furthermore, when assayed in vivo in P. falciparum-infected humanized mice, anti-GPA iLPs cleared the pathogen below detectable levels at a CQ dose of 0.5 mg/kg. In comparison, free CQ administered at 1.75 mg/kg was, at most, 40-fold less efficient. Our data suggest that this significant improvement in drug antimalarial efficacy is in part due to a prophylactic effect of CQ found by the pathogen in its host cell right at the very moment of invasion.

Keywords: immunoliposomal nanoparticles, malaria, prophylactic-therapeutic polyvalent activity, targeted drug delivery

Procedia PDF Downloads 344
444 Two and Three Layer Lamination of Nanofiber

Authors: Roman Knizek, Denisa Karhankova, Ludmila Fridrichova

Abstract:

For their exceptional properties nanofibers, respectively, nanofiber layers are achieving an increasingly wider range of uses. Nowadays nanofibers are used mainly in the field of air filtration where they are removing submicron particles, bacteria, and viruses. Their efficiency is not changed in time, and the power consumption is much lower than that of electrically charged filters. Nanofibers are primarily used for converting and storage of energy in both air and liquid filtration, in food and packaging, protecting the environment, but also in health care which is made possible by their newly discovered properties. However, a major problem of the nanofiber layer is practically zero abrasion resistance; it is, therefore, necessary to laminate the nanofiber layer with another suitable material. Unfortunately, lamination of nanofiber layers is a major problem since the nanofiber layer contains small pores through which it is very difficult for adhesion to pass through. Therefore, there is still only a small percentage of products with these unique fibers 5.

Keywords: nanofiber layer, nanomembrane, lamination, electrospinning

Procedia PDF Downloads 701
443 An Activatable Prodrug for the Treatment of Metastatic Tumors

Authors: Eun-Joong Kim, Sankarprasad Bhuniya, Hyunseung Lee, Hyun Min Kim, Chaejoon Cheong, Su-khendu Maiti, Kwan Soo Hong, Jong Seung Kim

Abstract:

Metastatic cancers have historically been difficult to treat. However, metastatic tumors have been found to have high levels of reactive oxygen species such as hydrogen peroxide (H2O2), supporting the hypothesis that a prodrug could be activated by intracellular H2O2 and lead to a potential anti-metastatic therapy. In this study, prodrug 7 was designed to be activated by H2O2-mediated boronate oxidation, resulting in activation of the fluorophore for detection and release of the therapeutic agent, SN-38. Drug release from prodrug 7 was investigated by monitoring fluorescence after addition of H2O2 to the cancer cells. Prodrug 7 activated by H2O2 selectively inhibited tumor cell growth. Furthermore, intratracheally administered prodrug 7 showed effective anti-tumor activity in a mouse model of metastatic lung disease. Thus, this H2O2-responsive prodrug has therapeutic potential as a novel treatment for metastatic cancer via cellular imaging with fluorescence as well as selective release of the anti-cancer drug, SN-38.

Keywords: hydrogen peroxide, prodrug, metastatic tumors, fluorescence

Procedia PDF Downloads 423
442 Investigation of Astrocyte Physiology on Stiffness-Controlled Cellulose Acetate Nanofiber as a Tissue Scaffold

Authors: Sun Il Yu, Jung Hyun Joo, Hwa Sung Shin

Abstract:

Astrocytes are known as dominant cells in CNS and play a role as a supporter of CNS activity and regeneration. Recently, three-dimensional culture of astrocytes were actively applied to understand in vivo astrocyte works. Electrospun nanofibers are attractive for 3D cell culture system because they have a high surface to volume ratio and porous structure, and have already been used for 3D astrocyte cultures. In this research, the stiffness of cellulose acetate (CA) nanofiber was controlled by heat treatment. As stiffness increased, astrocyte cell viability and adhesion increased. Reactivity of astrocyte was also upregulated in stiffer CA nanofiber in terms of GFAP, an intermediate filament protein. Finally, we demonstrated that stiffness-controllable CA is attractive for astrocyte tissue engineering.

Keywords: astrocyte, cellulose acetate, nanofiber, tissue scaffold

Procedia PDF Downloads 325
441 NS5ABP37 Inhibits Liver Cancer by Impeding Lipogenesis and Cholesterogenesis

Authors: Shenghu Feng, Jun Cheng

Abstract:

The molecular mechanism underlying nonalcoholic fatty liver disease (NAFLD) progression to hepatocellular carcinoma (HCC) remains unknown. In this study, immunohistochemistry staining result showed that NS5ABP37 protein expression decreased as with increasing degree of HCC malignancy. In agreement, NS5ABP37 protein overexpression significantly suppressed cell proliferation, caused G1/S cell cycle arrest, and induced apoptosis by increasing caspase-3/7 activity and cleaved caspase-3 levels. In addition, NS5ABP37 overexpression resulted in decreased intracellular TG and TC contents, with level reduction in SREBPs and downstream effectors. Furthermore, NS5ABP37 overexpression decreased SREBP1c and SREBP2 levels by inducing their respective promoters. Finally, ROS levels and ER-stress were both induced by NS5ABP37 overexpression. These findings together demonstrate that NS5ABP37 inhibits cancer cell proliferation and promotes apoptosis, by altering SREBP-dependent lipogenesis and cholesterogenesis in HepG2 cells and inducing oxidative stress and ER stress.

Keywords: NS5ABP37, liver cancer, lipid metabolism, oxidative stress, ER stress

Procedia PDF Downloads 124
440 An Overview of Structure Based Activity Outcomes of Pyran Derivatives Against Alzheimer’s Disease

Authors: Faisal Almalki

Abstract:

Pyran is a heterocyclic group containing oxygen that possesses a variety of pharmacological effects. Pyran is also one of the most prevalent structural subunits in natural products, such as xanthones, coumarins, flavonoids, benzopyrans, etc. Additionally demonstrating the neuroprotective properties of pyrans is the fact that this heterocycle has recently attracted the attention of scientists worldwide. Alzheimer's Disease (AD) treatment and diagnosis are two of the most critical research objectives worldwide. Increased amounts of extracellular senile plaques, intracellular neurofibrillary tangles, and a progressive shutdown of cholinergic basal forebrain neuron transmission are often related with cognitive impairment. This review highlights the various pyran scaffolds of natural and synthetic origin that are effective in the treatment of AD. For better understanding synthetic compounds are categorized as different types of pyran derivatives like chromene, flavone, xanthone, xanthene, etc. The discussion encompasses both the structure-activity correlations of these compounds as well as their activity against AD. Because of the intriguing actions that were uncovered by these pyran-based scaffolds, there is no question that they are at the forefront of the search for potential medication candidates that could treat Alzheimer's disease.

