Search results for: industrial effluents
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3271

Search results for: industrial effluents

3271 Removal of Vanadium from Industrial Effluents by Natural Ion Exchanger

Authors: Shashikant R. Kuchekar, Haribhau R. Aher, Priti M. Dhage

Abstract:

The removal vanadium from aqueous solution using natural exchanger was investigated. The effects of pH, contact time and exchanger dose were studied at ambient temperature (25 0C ± 2 0C). The equilibrium process was described by the Langmuir isotherm model with adsorption capacity for vanadium. The natural exchanger i.e. tamarindus seeds powder was treated with formaldehyde and sulpuric acid to increase the adsorptivity of metals. The maximum exchange level was attained as 80.1% at pH 3 with exchanger dose 5 g and contact time 60 min. Method is applied for removal of vanadium from industrial effluents.

Keywords: industrial effluent, natural ion exchange, Tamarindous indica, vanadium

Procedia PDF Downloads 216
3270 A Combination of Filtration and Coagulation Processes for Tannery Effluent Treatment

Authors: M. G. Mostafa, Manjushree Chowdhury, Tapan Kumar Biswas, , Ananda Kumar Saha

Abstract:

This study focused on effluents characterization and treatment process to reduce of toxicity from tannery effluents. Tanning industry is one of the oldest industries in the world. It is typically characterized as pollutants generated industries which produce wide varieties of high strength toxic chemicals. The study was conducted during the year 2008 to 2009 and the tannery effluents were collected three times in a year from the outlet of some selected leather industries located in Hagaribagh industrial zone Dhaka, Bangladesh. The analysis results of the raw effluents reveal that the effluents were yellowish-brown color, having basic pH, very high value of BOD5¬¬, COD, TDS, TSS, TS, and high concentrations of Cr, Na, SO42-, Cl- and other organic and inorganic constituents. The tannery effluents were treated with various doses of FeCl3 after settling and a subsequent filtration through sand-stone. The study observed that coagulant (FeCl3) 150 mg/L dose around neutral pH showed the best removal efficiency for major physico-chemical parameters. The analysis results of illustrate that the most of the physical and chemical parameters were found well below the prescribed permissible limits for effluent discharged. The study suggests that tannery effluents could be treated by a combined process consisting of settling, filtering and coagulating with FeCl3.

Keywords: characterization, effluent, tannery, treatment

Procedia PDF Downloads 424
3269 Treatment of Industrial Effluents by Using Polyethersulfone/Chitosan Membrane Derived from Fishery Waste

Authors: Suneeta Kumari, Abanti Sahoo

Abstract:

Industrial effluents treatment is a major problem in the world. All wastewater treatment methods have some problems in the environment. Due to this reason, today many natural biopolymers are being used in the waste water treatment because those are safe for our environment. In this study, synthesis and characterization of polyethersulfone/chitosan membranes (Thin film composite membrane) are carried out. Fish scales are used as raw materials. Different characterization techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), scanning electron microscope (SEM) and Thermal gravimetric analysis (TGA) are analysed for the synthesized membrane. The performance of membranes such as flux, rejection, and pore size are also checked. The synthesized membrane is used for the treatment of steel industry waste water where Biochemical oxygen demand (BOD), Chemical Oxygen Demand (COD), pH, colour, Total dissolved solids (TDS), Total suspended solids (TSS), Electrical conductivity (EC) and Turbidity aspects are analysed.

Keywords: fish scale, membrane synthesis, treatment of industrial effluents, chitosan

Procedia PDF Downloads 294
3268 Assessment of Physical, Chemical and Radionuclides Concentrations in Pharamasucal Industrial Wastewater Effluents in Amman, Jordan

Authors: Mohammad Salem Abdullah Alhwaiti

Abstract:

This study was conducted to assess the physical, chemical, and radionuclide concentrations of pharmaceutical industrial wastewater effluents. Fourteen wastewater samples were collected from pharmaceutical industries. The results showed a marked reduction in the levels of TH, Mg, and Ca concentration in wastewater limit for properties and criteria for discharge of wastewater to streams or wadies or water bodies in the effluent, whereas TSS and TDS showed higher concentration allowable for discharge of wastewater to streams or wadies or water bodies. The gross α activity in all the wastewater samples ranged between (0.086-0.234 Bq/L) lowered the 0.1 Bq/L limit set by World Health Organization (WHO), whereas gross β activity in few samples ranged between (2.565-4.800 Bq/L), indicating the higher limit set by WHO. Gamma spectroscopy revealed that K-40, Cr-51, Co-60, I-131, Cs-137, and U-238 activity are ≤0.114 Bq/L, ≤0.062 Bq/L, ≤0.00815Bq/L, ≤0.00792Bq/L, ≤0.00956 Bq/L, and ≤0.151 Bq/L, respectively, indicating lowest concentrations of these radionuclides in the pharmaceutical industrial wastewater effluents.

Keywords: pharmaceutical wastewater, gross α/β activity, radionuclides, Jordan

Procedia PDF Downloads 58
3267 Developing a Process and Cost Model for Xanthan Biosynthesis from Bioethanol Production Waste Effluents

Authors: Bojana Ž. Bajić, Damjan G. Vučurović, Siniša N. Dodić, Jovana A. Grahovac, Jelena M. Dodić

Abstract:

Biosynthesis of xanthan, a microbial polysaccharide produced by Xanthomonas campestris, is characterized by the possibility of using non-specific carbohydrate substrates, which means different waste effluents can be used as a basis for the production media. Potential raw material sources for xanthan production come from industries with large amounts of waste effluents that are rich in compounds necessary for microorganism growth and multiplication. Taking into account the amount of waste effluents generated by the bioethanol industry and the fact that it contains a high inorganic and organic load it is clear that they represent a potential environmental pollutants if not properly treated. For this reason, it is necessary to develop new technologies which use wastes and wastewaters of one industry as raw materials for another industry. The result is not only a new product, but also reduction of pollution and environmental protection. Biotechnological production of xanthan, which consists of using biocatalysts to convert the bioethanol waste effluents into a high-value product, presents a possibility for sustainable development. This research uses scientific software developed for the modeling of biotechnological processes in order to design a xanthan production plant from bioethanol production waste effluents as raw material. The model was developed using SuperPro Designer® by using input data such as the composition of raw materials and products, defining unit operations, utility consumptions, etc., while obtaining capital and operating costs and the revenues from products to create a baseline production plant model. Results from this baseline model can help in the development of novel biopolymer production technologies. Additionally, a detailed economic analysis showed that this process for converting waste effluents into a high value product is economically viable. Therefore, the proposed model represents a useful tool for scaling up the process from the laboratory or pilot plant to a working industrial scale plant.

Keywords: biotechnology, process model, xanthan, waste effluents

Procedia PDF Downloads 321
3266 Valorization of Argan Residuals for the Treatment of Industrial Effluents

Authors: Salim Ahmed

Abstract:

The aim of this study was to recover a natural residue in the form of activated carbon prepared from Moroccan "argan pits and date pits" plant waste. After preparing the raw material for manufacture, the carbon was carbonised at 300°C and chemically activated with phosphoric acid of purity 85. The various characterisation results (moisture and ash content, specific surface area, pore volume, etc.) showed that the carbons obtained are comparable to those manufactured industrially and could therefore be tested, for example, in water treatment processes and especially for the depollution of effluents used in the agri-food and textile industries.

Keywords: activated carbon, water treatment, adsorption, argan

Procedia PDF Downloads 39
3265 Removal of Nickel Ions from Industrial Effluents by Batch and Column Experiments: A Comparison of Activated Carbon with Pinus Roxburgii Saw Dust

Authors: Sardar Khana, Zar Ali Khana

Abstract:

Rapid industrial development and urbanization contribute a lot to wastewater discharge. The wastewater enters into natural aquatic ecosystems from industrial activities and considers as one of the main sources of water pollution. Discharge of effluents loaded with heavy metals into the surrounding environment has become a key issue regarding human health risk, environment, and food chain contamination. Nickel causes fatigue, cancer, headache, heart problems, skin diseases (Nickel Itch), and respiratory disorders. Nickel compounds such as Nickel Sulfide and Nickel oxides in industrial environment, if inhaled, have an association with an increased risk of lung cancer. Therefore the removal of Nickel from effluents before discharge is necessary. Removal of Nickel by low-cost biosorbents is an efficient method. This study was aimed to investigate the efficiency of activated carbon and Pinusroxburgiisaw dust for the removal of Nickel from industrial effluents using commercial Activated Carbon, and raw P.roxburgii saw dust. Batch and column adsorption experiments were conducted for the removal of Nickel. The study conducted indicates that removal of Nickel greatly dependent on pH, contact time, Nickel concentration, and adsorbent dose. Maximum removal occurred at pH 9, contact time of 600 min, and adsorbent dose of 1 g/100 mL. The highest removal was 99.62% and 92.39% (pH based), 99.76% and 99.9% (dose based), 99.80% and 100% (agitation time), 92% and 72.40% (Ni Conc. based) for P.roxburgii saw dust and activated Carbon, respectively. Similarly, the Ni removal in column adsorption was 99.77% and 99.99% (bed height based), 99.80% and 99.99% (Concentration based), 99.98%, and 99.81% (flow rate based) during column studies for Nickel using P.Roxburgiisaw dust and activated carbon, respectively. Results were compared with Freundlich isotherm model, which showed “r2” values of 0.9424 (Activated carbon) and 0.979 (P.RoxburgiiSaw Dust). While Langmuir isotherm model values were 0.9285 (Activated carbon) and 0.9999 (P.RoxburgiiSaw Dust), the experimental results were fitted to both the models. But the results were in close agreement with Langmuir isotherm model.

Keywords: nickel removal, batch, and column, activated carbon, saw dust, plant uptake

Procedia PDF Downloads 100
3264 Impact of Activated Sludge Bulking and Foaming on the Quality of Kuwait's Irrigation Water

Authors: Abdallah Abusam, Andrzej Mydlarczyk, Fadila Al-Salameen, Moh Elmuntasir Ahmed

Abstract:

Treated municipal wastewater produced in Kuwait is used mainly in agricultural and greenery landscape irrigations. However, there are strong doubts that severe sludge bulking and foaming problems, particularly during winter seasons, may render the treated wastewater to be unsuitable for irrigation purposes. To assess the impact of sludge bulking and foaming problems on the quality of treated effluents, samples were collected weekly for nine months (January to September 2014) from the secondary effluents, tertiary effluents and sludge-mixed liquor streams of the two plants that severely suffer from sludge bulking and foaming problems. Dominant filamentous bacteria were identified and quantified using a molecular method called VIT (Vermicon Identification Technology). Quality of the treated effluents was determined according to water and wastewater standard methods. Obtained results were then statistically analyzed and compared to irrigation water standards. Statistical results indicated that secondary effluents were greatly impacted by sludge bulking and foaming problems, while tertiary effluents were slightly affected. This finding highlights the importance of having tertiary treatment units in plants that encountering sludge bulking and foaming problems.

Keywords: agriculture, filamentous bacteria, reclamation, reuse, wastewater

Procedia PDF Downloads 223
3263 Chemical Risk Posed by Hospital Liquid Effluents Example CHU Beni Messous Algiers

Authors: Laref Nabil

Abstract:

Ecology is at the center of many debates and international regulations. It therefore becomes a necessity and a privileged axis in many countries policy. The rise of environmental problems, the particularism of the hospital as an actor Public Health must lead by example in hygiene, prevention of risks to man and his environment. In this, it seemed interesting to make a poster on hospital liquid effluents in order to know not only the regulatory aspects but also their degree of pollution and their management in health institutions. Materials and methods: Samples taken at several looks, analysis performed at STEP Reghaia Algiers. Discussion and / or findings: In general, central gaze analysis results of water we can conclude that the contents of the various physico-chemical parameters greatly exceed the standards. Although the hypothesis of assimilating hospital liquid effluents domestic waters is confirmed, the liquid effluent from the University Hospital of Beni Messous and dumped in the natural environment still represent ecotoxicological risk.