Keywords: alzheimer’s disease, pyran, coumarin, xanthone

Procedia PDF Downloads 44
439 Interaction of Histone H1 with Chromatin-associated Protein HMGB1 Studied by Microscale Thermophoresis

Authors: Michal Štros, Eva Polanská, Šárka Pospíšilová

Abstract:

HMGB1 is an architectural protein in chromatin, acting also as a signaling molecule outside the cell. Recent reports from several laboratories provided evidence that a number of both the intracellular and extracellular functions of HMGB1 may depend on redox-sensitive cysteine residues of the protein. MALDI-TOF analysis revealed that mild oxidization of HMGB1 resulted in a conformational change of the protein due to formation of an intramolecular disulphide bond by opposing Cys23 and Cys45 residues. We have demonstrated that redox state of HMGB1 could significantly modulate the ability of the protein to bind and bend DNA. We have also shown that reduced HMGB1 could easily displace histone H1 from DNA, while oxidized HMGB1 had limited capacity for H1 displacement. Using microscale thermophoresis (MST) we have further studied mechanism of HMGB1 interaction with histone H1 in free solution or when histone H1 was bound to DNA. Our MST analysis indicated that reduced HMGB1 exhibited in free solution > 1000 higher affinity of for H1 (KD ~ 4.5 nM) than oxidized HMGB1 (KD <10 M). Finally, we present a novel mechanism for the HMGB1-mediated modulation of histone H1 binding to DNA.

Keywords: HMGB1, histone H1, redox state, interaction, cross-linking, DNA bending, DNA end-joining, microscale thermophoresis

Procedia PDF Downloads 306
438 Concrete-Wall-Climbing Testing Robot

Authors: S. Tokuomi, K. Mori, Y. Tsuruzono

Abstract:

A concrete-wall-climbing testing robot, has been developed. This robot adheres and climbs concrete walls using two sets of suction cups, as well as being able to rotate by the use of the alternating motion of the suction cups. The maximum climbing speed is about 60 cm/min. Each suction cup has a pressure sensor, which monitors the adhesion of each suction cup. The impact acoustic method is used in testing concrete walls. This robot has an impact acoustic device and four microphones for the acquisition of the impact sound. The effectiveness of the impact acoustic system was tested by applying it to an inspection of specimens with artificial circular void defects. A circular void defect with a diameter of 200 mm at a depth of 50 mm was able to be detected. The weight and the dimensions of the robot are about 17 kg and 1.0 m by 1.3 m, respectively. The upper limit of testing is about 10 m above the ground due to the length of the power cable.

Keywords: concrete wall, nondestructive testing, climbing robot, impact acoustic method

Procedia PDF Downloads 626
437 Superlyophobic Surfaces for Increased Heat Transfer during Condensation of CO₂

Authors: Ingrid Snustad, Asmund Ervik, Anders Austegard, Amy Brunsvold, Jianying He, Zhiliang Zhang

Abstract:

CO₂ capture, transport and storage (CCS) is essential to mitigate global anthropogenic CO₂ emissions. To make CCS a widely implemented technology in, e.g. the power sector, the reduction of costs is crucial. For a large cost reduction, every part of the CCS chain must contribute. By increasing the heat transfer efficiency during liquefaction of CO₂, which is a necessary step, e.g. ship transportation, the costs associated with the process are reduced. Heat transfer rates during dropwise condensation are up to one order of magnitude higher than during filmwise condensation. Dropwise condensation usually occurs on a non-wetting surface (Superlyophobic surface). The vapour condenses in discrete droplets, and the non-wetting nature of the surface reduces the adhesion forces and results in shedding of condensed droplets. This, again, results in fresh nucleation sites for further droplet condensation, effectively increasing the liquefaction efficiency. In addition, the droplets in themselves have a smaller heat transfer resistance than a liquid film, resulting in increased heat transfer rates from vapour to solid. Surface tension is a crucial parameter for dropwise condensation, due to its impact on the solid-liquid contact angle. A low surface tension usually results in a low contact angle, and again to spreading of the condensed liquid on the surface. CO₂ has very low surface tension compared to water. However, at relevant temperatures and pressures for CO₂ condensation, the surface tension is comparable to organic compounds such as pentane, a dropwise condensation of CO₂ is a completely new field of research. Therefore, knowledge of several important parameters such as contact angle and drop size distribution must be gained in order to understand the nature of the condensation. A new setup has been built to measure these relevant parameters. The main parts of the experimental setup is a pressure chamber in which the condensation occurs, and a high- speed camera. The process of CO₂ condensation is visually monitored, and one can determine the contact angle, contact angle hysteresis and hence, the surface adhesion of the liquid. CO₂ condensation on different surfaces can be analysed, e.g. copper, aluminium and stainless steel. The experimental setup is built for accurate measurements of the temperature difference between the surface and the condensing vapour and accurate pressure measurements in the vapour. The temperature will be measured directly underneath the condensing surface. The next step of the project will be to fabricate nanostructured surfaces for inducing superlyophobicity. Roughness is a key feature to achieve contact angles above 150° (limit for superlyophobicity) and controlled, and periodical roughness on the nanoscale is beneficial. Surfaces that are non- wetting towards organic non-polar liquids are candidates surface structures for dropwise condensation of CO₂.