Keywords: health, hospital, liquid effluents, water

Procedia PDF Downloads 421
3262 Extraction of Polystyrene from Styrofoam Waste: Synthesis of Novel Chelating Resin for the Enrichment and Speciation of Cr(III)/Cr(vi) Ions in Industrial Effluents

Authors: Ali N. Siyal, Saima Q. Memon, Latif Elçi, Aydan Elçi

Abstract:

Polystyrene (PS) was extracted from Styrofoam (expanded polystyrene foam) waste, so called white pollutant. The PS was functionalized with N, N- Bis(2-aminobenzylidene)benzene-1,2-diamine (ABA) ligand through an azo spacer. The resin was characterized by FT-IR spectroscopy and elemental analysis. The PS-N=N-ABA resin was used for the enrichment and speciation of Cr(III)/Cr(VI) ions and total Cr determination in aqueous samples by Flame Atomic Absorption Spectrometry (FAAS). The separation of Cr(III)/Cr(VI) ions was achieved at pH 2. The recovery of Cr(VI) ions was achieved ≥ 95.0% at optimum parameters: pH 2; resin amount 300 mg; flow rates 2.0 mL min-1 of solution and 2.0 mL min-1 of eluent (2.0 mol L-1 HNO3). Total Cr was determined by oxidation of Cr(III) to Cr(VI) ions using H2O2. The limit of detection (LOD) and quantification (LOQ) of Cr(VI) were found to be 0.40 and 1.20 μg L-1, respectively with preconcentration factor of 250. Total saturation and breakthrough capacitates of the resin for Cr(IV) ions were found to be 0.181 and 0.531 mmol g-1, respectively. The proposed method was successfully applied for the preconcentration/speciation of Cr(III)/Cr(VI) ions and determination of total Cr in industrial effluents.

Keywords: styrofoam waste, polymeric resin, preconcentration, speciation, Cr(III)/Cr(VI) ions, FAAS

Procedia PDF Downloads 261
3261 Sublethal Effects of Industrial Effluents on Fish Fingerlings (Clarias gariepinus) from Ologe Lagoon Environs, Lagos, Nigeria

Authors: Akintade O. Adeboyejo, Edwin O. Clarke, Oluwatoyin Aderinola

Abstract:

The present study is on the sub-lethal toxicity of industrial effluents (IE) from the environment of Ologe Lagoon, Lagos, Nigeria on the African catfish fingerlings Clarias gariepinus. The fish were cultured in varying concentrations of industrial effluents: 0% (control), 5%, 15%, 25%, and 35%. Trials were carried out in triplicates for twelve (12) weeks. The culture system was a static renewable bioassay and was carried out in the fisheries laboratory of the Lagos State University, Ojo-Lagos. Weekly physico-chemical parameters: Temperature (0C), pH, Conductivity (ppm) and Dissolved Oxygen (DO in mg/l) were measured in each treatment tank. Length (cm) and weight (g) data were obtained weekly and used to calculate various growth parameters: mean weight gain (MWG), percentage weight gain (PWG), daily weight gain (DWG), specific growth rate (SGR) and survival. Haematological (Packed Cell Volume (PCV), Red blood cells (RBC), White Blood Cell (WBC), Neutrophil and Lymphocytes etc) and histological alterations were measured after 12 weeks. The physico-chemical parameters showed that the pH ranged from 7.82±0.25–8.07±0.02. DO range from 1.92±0.66-4.43±1.24 mg/l. The conductivity values increased with increase in concentration of I.E. While the temperature remained stable with mean value range between 26.08±2.14–26.38±2.28. The DO showed significant differences at P<0.05. There was progressive increase in length and weight of fish during the culture period. The fish placed in the control had highest increase in both weight and length while fish in 35% had the least. MWG ranged from 16.59–35.96, DWG is from 0.3–0.48, SGR varied from 1.0–1.86 and survival was 100%. Haematological results showed that C. gariepinus had PCV ranging from 13.0±1.7-27.7±0.6, RBC ranged from 4.7±0.6–9.1±0.1, and Neutrophil ranged from 26.7±4.6–61.0±1.0 amongst others. The highest values of these parameters were obtained in the control and lowest at 35%. While the reverse effects were observed for WBC and lymphocytes. This study has shown that effluents may affect the health status of the test organism and impair vital processes if exposure continues for a long period of time. The histological examination revealed several lesions as expressed by the gills and livers. The histopathology of the gills in the control tanks had normal tissues with no visible lesion, but at higher concentrations, there were: lifting of epithelium, swollen lamellae and gill arch infiltration, necrosis and gill arch destruction. While in the liver: control (0%) show normal liver cells, at higher toxic level, there were: vacoulation, destruction of the hepatic parenchyma, tissue becoming eosinophilic (i.e. tending towards Carcinogenicity) and severe disruption of the hepatic cord architecture. The study has shown that industrial effluents from the study area may affect fish health status and impair vital processes if exposure continues for a long period of time even at lower concentrations (Sublethal).

Keywords: sublethal toxicity, industrial effluents, clarias gariepinus, ologe lagoon

Procedia PDF Downloads 577
3260 Recovery of Waste Acrylic Fibers for the Elimination of Basic Dyes

Authors: N. Ouslimani, M. T. Abadlia

Abstract:

Environment protection is a precondition for sustained growth and a better quality of life for all people on earth. Aqueous industrial effluents are the main sources of pollution. Among the compounds of these effluents, dyes are particularly resistant to discoloration by conventional methods, and discharges present many problems that must be supported. The scientific literature shows that synthetic organic dyes are compounds used in many industrial sectors. They are found in the chemical, car, paper industry and particularly the textile industry, where all the lines and grades of the chemical family are represented. The affinity between the fibers and dyes vary depending on the chemical structure of dyes and the type of materials to which they are applied. It is not uncommon to find that during the dyeing operation from 15 to 20 % of sulfur dyes, and sometimes up to 40 % of the reactants are discharged with the effluent. This study was conducted for the purpose of fading basics dyes from wastewater using as adsorbent fiber waste material. This technique presents an interesting alternative to usual treatment, as it allows the recovery of waste fibers, which can find uses as raw material for the manufacture of cleaning products or in other sectors In this study the results obtained by fading fiber waste are encouraging, given the rate of color removal which is about 90%.This method also helps to decrease BOD and suspended solids MES in an effective way.

Keywords: adsorption, dyes, fiber, valorization, wastewater

Procedia PDF Downloads 262
3259 Decontamination of Chromium Containing Ground Water by Adsorption Using Chemically Modified Activated Carbon Fabric

Authors: J. R. Mudakavi, K. Puttanna

Abstract:

Chromium in the environment is considered as one of the most toxic elements probably next only to mercury and arsenic. It is acutely toxic, mutagenic and carcinogenic in the environment. Chromium contamination of soil and underground water due to industrial activities is a very serious problem in several parts of India covering Karnataka, Tamil Nadu, Andhra Pradesh etc. Functionally modified Activated Carbon Fabrics (ACF) offer targeted chromium removal from drinking water and industrial effluents. Activated carbon fabric is a light weight adsorbing material with high surface area and low resistance to fluid flow. We have investigated surface modification of ACF using various acids in the laboratory through batch as well as through continuous flow column experiments with a view to develop the optimum conditions for chromium removal. Among the various acids investigated, phosphoric acid modified ACF gave best results with a removal efficiency of 95% under optimum conditions. Optimum pH was around 2 – 4 with 2 hours contact time. Continuous column experiments with an effective bed contact time (EBCT) of 5 minutes indicated that breakthrough occurred after 300 bed volumes. Adsorption data followed a Freundlich isotherm pattern. Nickel adsorbs preferentially and sulphate reduces chromium adsorption by 50%. The ACF could be regenerated up to 52.3% using 3 M NaOH under optimal conditions. The process is simple, economical, energy efficient and applicable to industrial effluents and drinking water.

Keywords: activated carbon fabric, hexavalent chromium, adsorption, drinking water

Procedia PDF Downloads 294
3258 Evaluating Cyanide Biodegradation by Bacteria Isolated from Gold Mine Effluents in Bulawayo, Zimbabwe

Authors: Ngonidzashe Mangoma, Caroline Marigold Sebata

Abstract:

The release of cyanide-rich effluents from gold mines, and other industries, into the environment, is a global concern considering the well-known metabolic effects of cyanide in all forms of life. Such effluents need to be treated to remove cyanide, among other pollutants, before their disposal. This study aimed at investigating the possible use of bacteria in the biological removal of cyanide from cyanide-rich effluents. Firstly, cyanide-degrading bacteria were isolated from gold mine effluents and characterised. The isolates were then tested for their ability to grow in the presence of cyanide and their tolerance to increasing levels of the compound. To evaluate each isolate’s cyanide-degrading activities, isolates were grown in the simulated and actual effluent, and a titrimetric method was used to quantify residual cyanide over a number of days. Cyanide degradation efficiency (DE) was then calculated for each isolate. Identification of positive isolates involved 16S rRNA gene amplification and sequence analysis through BLAST. Six cyanide-utilising bacterial strains were isolated. Two of the isolates were identified as Klebsiella spp. while the other two were shown to be different strains of Clostridium bifermentans. All isolates showed normal growth in the presence of cyanide, with growth being inhibited at 700 mg/L cyanide and beyond. Cyanide degradation efficiency for all isolates in the simulated effluent ranged from 79% to 97%. All isolates were able to remove cyanide from actual gold mine effluent with very high DE values (90 – 94%) being recorded. Isolates obtained in this study were able to efficiently remove cyanide from both simulated and actual effluent. This observation clearly demonstrates the feasibility of the biological removal of cyanide from cyanide-rich gold mine effluents and should, therefore, motivate research towards the possible large-scale application of this technology.

Keywords: cyanide effluent, bioremediation, Clostridium bifermentans, Klebsiella spp, environment

Procedia PDF Downloads 142
3257 Valorization of Mineralogical Byproduct TiO₂ Using Photocatalytic Degradation of Organo-Sulfur Industrial Effluent

Authors: Harish Kuruva, Vedasri Bai Khavala, Tiju Thomas, K. Murugan, B. S. Murty

Abstract:

Industries are growing day to day to increase the economy of the country. The biggest problem with industries is wastewater treatment. Releasing these wastewater directly into the river is more harmful to human life and a threat to aquatic life. These industrial effluents contain many dissolved solids, organic/inorganic compounds, salts, toxic metals, etc. Phenols, pesticides, dioxins, herbicides, pharmaceuticals, and textile dyes were the types of industrial effluents and more challenging to degrade eco-friendly. So many advanced techniques like electrochemical, oxidation process, and valorization have been applied for industrial wastewater treatment, but these are not cost-effective. Industrial effluent degradation is complicated compared to commercially available pollutants (dyes) like methylene blue, methylene orange, rhodamine B, etc. TiO₂ is one of the widely used photocatalysts which can degrade organic compounds using solar light and moisture available in the environment (organic compounds converted to CO₂ and H₂O). TiO₂ is widely studied in photocatalysis because of its low cost, non-toxic, high availability, and chemically and physically stable in the atmosphere. This study mainly focused on valorizing the mineralogical product TiO₂ (IREL, India). This mineralogical graded TiO₂ was characterized and compared with its structural and photocatalytic properties (industrial effluent degradation) with the commercially available Degussa P-25 TiO₂. It was testified that this mineralogical TiO₂ has the best photocatalytic properties (particle shape - spherical, size - 30±5 nm, surface area - 98.19 m²/g, bandgap - 3.2 eV, phase - 95% anatase, and 5% rutile). The industrial effluent was characterized by TDS (total dissolved solids), ICP-OES (inductively coupled plasma – optical emission spectroscopy), CHNS (Carbon, Hydrogen, Nitrogen, and sulfur) analyzer, and FT-IR (fourier-transform infrared spectroscopy). It was observed that it contains high sulfur (S=11.37±0.15%), organic compounds (C=4±0.1%, H=70.25±0.1%, N=10±0.1%), heavy metals, and other dissolved solids (60 g/L). However, the organo-sulfur industrial effluent was degraded by photocatalysis with the industrial mineralogical product TiO₂. In this study, the industrial effluent pH value (2.5 to 10), catalyst concentration (50 to 150 mg) were varied, and effluent concentration (0.5 Abs) and light exposure time (2 h) were maintained constant. The best degradation is about 80% of industrial effluent was achieved at pH 5 with a concentration of 150 mg - TiO₂. The FT-IR results and CHNS analyzer confirmed that the sulfur and organic compounds were degraded.