Keywords: CCS, dropwise condensation, low surface tension liquid, superlyophobic surfaces

Procedia PDF Downloads 236
436 A Comparative Study of the Tribological Behavior of Bilayer Coatings for Machine Protection

Authors: Cristina Diaz, Lucia Perez-Gandarillas, Gonzalo Garcia-Fuentes, Simone Visigalli, Roberto Canziani, Giuseppe Di Florio, Paolo Gronchi

Abstract:

During their lifetime, industrial machines are often subjected to chemical, mechanical and thermal extreme conditions. In some cases, the loss of efficiency comes from the degradation of the surface as a result of its exposition to abrasive environments that can cause wear. This is a common problem to be solved in industries of diverse nature such as food, paper or concrete industries, among others. For this reason, a good selection of the material is of high importance. In the machine design context, stainless steels such as AISI 304 and 316 are widely used. However, the severity of the external conditions can require additional protection for the steel and sometimes coating solutions are demanded in order to extend the lifespan of these materials. Therefore, the development of effective coatings with high wear resistance is of utmost technological relevance. In this research, bilayer coatings made of Titanium-Tantalum, Titanium-Niobium, Titanium-Hafnium, and Titanium-Zirconium have been developed using magnetron sputtering configuration by PVD (Physical Vapor Deposition) technology. Their tribological behavior has been measured and evaluated under different environmental conditions. Two kinds of steels were used as substrates: AISI 304, AISI 316. For the comparison with these materials, titanium alloy substrate was also employed. Regarding the characterization, wear rate and friction coefficient were evaluated by a tribo-tester, using a pin-on-ball configuration with different lubricants such as tomato sauce, wine, olive oil, wet compost, a mix of sand and concrete with water and NaCl to approximate the results to real extreme conditions. In addition, topographical images of the wear tracks were obtained in order to get more insight of the wear behavior and scanning electron microscope (SEM) images were taken to evaluate the adhesion and quality of the coating. The characterization was completed with the measurement of nanoindentation hardness and elastic modulus. Concerning the results, thicknesses of the samples varied from 100 nm (Ti-Zr layer) to 1.4 µm (Ti-Hf layer) and SEM images confirmed that the addition of the Ti layer improved the adhesion of the coatings. Moreover, results have pointed out that these coatings have increased the wear resistance in comparison with the original substrates under environments of different severity. Furthermore, nanoindentation hardness results showed an improvement of the elastic strain to failure and a high modulus of elasticity (approximately 200 GPa). As a conclusion, Ti-Ta, Ti-Zr, Ti-Nb, and Ti-Hf are very promising and effective coatings in terms of tribological behavior, improving considerably the wear resistance and friction coefficient of typically used machine materials.

Keywords: coating, stainless steel, tribology, wear

Procedia PDF Downloads 124
435 Design and Fabrication of a Scaffold with Appropriate Features for Cartilage Tissue Engineering

Authors: S. S. Salehi, A. Shamloo

Abstract:

Poor ability of cartilage tissue when experiencing a damage leads scientists to use tissue engineering as a reliable and effective method for regenerating or replacing damaged tissues. An artificial tissue should have some features such as biocompatibility, biodegradation and, enough mechanical properties like the original tissue. In this work, a composite hydrogel is prepared by using natural and synthetic materials that has high porosity. Mechanical properties of different combinations of polymers such as modulus of elasticity were tested, and a hydrogel with good mechanical properties was selected. Bone marrow derived mesenchymal stem cells were also seeded into the pores of the sponge, and the results showed the adhesion and proliferation of cells within the hydrogel after one month. In comparison with previous works, this study offers a new and efficient procedure for the fabrication of cartilage like tissue and further cartilage repair.

Keywords: cartilage tissue engineering, hydrogel, mechanical strength, mesenchymal stem cell

Procedia PDF Downloads 265
434 Mechanical Properties of the Sugarcane Bagasse Reinforced Polypropylene Composites

Authors: R. L. M. Paiva, M. R. Capri, D. R. Mulinari, C. F. Bandeira, S. R. Montoro

Abstract:

Natural fibers are used in polymer composites to improve mechanical properties, substituting inorganic reinforcing agents produced by non renewable resources. The present study investigates the tensile, flexural and impact behaviors of sugarcane bagasse fibers-polypropylene composite as a function of volume fraction. The surface of the fibers was modified by mercerization treatments to improve the wetting behavior of the apolar polypropylene. The treatment characterization was obtained by infrared spectroscopy and scanning electron microscopy. Results evidence that a good adhesion interfacial between fibers-matrix causing an increase strength and modulus flexural as well as impact strength in the modified fibers/PP composites when compared to the pure PP and unmodified fibers reinforced composites.

Keywords: sugarcane bagasse, polymer composites, mechanical properties, fibers

Procedia PDF Downloads 597
433 Semen Characteristics of Ram Semen Frozen in Straw and Pellet in Three Type of Cold Plates

Authors: Abdurzag Kerban

Abstract:

Preservation of semen had a major impact on sheep genetic breeding. The aim of this study was to evaluate the viability of ram spermatozoa after freezing pellet using cold surfaces made from cattle fat and paraffin wax. A pool of three to four ejaculates were pooled from six rams within a period of ten weeks. Semen was diluted in egg yolk-Tris diluent and processed in 0.25 ml straw and 0.1 ml pellets. Motility was evaluated after dilution, before freezing and post-thawing at 0, 1, 2 and 3 hour incubation. Viability index, acrosome integrity and leakage of intracellular enzymes (aspartat aminotransferase and alkline phosphatase) were also evaluated. Spermatozoa exhibited highly significant percentages of motility at 0, 1, 2 and 3 hours incubation after thawing and viability index in 0.25 ml straw and 0.1 ml pellets on cattle fat plate as compared to ram spermatozoa frozen on paraffin wax. In conclusion, cattle fat plate could be used as the cold surface of choice for freezing ram semen in form of pellets. Such form of frozen semen could be used as efficiently as semen frozen in straws. This simple method is economical with little expensive equipment or supplies, and may provide an efficient technique to cryopreserve ram spermatozoa in developing countries.