Keywords: wastewater treatment, industrial mineralogical product TiO₂, photocatalysis, organo-sulfur industrial effluent

Procedia PDF Downloads 87
3256 Dairy Wastewater Treatment by Electrochemical and Catalytic Method

Authors: Basanti Ekka, Talis Juhna

Abstract:

Dairy industrial effluents originated by the typical processing activities are composed of various organic and inorganic constituents, and these include proteins, fats, inorganic salts, antibiotics, detergents, sanitizers, pathogenic viruses, bacteria, etc. These contaminants are harmful to not only human beings but also aquatic flora and fauna. Because consisting of large classes of contaminants, the specific targeted removal methods available in the literature are not viable solutions on the industrial scale. Therefore, in this on-going research, a series of coagulation, electrochemical, and catalytic methods will be employed. The bulk coagulation and electrochemical methods can wash off most of the contaminants, but some of the harmful chemicals may slip in; therefore, specific catalysts designed and synthesized will be employed for the removal of targeted chemicals. In the context of Latvian dairy industries, presently, work is under progress on the characterization of dairy effluents by total organic carbon (TOC), Inductively Coupled Plasma Mass Spectrometry (ICP-MS)/ Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), High-Performance Liquid Chromatography (HPLC), Gas Chromatography-Mass Spectrometry (GC-MS), and Mass Spectrometry. After careful evaluation of the dairy effluents, a cost-effective natural coagulant will be employed prior to advanced electrochemical technology such as electrocoagulation and electro-oxidation as a secondary treatment process. Finally, graphene oxide (GO) based hybrid materials will be used for post-treatment of dairy wastewater as graphene oxide has been widely applied in various fields such as environmental remediation and energy production due to the presence of various oxygen-containing groups. Modified GO will be used as a catalyst for the removal of remaining contaminants after the electrochemical process.

Keywords: catalysis, dairy wastewater, electrochemical method, graphene oxide

Procedia PDF Downloads 110
3255 Assessment of the Physicochemical Qualities and Prevalence of Vibrio Pathogens in the Final Effluents of Two Wastewater Treatment Plants in Eastern Cape Province, South Africa

Authors: C. A Osunla, A. I. Okoh

Abstract:

Treated wastewater effluent has been found to encompass high levels of pollutants, including disease-causing bacteria such as Vibrio pathogens. The current study was designed to evaluate the physicochemical qualities and prevalence of Vibrio pathogens in treated effluents of two wastewater treatment plants (WWTP) in Eastern Cape Province, South Africa over the period of six months. Parameters measured include pH, temperature, electrical conductivity, salinity, turbidity, total dissolved solid (TDS), dissolved oxygen (DO), and free chlorine; and these parameters were simultaneously monitored in the treated final effluents of the two wastewater treatment plants using standard methods. The ranges of values for the physicochemical are: pH (7.0–8.6), total dissolved solids (286.3–916.5 mg/L), electrical conductivity (572.57–1704.5 mS/m), temperature (10.3–28.6 °C), turbidity (4.02–43.20 NTU), free chlorine (0.00–0.19 mg/L), dissolve oxygen (2.06–6.32 mg/L) and biochemical oxygen demand (0.1–9.0 mg/L). The microbiological assessment for both WWTPs revealed the presence of Vibrio counts ranging between 0 and 8.76×104 CFU/100 mL. The obtained values of the measured parameters and Vibrio loads of the treated wastewater effluents were found outside the compliance levels of the South African guidelines and World Health Organization tolerance limits for effluents intended to be discharged into receiving waterbodies. Hence, we conclude that these WWTPs are important point sources of pollution in surface water with potential public health and ecological risks.

Keywords: effluents, public health, South Africa, Vibrio, wastewater

Procedia PDF Downloads 328
3254 Characterization of Brewery Wastewater Composition

Authors: Abimbola M. Enitan, Josiah Adeyemo, Sheena Kumari, Feroz M. Swalaha, Faizal Bux

Abstract:

With the competing demand on water resources and water reuse, discharge of industrial effluents into the aquatic environment has become an important issue. Much attention has been placed on the impact of industrial wastewater on water bodies worldwide due to the accumulation of organic and inorganic matter in the receiving water bodies. The scope of the present work is to assess the physic-chemical composition of the wastewater produced from one of the brewery industry in South Africa. This is to estimate the environmental impact of its discharge into the receiving water bodies or the municipal treatment plant. The parameters monitored for the quantitative analysis of brewery wastewater include biological oxygen demand (BOD5), chemical oxygen demand (COD), total suspended solids, volatile suspended solids, ammonia, total oxidized nitrogen, nitrate, nitrite, phosphorus, and alkalinity content. In average, the COD concentration of the brewery effluent was 5340.97 mg/l with average pH values of 4.0 to 6.7. The BOD and the solids content of the wastewater from the brewery industry were high. This means that the effluent is very rich in organic content and its discharge into the water bodies or the municipal treatment plant could cause environmental pollution or damage the treatment plant. In addition, there were variations in the wastewater composition throughout the monitoring period. This might be as a result of different activities that take place during the production process, as well as the effects of the peak period of beer production on the water usage.

Keywords: Brewery wastewater, environmental pollution, industrial effluents, physic-chemical composition

Procedia PDF Downloads 412
3253 Industrial Wastewater Treatment Improvements Using Limestone

Authors: Mamdouh Y. Saleh, Gaber El Enany, Medhat H. Elzahar, Moustafa H. Omran

Abstract:

The discharge limits of industrial wastewater effluents are subjected to regulations which are getting more restricted with time. A former research occurred in Port Said city studied the efficiency of treating industrial wastewater using the first stage (A-stage) of the multiple-stage plant (AB-system).From the results of this former research, the effluent treated wastewater has high rates of total dissolved solids (TDS) and chemical oxygen demand (COD). The purpose of this paper is to improve the treatment process in removing TDS and COD. So a pilot plant was constructed at wastewater pump station in the industrial area in the south of Port Said. Experimental work was divided into several groups adding powdered limestone with different dosages to wastewater, and for each group wastewater was filtered after being mixed with activated carbon. pH and TSS as variables were also studied. Significant removals of TDS and COD were observed in these experiments showing that using effective adsorbents can aid such removals to a large extent.

Keywords: adsorption, filtration, synthetic wastewater, TDS removal, COD removal

Procedia PDF Downloads 421
3252 Seasonal Effect of Antibiotic Resistant Bacteria into the Environment from Treated Sewage Effluents

Authors: S. N. Al-Bahry, S. K. Al-Musharafi, I. Y. Mahmoud

Abstract:

Recycled treated sewage effluents (TSE) is used for agriculture, Public park irrigation and industrial purposes. TSE was found to play a major role in the distribution of antibiotic resistant bacteria into the environment. Fecal coliform and enterococci counts were significantly higher during summer compared to winter seasons. Oman has low annual rainfall with annual average temperature varied between 15-45oC. The main source of potable water is from seawater desalination. Resistance of the isolates to 10 antibiotics (Amikacin, Ampicillin, chloramphenicol, gentamycine, minocylin, nalidixicacid, neomycin, streptomycin, Tetracycline, Tobramycin, and Trimethoprim) was tested. Both fecal coliforms and enterococci were multiple resistant to 2-10 antibiotics. However, temperature variation during summer and winter did not affect resistance of the isolates to antibiotics. The significance of this investigation may be indicator to the environmental TSE pollution.

Keywords: antibiotic resistance, bacteria, environment, sewage treated effluent

Procedia PDF Downloads 389
3251 Understanding the Common Antibiotic and Heavy Metal Resistant-Bacterial Load in the Textile Industrial Effluents

Authors: Afroza Parvin, Md. Mahmudul Hasan, Md. Rokunozzaman, Papon Debnath

Abstract:

The effluents of textile industries have considerable amounts of heavy metals, causing potential microbial metal loads if discharged into the environment without treatment. Aim: In this present study, both lactose and non-lactose fermenting bacterial isolates were isolated from textile industrial effluents of a specific region of Bangladesh, named Savar, to compare and understand the load of heavy metals in these microorganisms determining the effects of heavy metal resistance properties on antibiotic resistance. Methods: Five different textile industrial canals of Savar were selected, and effluent samples were collected in 2016 between June to August. Total bacterial colony (TBC) was counted for day 1 to day 5 for 10-6 dilution of samples to 10-10 dilution. All the isolates were isolated and selected using 4 differential media, and tested for the determination of minimum inhibitory concentration (MIC) of heavy metals and antibiotic susceptibility test with plate assay method and modified Kirby-Bauer disc diffusion method, respectively. To detect the combined effect of heavy metals and antibiotics, a binary exposure experiment was performed, and to understand the plasmid profiling plasmid DNA was extracted by alkaline lysis method of some selective isolates. Results: Most of the cases, the colony forming units (CFU) per plate for 50 ul diluted sample were uncountable at 10-6 dilution, however, countable for 10-10 dilution and it didn’t vary much from canal to canal. A total of 50 Shigella, 50 Salmonella, and 100 E.coli (Escherichia coli) like bacterial isolates were selected for this study where the MIC was less than or equal to 0.6 mM for 100% Shigella and Salmonella like isolates, however, only 3% E. coli like isolates had the same MIC for nickel (Ni). The MIC for chromium (Cr) was less than or equal to 2.0 mM for 16% Shigella, 20% Salmonella, and 17% E. coli like isolates. Around 60% of both Shigella and Salmonella, but only 20% of E.coli like isolates had a MIC of less than or equal to 1.2 mM for lead (Pb). The most prevalent resistant pattern for azithromycin (AZM) for Shigella and Salmonella like isolates was found 38% and 48%, respectively; however, for E.coli like isolates, the highest pattern (36%) was found for sulfamethoxazole-trimethoprim (SXT). In the binary exposure experiment, antibiotic zone of inhibition was mostly increased in the presence of heavy metals for all types of isolates. The highest sized plasmid was found 21 Kb and 14 Kb for lactose and non-lactose fermenting isolates, respectively. Conclusion: Microbial resistance to antibiotics and metal ions, has potential health hazards because these traits are generally associated with transmissible plasmids. Microorganisms resistant to antibiotics and tolerant to metals appear as a result of exposure to metal-contaminated environments.

Keywords: antibiotics, effluents, heavy metals, minimum inhibitory concentration, resistance

Procedia PDF Downloads 282
3250 Development of Cobalt Doped Alumina Hybrids for Adsorption of Textile Effluents

Authors: Uzaira Rafique, Kousar Parveen

Abstract:

The discharge volume and composition of Textile effluents gains scientific concern due to its hazards and biotoxcity of azo dyes. Azo dyes are non-biodegradable due to its complex molecular structure and recalcitrant nature. Serious attempts have been made to synthesize and develop new materials to combat the environmental problems. The present study is designed for removal of a range of azo dyes (Methyl orange, Congo red and Basic fuchsine) from synthetic aqueous solutions and real textile effluents. For this purpose, Metal (cobalt) doped alumina hybrids are synthesized and applied as adsorbents in the batch experiment. Two different aluminium precursor (aluminium nitrate and spent aluminium foil) and glucose are mixed following sol gel method to get hybrids. The synthesized materials are characterized for surface and bulk properties using FTIR, SEM-EDX and XRD techniques. The characterization of materials under FTIR revealed that –OH (3487-3504 cm-1), C-H (2935-2985 cm-1), Al-O (~ 800 cm-1), Al-O-C (~1380 cm-1), Al-O-Al (659-669 cm-1) groups participates in the binding of dyes onto the surface of hybrids. Amorphous shaped particles and elemental composition of carbon (23%-44%), aluminium (29%-395%), and oxygen (11%-20%) is demonstrated in SEM-EDX micrograph. Time-dependent batch-experiments under identical experimental parameters showed 74% congo red, 68% methyl orange and 85% maximum removal of basic fuchsine onto the surface of cobalt doped alumina hybrids probably through the ion-exchange mechanism. The experimental data when treated with adsorption models is found to have good agreement with pseudo second order kinetic and freundlich isotherm for adsorption process. The present study concludes the successful synthesis of novel and efficient cobalt doped alumina hybrids providing environmental friendly and economical alternative to the commercial adsorbents for the treatment of industrial effluents.

Keywords: alumina hybrid, adsorption, dopant, isotherm, kinetic

Procedia PDF Downloads 168
3249 Ground Water Contamination by Tannery Effluents and Its Impact on Human Health in Peshawar, Pakistan

Authors: Fawad Ali, Muhammad Ateeq, Ikhtiar Khan

Abstract:

Ground water, a major source of drinking water supply in Peshawar has been severely contaminated by leather tanning industry. Effluents from the tanneries contain high concentration of chromium besides several other chemical species. Release of untreated effluents from the tanning industry has severely damaged surface and ground water, agriculture soil as well as vegetables and crops. Chromium is a well-known carcinogenic and mutagenic agent. Once in the human food chain, it causes multiple problems to the exposed population including various types of cancer, skin dermatitis, and DNA damage. In order to assess the extent of chromium and other heavy metals contamination, water samples were analyzed for heavy metals using Graphite Furnace Atomic Absorption Spectrometer (GFAAS, Analyst 700, Perkin Elmer). Total concentration of chromium was above the permissible limit (0.048 mg/l) in 85% of the groundwater (drinking water) samples. The concentration of cobalt, manganese, cadmium, nickel, lead, zinc and iron was also determined in the ground water, surface water, agriculture soil, and vegetables samples from the affected area.