Keywords: ram semen, freezing, straw, pellet

Procedia PDF Downloads 550
432 Dry High Speed Orthogonal Turning of Ti-6Al-4V Titanium Alloy

Authors: M. Benghersallah, G. List, G. Sutter

Abstract:

The present work is an experimental study on the dry high speed turning of Ti-6Al-4V titanium alloy. The objective of this study is to see for high cutting speeds, how wear occurs on the face of insert and how to evolve cutting forces and chip formation. Cutting speeds tested is 600, 800, 1000, and 1200 m/min in orthogonal turning with a carbide insert tool H13A uncoated on a cylindrical titanium alloy part. Investigation on the wear inserts with 3D scanning microscope revered the crater formation is instantaneous and a chip adhesion (welded chip) causes detachment of carbide particles. Cutting forces increase and stabilize before removing the tool. The chip reaches a very high temperature.

Keywords: titanium alloy, dry hjgh speed turning, wear insert, MQL technique

Procedia PDF Downloads 527
431 Study of the Biological Activity of a Ganglioside-Containing Drug (Cronassil) in an Experimental Model of Multiple Sclerosis

Authors: Hasmik V. Zanginyan, Gayane S. Ghazaryan, Laura M. Hovsepyan

Abstract:

Experimental autoimmune encephalomyelitis (EAE) is an inflammatory demyelinating disease of the central nervous system that is induced in laboratory animals by developing an immune response against myelin epitopes. The typical clinical course is ascending palsy, which correlates with inflammation and tissue damage in the thoracolumbar spinal cord, although the optic nerves and brain (especially the subpial white matter and brainstem) are also often affected. With multiple sclerosis, there is a violation of lipid metabolism in myelin. When membrane lipids (glycosphingolipids, phospholipids) are disturbed, metabolites not only play a structural role in membranes but are also sources of secondary mediators that transmit multiple cellular signals. The purpose of this study was to investigate the effect of ganglioside as a therapeutic agent in experimental multiple sclerosis. The biological activity of a ganglioside-containing medicinal preparation (Cronassial) was evaluated in an experimental model of multiple sclerosis in laboratory animals. An experimental model of multiple sclerosis in rats was obtained by immunization with myelin basic protein (MBP), as well as homogenization of the spinal cord or brain. EAE was induced by administering a mixture of an encephalitogenic mixture (EGM) with Complete Freund’s Adjuvant. Mitochondrial fraction was isolated in a medium containing 0,25 M saccharose and 0, 01 M tris buffer, pH - 7,4, by a method of differential centrifugation on a K-24 centrifuge. Glutathione peroxidase activity was assessed by reduction reactions of hydrogen peroxide (H₂O₂) and lipid hydroperoxides (ROOH) in the presence of GSH. LPO activity was assessed by the amount of malondialdehyde (MDA) in the total homogenate and mitochondrial fraction of the spinal cord and brain of control and experimental autoimmune encephalomyelitis rats. MDA was assessed by a reaction with Thiobarbituric acid. For statistical data analysis on PNP, SPSS (Statistical Package for Social Science) package was used. The nature of the distribution of the obtained data was determined by the Kolmogorov-Smirnov criterion. The comparative analysis was performed using a nonparametric Mann-Whitney test. The differences were statistically significant when р ≤ 0,05 or р ≤ 0,01. Correlational analysis was conducted using a nonparametric Spearman test. In the work, refrigeratory centrifuge, spectrophotometer LKB Biochrom ULTROSPECII (Sweden), pH-meter PL-600 mrc (Israel), guanosine, and ATP (Sigma). The study of the process of lipid peroxidation in the total homogenate of the brain and spinal cord in experimental animals revealed an increase in the content of malonic dialdehyde. When applied, Cronassial observed normalization of lipid peroxidation processes. Reactive oxygen species, causing lipid peroxidation processes, can be toxic both for neurons and for oligodendrocytes that form myelin, causing a violation of their lipid composition. The high content of lipids in the brain and the uniqueness of their structure determines the nature of the development of LPO processes. The lipid layer of cellular and intracellular membranes performs two main functions -barrier and matrix (structural). Damage to the barrier leads to dysregulation of intracellular processes and severe disorders of cellular functions.

Keywords: experimental autoimmune encephalomyelitis, multiple sclerosis, neuroinflammation, therapy

Procedia PDF Downloads 63
430 The Role of Cholesterol Oxidase of Mycobacterium tuberculosis in the Down-Regulation of TLR2-Signaling Pathway in Human Macrophages during Infection Process

Authors: Michal Kielbik, Izabela Szulc-Kielbik, Anna Brzostek, Jaroslaw Dziadek, Magdalena Klink

Abstract:

The goal of many research groups in the world is to find new components that are important for survival of mycobacteria in the host cells. Mycobacterium tuberculosis (Mtb) possesses a number of enzymes degrading cholesterol that are considered to be an important factor for its survival and persistence in host macrophages. One of them - cholesterol oxidase (ChoD), although not being essential for cholesterol degradation, is discussed as a virulence compound, however its involvement in macrophages’ response to Mtb is still not sufficiently determined. The recognition of tubercle bacilli antigens by pathogen recognition receptors is crucial for the initiation of the host innate immune response. An important receptor that has been implicated in the recognition and/or uptake of Mtb is Toll-like receptor type 2 (TLR2). Engagement of TLR2 results in the activation and phosphorylation of intracellular signaling proteins including IRAK-1 and -4, TRAF-6, which in turn leads to the activation of target kinases and transcription factors responsible for bactericidal and pro-inflammatory response of macrophages. The aim of these studies was a detailed clarification of the role of Mtb cholesterol oxidase as a virulence factor affecting the TLR2 signaling pathway in human macrophages. As human macrophages the THP-1 differentiated cells were applied. The virulent wild-type Mtb strain (H37Rv), its mutant lacking a functional copy of gene encoding cholesterol oxidase (∆choD), as well as complimented strain (∆choD–choD) were used. We tested the impact of Mtb strains on the expression of TLR2-depended signaling proteins (mRNA level, cytosolic level and phosphorylation status). The cytokine and bactericidal response of THP-1 derived macrophages infected with Mtb strains in relation to TLR2 signaling pathway dependence was also determined. We found that during the 24-hours of infection process the wild-type and complemented Mtb significantly reduced the cytosolic level and phosphorylation status of IRAK-4 and TRAF-6 proteins in macrophages, that was not observed in the case of ΔchoD mutant. Decreasement of TLR2-dependent signaling proteins, induced by wild-type Mtb, was not dependent on the activity of proteasome. Blocking of TLR2 expression, before infection, effectively prevented the induced by wild-type strain reduction of cytosolic level and phosphorylation of IRAK-4. None of the strains affected the surface expression of TLR2. The mRNA level of IRAK-4 and TRAF-6 genes were significantly increased in macrophages 24 hours post-infection with either of tested strains. However, the impact of wild-type Mtb strain on both examined genes was significantly stronger than its ΔchoD mutant. We also found that wild-type strain stimulated macrophages to release high amount of immunosuppressive IL-10, accompanied by low amount of pro-inflammatory IL-8 and bactericidal nitric oxide in comparison to mutant lacking cholesterol oxidase. The influence of wild-type Mtb on this type of macrophages' response strongly dependent on fully active IRAK-1 and IRAK-4 signaling proteins. In conclusion, Mtb using cholesterol oxidase causes the over-activation of TLR2 signaling proteins leading to the reduction of their cytosolic level and activity resulting in the modulation of macrophages response to allow its intracellular survival. Supported by grant: 2014/15/B/NZ6/01565, National Science Center, Poland

Keywords: Mycobacterium tuberculosis, cholesterol oxidase, macrophages, TLR2-dependent signaling pathway

Procedia PDF Downloads 394
429 Molecular Dynamics Simulation Studies of High-Intensity, Nanosecond Pulsed Electric Fields Induced Membrane Electroporation

Authors: Jiahui Song

Abstract:

The use of high-intensity, nanosecond electric pulses has been a recent development in biomedical. High-intensity (∼100 kV/cm), nanosecond duration-pulsed electric fields have been shown to induce cellular electroporation. This will lead to an increase in transmembrane conductivity and diffusive permeability. These effects will also alter the electrical potential across the membrane. The applications include electrically triggered intracellular calcium release, shrinkage of tumors, and temporary blockage of the action potential in nerves. In this research, the dynamics of pore formation with the presence of an externally applied electric field is studied on the basis of molecular dynamics (MD) simulations using the GROMACS package. MD simulations show pore formation occurs for a pulse with the amplitude of 0.5V/nm at 1ns at temperature 316°K. Also increasing temperatures facilitate pore formation. When the temperature is increased to 323°K, pore forms at 0.75ns with the pulse amplitude of 0.5V/nm. For statistical significance, a total of eight MD simulations are carried out with different starting molecular velocities for each simulation. Also, actual experimental observations are compared against MD simulation results.

Keywords: molecular dynamics, high-intensity, nanosecond, electroporation

Procedia PDF Downloads 84
428 Self-Assembled Nano Aggregates Based On Polyaspartamide Graft Copolymers for pH-Controlled Release of Doxorubicin

Authors: Van Tran Thi Thuy, Cheol Won Lim, Dukjoon Kim

Abstract:

A series of biodegradable copolymers based on polyaspartamide (PASPAM) were synthesized by grafting hydrophilic O-(2-aminoethyl)-O'-methylpoly(ethylene glycol) (MPEG), hydrophobic cholic acid (CA), and pH-sensitive hydrazine (Hyd) segments on a PASPAM backbone. The hydrazine group was effectively cleaved to release doxorubicin (DOX) conjugated on PASPAM in an acidic environment. The chemical structure of the polymer and the degree of substitution of each graft segment were analyzed using FT-IR and 1H-NMR spectroscopy. The size of the MPEG/Hyd/CA-g-PASPAM copolymer self-aggregates was examined by dynamic light scattering (DLS) and transmission electron microscope (TEM). The mean diameter of the self - aggregates increased from 125 to 200 nm at pH 7.4, as the degree of substitution of CA increased from 10 to 20 %. The release kinetics of DOX was strongly affected by the pH of the releasing medium. While less than 30% of the DOX-loaded was released in about 30 h at pH 7.4, more than 60% was released at pH 5.0 within the same time. The viability tests of human breast cancer cells (MCF-7) and human embryonic kidney cells (293T) show the potential application of MPEG/Hyd/CA-g-PASPAM copolymer self-aggregates in the controlled intracellular delivery for cancer treatments.

Keywords: pH-sensitive, drug delivery, polyaspartamide, self-assembly, nano-aggregates

Procedia PDF Downloads 331
427 Membrane Permeability of Middle Molecules: A Computational Chemistry Approach

Authors: Sundaram Arulmozhiraja, Kanade Shimizu, Yuta Yamamoto, Satoshi Ichikawa, Maenaka Katsumi, Hiroaki Tokiwa

Abstract:

Drug discovery is shifting from small molecule based drugs targeting local active site to middle molecules (MM) targeting large, flat, and groove-shaped binding sites, for example, protein-protein interface because at least half of all targets assumed to be involved in human disease have been classified as “difficult to drug” with traditional small molecules. Hence, MMs such as peptides, natural products, glycans, nucleic acids with various high potent bioactivities become important targets for drug discovery programs in the recent years as they could be used for ‘undruggable” intracellular targets. Cell membrane permeability is one of the key properties of pharmacodynamically active MM drug compounds and so evaluating this property for the potential MMs is crucial. Computational prediction for cell membrane permeability of molecules is very challenging; however, recent advancement in the molecular dynamics simulations help to solve this issue partially. It is expected that MMs with high membrane permeability will enable drug discovery research to expand its borders towards intracellular targets. Further to understand the chemistry behind the permeability of MMs, it is necessary to investigate their conformational changes during the permeation through membrane and for that their interactions with the membrane field should be studied reliably because these interactions involve various non-bonding interactions such as hydrogen bonding, -stacking, charge-transfer, polarization dispersion, and non-classical weak hydrogen bonding. Therefore, parameters-based classical mechanics calculations are hardly sufficient to investigate these interactions rather, quantum mechanical (QM) calculations are essential. Fragment molecular orbital (FMO) method could be used for such purpose as it performs ab initio QM calculations by dividing the system into fragments. The present work is aimed to study the cell permeability of middle molecules using molecular dynamics simulations and FMO-QM calculations. For this purpose, a natural compound syringolin and its analogues were considered in this study. Molecular simulations were performed using NAMD and Gromacs programs with CHARMM force field. FMO calculations were performed using the PAICS program at the correlated Resolution-of-Identity second-order Moller Plesset (RI-MP2) level with the cc-pVDZ basis set. The simulations clearly show that while syringolin could not permeate the membrane, its selected analogues go through the medium in nano second scale. These correlates well with the existing experimental evidences that these syringolin analogues are membrane-permeable compounds. Further analyses indicate that intramolecular -stacking interactions in the syringolin analogues influenced their permeability positively. These intramolecular interactions reduce the polarity of these analogues so that they could permeate the lipophilic cell membrane. Conclusively, the cell membrane permeability of various middle molecules with potent bioactivities is efficiently studied using molecular dynamics simulations. Insight of this behavior is thoroughly investigated using FMO-QM calculations. Results obtained in the present study indicate that non-bonding intramolecular interactions such as hydrogen-bonding and -stacking along with the conformational flexibility of MMs are essential for amicable membrane permeation. These results are interesting and are nice example for this theoretical calculation approach that could be used to study the permeability of other middle molecules. This work was supported by Japan Agency for Medical Research and Development (AMED) under Grant Number 18ae0101047.

Keywords: fragment molecular orbital theory, membrane permeability, middle molecules, molecular dynamics simulation

Procedia PDF Downloads 145
426 A Dynamic Model for Assessing the Advanced Glycation End Product Formation in Diabetes

Authors: Victor Arokia Doss, Kuberapandian Dharaniyambigai, K. Julia Rose Mary

Abstract:

Advanced Glycation End (AGE) products are the end products due to the reaction between excess reducing sugar present in diabetes and free amino group in protein lipids and nucleic acids. Thus, non-enzymic glycation of molecules such as hemoglobin, collagen, and other structurally and functionally important proteins add to the pathogenic complications such as diabetic retinopathy, neuropathy, nephropathy, vascular changes, atherosclerosis, Alzheimer's disease, rheumatoid arthritis, and chronic heart failure. The most common non-cross linking AGE, carboxymethyl lysine (CML) is formed by the oxidative breakdown of fructosyllysine, which is a product of glucose and lysine. CML is formed in a wide variety of tissues and is an index to assess the extent of glycoxidative damage. Thus we have constructed a mathematical and computational model that predicts the effect of temperature differences in vivo, on the formation of CML, which is now being considered as an important intracellular milieu. This hybrid model that had been tested for its parameter fitting and its sensitivity with available experimental data paves the way for designing novel laboratory experiments that would throw more light on the pathological formation of AGE adducts and in the pathophysiology of diabetic complications.

Keywords: advanced glycation end-products, CML, mathematical model, computational model

Procedia PDF Downloads 107
425 Enhanced Cell Adhesion on PMMA by Radio Frequency Oxygen Plasma Treatment

Authors: Fatemeh Rezaei, Babak Shokri

Abstract:

In this study, PMMA films are modified by oxygen plasma treatment for biomedical applications. The plasma generator is capacitively coupled radio frequency (13.56 MHz) power source. The oxygen pressure and gas flow rate are kept constant at 40 mTorr and 30 sccm, respectively and samples are treated for 2 minutes. Hydrophilicity and biocompatibility of PMMA films are studied before and after treatments in different applied powers (10-80 W). In order to monitor the plasma process, the optical emission spectroscopy is used. The wettability and cellular response of samples are investigated by water contact angle (WCA) analysis and MTT assay, respectively. Also, surface free energy (SFE) variations are studied based on the contact angle measurements of three liquids. It is found that RF oxygen plasma treatment enhances the biocompatibility and also hydrophilicity of PMMA films.

Keywords: cellular response, hydrophilicity, MTT assay, PMMA, RF plasma

Procedia PDF Downloads 640
424 Computation of Thermal Stress Intensity Factor for Bonded Composite Repairs in Aircraft Structures

Authors: Fayçal Benyahia, Abdelmohsen Albedah, Bel Abbes Bachir Bouiadjra

Abstract:

In this study the Finite element method is used to analyse the effect of the thermal residual stresses resulting from adhesive curing on the performances of the bonded composite repair in aircraft structures. The stress intensity factor at the crack tip is chosen as fracture criterion in order to estimate the repair performances. The obtained results show that the presence of the thermal residual stresses reduces considerably the repair performances and consequently decreases the fatigue life of cracked structures. The effects of the curing temperature, the adhesive properties and the adhesive thickness on the Stress Intensity Factor (SIF) variation with thermal stresses are also analysed.

Keywords: bonded composite repair, residual stress, adhesion, stress transfer, finite element analysis

Procedia PDF Downloads 380
423 Influence of Counter-Face Roughness on the Friction of Bionic Microstructures

Authors: Haytam Kasem

Abstract:

The problem of quick and easy reversible attachment has become of great importance in different fields of technology. For the reason, during the last decade, a new emerging field of adhesion science has been developed. Essentially inspired by some animals and insects, which during their natural evolution have developed fantastic biological attachment systems allowing them to adhere and run on walls and ceilings of uneven surfaces. Potential applications of engineering bio-inspired solutions include climbing robots, handling systems for wafers in nanofabrication facilities, and mobile sensor platforms, to name a few. However, despite the efforts provided to apply bio-inspired patterned adhesive-surfaces to the biomedical field, they are still in the early stages compared with their conventional uses in other industries mentioned above. In fact, there are some critical issues that still need to be addressed for the wide usage of the bio-inspired patterned surfaces as advanced biomedical platforms. For example, surface durability and long-term stability of surfaces with high adhesive capacity should be improved, but also the friction and adhesion capacities of these bio-inspired microstructures when contacting rough surfaces. One of the well-known prototypes for bio-inspired attachment systems is biomimetic wall-shaped hierarchical microstructure for gecko-like attachments. Although physical background of these attachment systems is widely understood, the influence of counter-face roughness and its relationship with the friction force generated when sliding against wall-shaped hierarchical microstructure have yet to be fully analyzed and understood. To elucidate the effect of the counter-face roughness on the friction of biomimetic wall-shaped hierarchical microstructure we have replicated the isotropic topography of 12 different surfaces using replicas made of the same epoxy material. The different counter-faces were fully characterized under 3D optical profilometer to measure roughness parameters. The friction forces generated by spatula-shaped microstructure in contact with the tested counter-faces were measured on a home-made tribometer and compared with the friction forces generated by the spatulae in contact with a smooth reference. It was found that classical roughness parameters, such as average roughness Ra and others, could not be utilized to explain topography-related variation in friction force. This has led us to the development of an integrated roughness parameter obtained by combining different parameters which are the mean asperity radius of curvature (R), the asperity density (η), the deviation of asperities high (σ) and the mean asperities angle (SDQ). This new integrated parameter is capable of explaining the variation of results of friction measurements. Based on the experimental results, we developed and validated an analytical model to predict the variation of the friction force as a function of roughness parameters of the counter-face and the applied normal load, as well.

Keywords: friction, bio-mimetic micro-structure, counter-face roughness, analytical model

Procedia PDF Downloads 214
422 Detection the Ice Formation Processes Using Multiple High Order Ultrasonic Guided Wave Modes

Authors: Regina Rekuviene, Vykintas Samaitis, Liudas Mažeika, Audrius Jankauskas, Virginija Jankauskaitė, Laura Gegeckienė, Abdolali Sadaghiani, Shaghayegh Saeidiharzand

Abstract:

Icing brings significant damage to aviation and renewable energy installations. Air-conditioning, refrigeration, wind turbine blades, airplane and helicopter blades often suffer from icing phenomena, which cause severe energy losses and impair aerodynamic performance. The icing process is a complex phenomenon with many different causes and types. Icing mechanisms, distributions, and patterns are still relevant to research topics. The adhesion strength between ice and surfaces differs in different icing environments. This makes the task of anti-icing very challenging. The techniques for various icing environments must satisfy different demands and requirements (e.g., efficient, lightweight, low power consumption, low maintenance and manufacturing costs, reliable operation). It is noticeable that most methods are oriented toward a particular sector and adapting them to or suggesting them for other areas is quite problematic. These methods often use various technologies and have different specifications, sometimes with no clear indication of their efficiency. There are two major groups of anti-icing methods: passive and active. Active techniques have high efficiency but, at the same time, quite high energy consumption and require intervention in the structure’s design. It’s noticeable that vast majority of these methods require specific knowledge and personnel skills. The main effect of passive methods (ice-phobic, superhydrophobic surfaces) is to delay ice formation and growth or reduce the adhesion strength between the ice and the surface. These methods are time-consuming and depend on forecasting. They can be applied on small surfaces only for specific targets, and most are non-biodegradable (except for anti-freezing proteins). There is some quite promising information on ultrasonic ice mitigation methods that employ UGW (Ultrasonic Guided Wave). These methods are have the characteristics of low energy consumption, low cost, lightweight, and easy replacement and maintenance. However, fundamental knowledge of ultrasonic de-icing methodology is still limited. The objective of this work was to identify the ice formation processes and its progress by employing ultrasonic guided wave technique. Throughout this research, the universal set-up for acoustic measurement of ice formation in a real condition (temperature range from +240 C to -230 C) was developed. Ultrasonic measurements were performed by using high frequency 5 MHz transducers in a pitch-catch configuration. The selection of wave modes suitable for detection of ice formation phenomenon on copper metal surface was performed. Interaction between the selected wave modes and ice formation processes was investigated. It was found that selected wave modes are sensitive to temperature changes. It was demonstrated that proposed ultrasonic technique could be successfully used for the detection of ice layer formation on a metal surface.

Keywords: ice formation processes, ultrasonic GW, detection of ice formation, ultrasonic testing

Procedia PDF Downloads 36
421 Sperm Flagellum Center-Line Tracing in 4D Stacks Using an Iterative Minimal Path Method

Authors: Paul Hernandez-Herrera, Fernando Montoya, Juan Manuel Rendon, Alberto Darszon, Gabriel Corkidi

Abstract:

Intracellular calcium ([Ca2+]i) regulates sperm motility. The analysis of [Ca2+]i has been traditionally achieved in two dimensions while the real movement of the cell takes place in three spatial dimensions. Due to optical limitations (high speed cell movement and low light emission) important data concerning the three dimensional movement of these flagellated cells had been neglected. Visualizing [Ca2+]i in 3D is not a simple matter since it requires complex fluorescence microscopy techniques where the resulting images have very low intensity and consequently low SNR (Signal to Noise Ratio). In 4D sequences, this problem is magnified since the flagellum oscillates (for human sperm) at least at an average frequency of 15 Hz. In this paper, a novel approach to extract the flagellum’s center-line in 4D stacks is presented. For this purpose, an iterative algorithm based on the fast-marching method is proposed to extract the flagellum’s center-line. Quantitative and qualitative results are presented in a 4D stack to demonstrate the ability of the proposed algorithm to trace the flagellum’s center-line. The method reached a precision and recall of 0.96 as compared with a semi-manual method.