Keywords: heavy metals, soil, groundwater, tannery effluents, food chain

Procedia PDF Downloads 315
3248 Industrial Wastewater Treatment Improvements Using Activated Carbon

Authors: Mamdouh Y. Saleh, Gaber El Enany, Medhat H. Elzahar, Moustafa H. Omran

Abstract:

The discharge limits of industrial waste water effluents are subjected to regulations which are getting more restricted with time. A former research occurred in Port Said city studied the efficiency of treating industrial wastewater using the first stage (A-stage) of the multiple-stage plant (AB-system).From the results of this former research, the effluent treated wastewater has high rates of total dissolved solids (TDS) and chemical oxygen demand (COD). The purpose of this paper is to improve the treatment process in removing TDS and COD. Thus, a pilot plant was constructed at wastewater pump station in the industrial area in the south of Port Said. Experimental work was divided into several groups adding activated carbon with different dosages to waste water, and for each group waste water was filtered after being mixed with activated carbon. pH and TSS as variables were also studied. At the end of this paper, a comparison was made between the efficiency of using activated carbon and the efficiency of using limestone in the same circumstances.

Keywords: adsorption, COD removal, filtration, TDS removal

Procedia PDF Downloads 467
3247 Intensification of Wet Air Oxidation of Landfill Leachate Reverse Osmosis Concentrates

Authors: Emilie Gout, Mathias Monnot, Olivier Boutin, Pierre Vanloot, Philippe Moulin

Abstract:

Water is a precious resource. Treating industrial wastewater remains a considerable technical challenge of our century. The effluent considered for this study is landfill leachate treated by reverse osmosis (RO). Nowadays, in most developed countries, sanitary landfilling is the main method to deal with municipal solid waste. Rainwater percolates through solid waste, generating leachates mostly comprised of organic and inorganic matter. Whilst leachate ages, its composition varies, becoming more and more bio-refractory. RO is already used for landfill leachates as it generates good quality permeate. However, its mains drawback is the production of highly polluted concentrates that cannot be discharged in the environment or reused, which is an important industrial issue. It is against this background that the study of coupling RO with wet air oxidation (WAO) was set to intensify and optimize processes to meet current regulations for water discharge in the environment. WAO is widely studied for effluents containing bio-refractory compounds. Oxidation consists of a destruction reaction capable of mineralizing the recalcitrant organic fraction of pollution into carbon dioxide and water when complete. WAO process in subcritical conditions requires a high-energy consumption, but it can be autothermic in a certain range of chemical oxygen demand (COD) concentrations (10-100 g.L⁻¹). Appropriate COD concentrations are reached in landfill leachate RO concentrates. Therefore, the purpose of this work is to report the performances of mineralization during WAO on RO concentrates. The coupling of RO/WAO has shown promising results in previous works on both synthetic and real effluents in terms of organic carbon (TOC) reduction by WAO and retention by RO. Non-catalytic WAO with air as oxidizer was performed in a lab-scale stirred autoclave (1 L) on landfill leachates RO concentrates collected in different seasons in a sanitary landfill in southern France. The yield of WAO depends on operating parameters such as total pressure, temperature, and time. Compositions of the effluent are also important aspects for process intensification. An experimental design methodology was used to minimize the number of experiments whilst finding the operating conditions achieving the best pollution reduction. The simulation led to a set of 18 experiments, and the responses to highlight process efficiency are pH, conductivity, turbidity, COD, TOC, and inorganic carbon. A 70% oxygen excess was chosen for all the experiments. First experiments showed that COD and TOC abatements of at least 70% were obtained after 90 min at 300°C and 20 MPa, which attested the possibility to treat RO leachate concentrates with WAO. In order to meet French regulations and validate process intensification with industrial effluents, some continuous experiments in a bubble column are foreseen, and some further analyses will be performed, such as biological oxygen demand and study of gas composition. Meanwhile, other industrial effluents are treated to compare RO-WAO performances. These effluents, coming from pharmaceutical, petrochemical, and tertiary wastewater industries, present different specific pollutants that will provide a better comprehension of the hybrid process and prove the intensification and feasibility of the process at an industrial scale. Acknowledgments: This work has been supported by the French National Research Agency (ANR) for the Project TEMPO under the reference number ANR-19-CE04-0002-01.

Keywords: hybrid process, landfill leachates, process intensification, reverse osmosis, wet air oxidation

Procedia PDF Downloads 113
3246 Chromium Reduction Using Bacteria: Bioremediation Technologies

Authors: Baljeet Singh Saharan

Abstract:

Bioremediation is the demand of the day. Tannery and textile effluents/waste waters have lots of pollution due to presence of hexavalent Chromium. Methodologies used in the present investigations include isolation, cultivation and purification of bacterial strain. Further characterization techniques and 16S rRNA sequencing were performed. Efficient bacterial strain capable of reducing hexavalent chromium was obtained. The strain can be used for bioremediation of industrial effluents containing hexavalent Cr. A gram negative, rod shaped and yellowish pigment producing bacterial strain from tannery effluent was isolated using nutrient agar. The 16S rRNA gene sequence similarity indicated that isolate SA13A is associated with genus Luteimonas (99%). This isolate has been found to reduce 100% of hexavalent chromium Cr (VI) (100 mg L-1) 100% in 16 h. Growth conditions were optimized for Cr (VI) reduction. Maximum reduction was observed at a temperature of 37 °C and pH 8.0. Additionally, Luteimonas aestuarii SA13A showed resistance against various heavy metals like Cr+6, Cr+3, Cu+2, Zn+2, Co+2, Ni+2 and Cd+2 . Hence, Luteimonas aestuarii SA13A could be used as potent Cr (VI) reducing strain as well as significant bioremediator in heavy metal contaminated sites.