Keywords: flagellum, minimal path, segmentation, sperm

Procedia PDF Downloads 255
420 Studies on Corrosion Resistant Composite Coating for Metallic Surfaces

Authors: Navneetinder Singh, Harprabhjot Singh, Harpreet Singh, Supreet Singh

Abstract:

Many materials are known to mankind that is widely used for synthesis of corrosion resistant hydrophobic coatings. In the current work, novel hydrophobic composite was synthesized by mixing polytetrafluoroethylene (PTFE) and 20 weight% ceria particles followed by sintering. This composite had same hydrophobic behavior as PTFE. Moreover, composite showed better scratch resistance than virgin PTFE. Pits of plasma sprayed Ni₃Al coating were exploited to hold PTFE composite on the substrate as Superni-75 alloy surface through sintering process. Plasma sprayed surface showed good adhesion with the composite coating during scratch test. Potentiodynamic corrosion test showed 100 fold decreases in corrosion rate of coated sample this may be attributed to inert and hydrophobic nature of PTFE and ceria.

Keywords: polytetrafluoroethylene, PTFE, ceria, coating, corrosion

Procedia PDF Downloads 335
419 Insights on Nitric Oxide Interaction with Phytohormones in Rice Root System Response to Metal Stress

Authors: Piacentini Diego, Della Rovere Federica, Fattorini Laura, Lanni Francesca, Cittadini Martina, Altamura Maria Maddalena, Falasca Giuseppina

Abstract:

Plants have evolved sophisticated mechanisms to cope with environmental cues. Changes in intracellular content and distribution of phytohormones, such as the auxin indole-3-acetic acid (IAA), have been involved in morphogenic adaptation to environmental stresses. In addition to phytohormones, plants can rely on a plethora of small signal molecules able to promptly sense and transduce the stress signals, resulting in morpho/physiological responses thanks also to their capacity to modulate the levels/distribution/reception of most hormones. Among these signaling molecules, nitrogen monoxide (nitric oxide – NO) is a critical component in several plant acclimation strategies to both biotic and abiotic stresses. Depending on its levels, NO increases plant adaptation by enhancing the enzymatic or non-enzymatic antioxidant systems or by acting as a direct scavenger of reactive oxygen/nitrogen (ROS/RNS) species produced during the stress. In addition, exogenous applications of NO-specific donor compounds showed the involvement of the signal molecule in auxin metabolism, transport, and signaling, under both physiological and stress conditions. However, the complex mechanisms underlying NO action in interacting with phytohormones, such as auxins, during metal stress responses are still poorly understood and need to be better investigated. Emphasis must be placed on the response of the root system since it is the first plant organ system to be exposed to metal soil pollution. The monocot Oryza sativa L. (rice) has been chosen given its importance as a stable food for some 4 billion people worldwide. In addition, increasing evidence has shown that rice is often grown in contaminated paddy soils with high levels of heavy metal cadmium (Cd) and metalloid arsenic (As). The facility through which these metals are taken up by rice roots and transported to the aerial organs up to the edible caryopses makes rice one of the most relevant sources of these pollutants for humans. This study aimed to evaluate if NO has a mitigatory activity in the roots of rice seedlings against Cd or As toxicity and to understand if this activity requires interactions with auxin. Our results show that exogenous treatments with the NO-donor SNP alleviate the stress induced by Cd, but not by As, in in-vitro-grown rice seedlings through increased intracellular root NO levels. The damages induced by the pollutants include root growth inhibition, root histological alterations and ROS (H2O2, O2●ˉ), and RNS (ONOOˉ) production. Also, SNP treatments mitigate both the root increase in root IAA levels and the IAA alteration in distribution monitored by the OsDR5::GUS system due to the toxic metal exposure. Notably, the SNP-induced mitigation of the IAA homeostasis altered by the pollutants does not involve changes in the expression of OsYUCCA1 and ASA2 IAA-biosynthetic genes. Taken together, the results highlight a mitigating role of NO in the rice root system, which is pollutant-specific, and involves the interaction of the signal molecule with both IAA and brassinosteroids at different (i.e., transport, levels, distribution) and multiple levels (i.e., transcriptional/post-translational levels). The research is supported by Progetti Ateneo Sapienza University of Rome, grant number: RG120172B773D1FF

Keywords: arsenic, auxin, cadmium, nitric oxide, rice, root system

Procedia PDF Downloads 50
418 Knowledge Elicitation Approach for Formal Ontology Design: An Exploratory Study Applied in Industry for Knowledge Management

Authors: Ouassila Labbani-Narsis, Christophe Nicolle

Abstract:

Building formal ontologies remains a complex process for companies. In the literature, this process is based on the technical knowledge and expertise of domain experts, without further details on the used methodologies. Possible problems of disagreements between experts, expression of tacit knowledge related to high level know-how rarely verbalized, qualification of results by using cases, or simply adhesion of the group of experts, remain currently unsolved. This paper proposes a methodological approach based on knowledge elicitation for the conception of formal, consensual, and shared ontologies. The proposed approach is experimentally tested on industrial collaboration projects in the field of manufacturing (associating knowledge sources from multinational companies) and in the field of viticulture (associating explicit knowledge and implicit knowledge acquired through observation).

Keywords: collaborative ontology engineering, knowledge elicitation, knowledge engineering, knowledge management

Procedia PDF Downloads 49
417 Suitability Verification of Cellulose Nanowhisker as a Scaffold for Bone Tissue Engineering

Authors: Moon Hee Jung, Dae Seung Kim, Sang-Myung Jung, Gwang Heum Yoon, Hoo Cheol Lee, Hwa Sung Shin

Abstract:

Scaffolds are an important part to support growth and differentiation of osteoblast for regeneration of injured bone in bone tissue engineering. We utilized tunicate cellulose nanowhisker (CNW) as scaffold and developed complex system that can enhance differentiation of osteoblast by applying mechanical stimulation. CNW, a crystal form of cellulose, has high stiffness with a large surface area and is useful as a biomedical material due to its biodegradability and biocompatibility. In this study, CNW was obtained from tunicate extraction and was confirmed for its adhesion, differentiation, growth of osteoblast without cytotoxicity. In addition, osteoblast was successfully differentiated under mechanical stimulation, followed by calcium dependent signaling. In conclusion, we verified suitability of CNW as scaffold and possibility of bone substitutes.

Keywords: osteoblast, cellulose nanowhisker, CNW, mechanical stimulation, bone tissue engineering, bone substitute

Procedia PDF Downloads 336