Keywords: bioremediation, chromium, eco-friendly, heavy metals

Procedia PDF Downloads 439
3245 A Study of Basic and Reactive Dyes Removal from Synthetic and Industrial Wastewater by Electrocoagulation Process

Authors: Almaz Negash, Dessie Tibebe, Marye Mulugeta, Yezbie Kassa

Abstract:

Large-scale textile industries use large amounts of toxic chemicals, which are very hazardous to human health and environmental sustainability. In this study, the removal of various dyes from effluents of textile industries using the electrocoagulation process was investigated. The studied dyes were Reactive Red 120 (RR-120), Basic Blue 3 (BB-3), and Basic Red 46 (BR-46), which were found in samples collected from effluents of three major textile factories in the Amhara region, Ethiopia. For maximum removal, the dye BB-3 required an acidic pH 3, RR120 basic pH 11, while BR-46 neutral pH 7 conditions. BB-3 required a longer treatment time of 80 min than BR46 and RR-120, which required 30 and 40 min, respectively. The best removal efficiency of 99.5%, 93.5%, and 96.3% was achieved for BR-46, BB-3, and RR-120, respectively, from synthetic wastewater containing 10 mg L1of each dye at an applied potential of 10 V. The method was applied to real textile wastewaters and 73.0 to 99.5% removal of the dyes was achieved, Indicating Electrocoagulation can be used as a simple, and reliable method for the treatment of real wastewater from textile industries. It is used as a potentially viable and inexpensive tool for the treatment of textile dyes. Analysis of the electrochemically generated sludge by X-ray Diffraction, Scanning Electron Microscope, and Fourier Transform Infrared Spectroscopy revealed the expected crystalline aluminum oxides (bayerite (Al(OH)3 diaspore (AlO(OH)) found in the sludge. The amorphous phase was also found in the floc. Textile industry owners should be aware of the impact of the discharge of effluents on the Ecosystem and should use the investigated electrocoagulation method for effluent treatment before discharging into the environment.

Keywords: electrocoagulation, aluminum electrodes, Basic Blue 3, Basic Red 46, Reactive Red 120, textile industry, wastewater

Procedia PDF Downloads 14
3244 Determination of Polycyclic Aromatic Hydrocarbons in Rivers, Sediments and Wastewater Effluents in Vhembe District of South Africa Using GC-TOF-MS

Authors: Joshua N. Edokpayi, John O. Odiyo, Titus A. M. Msagati, Elizabeth O. Popoola

Abstract:

Polycyclic aromatic hydrocarbons (PAHs) are very toxic and persistent environmental contaminants. This study was undertaken to assess the concentrations and possible sources of 16 PAHs classified by the United State Environmental Protection Agency as priority pollutants in Mvudi and Nzhelele Rivers and sediments. Effluents from Thohoyandou wastewater treatment plant and Siloam waste stabilization ponds were also investigated. Diagnostic ratios were used to evaluate the possible sources of PAHs. PAHs in the water samples were extracted using 1:1 dichloromethane and n-hexane mixtures, while those in the sediment samples were extracted with 1:1 acetone and dichloromethane using ultrasonication method. The extracts were purified using SPE technique and reconstituted in n-hexane before analyses with GC-TOF-MS. The results obtained indicate the prevalence of high molecular weight PAHs in all the samples. PAHs concentrations in water and sediment samples from all the sampling sites were in the range of 13.174-26.382 mg/L and 27.10-55.93 mg/kg, respectively. Combustion of biomass was identified as the major possible source of PAHs. Effluents from wastewater treatment facilities were also considered as major anthropogenic contributions to the levels of PAHs determined in both river waters and sediments. Mvudi and Nzhelele Rivers show moderate to high contamination level of PAHs.

Keywords: polycyclic aromatic hydrocarbon, rivers, sediments, wastewater effluents

Procedia PDF Downloads 307
3243 The Use of Microalgae Cultivation for Improving the Effluent Behavior of Anaerobic Digestion of Food Wastes at Psychrophilic Range

Authors: Pedro M. Velasco, Cecilia C. Alday, Oscar C. Avello, Ximena T. Faundez, Luis M. Velasco

Abstract:

Anaerobic digestion (AD) plants of food waste (FW) produced by agro-industry, have been widely developed from last decade to nowadays, because of the advantages over aerobic active sludge systems. Despite several bioreactor configurations and operation modes have been successfully improved and implemented at industrial scale in a wide range of applications, effluent behavior, after AD, does not commonly meet requirements for direct disposal into the environment without further treatments. In addition, literature has rarely shown AD of food waste at psychrophilic range. This temperature range may be of interest for making AD plant operation easier and increasing the stability of digestion. In spite of literature shows several methods for post-treatment, such as the use of microalgae, these have not been cultivated on effluents from AD at psychrophilic range. Hence, with the aim of showing the potential use of AD of FW at the psychrophilic range (25ºC) and the viability of microalgae post-treatment, single batch reactors have been used for methane potential tests at laboratory scale. Afterwards, digestates, derived from this AD of FW sludge, were diluted with fresh water at different ratios (1:0, 1:1; 1:4) and used as culture media for photoautotrophic microalgae. Several parameters, such as pH, biogas production, and chemical oxygen demand, were measured periodically over several months. Results show that methane potential is 150 ml g-1 per volatile solid with up to 57.7 % of methane content. Moreover, microalgae has been successfully cultivated on all tested effluents and in case of 1:1 and 1:4 rates, the resulting effluents meet the quality levels required for irrigation water.

Keywords: anaerobic digestion, biogas, food waste, microalgae, psychrophilic range

Procedia PDF Downloads 248
3242 Occurrence and Fate of EDCs in Wastewater and Aquatic Environments in the West Bank of Palestine

Authors: Wa`d Odeh, Alon Tal, Alfred Abed Rabbo, Nader Al Khatib, Shai Arnon

Abstract:

The presence of endocrine disrupting compounds (EDCs) in raw sewage and effluents from wastewater treatment plants (WWTPs) has been increasingly studied in the last few decades. Higher risks are said to characterize situations where raw sewage streams are found to be flowing, or where partial and inadequate wastewater treatment exists. Such conditions are prevalent in the West Bank area of Palestine. To our knowledge, no previous data concerning the occurrence and fate of EDCs in the aquatic environment has ever been systematically evaluated in the region. Hence, the main objective of this study was to identify the occurrence and concentrations of major EDCs in raw sewage, wastewater effluents produced by treatment plants and in the receiving environments, including streams and groundwater in the West Bank, Palestine. Water samples were collected and analyzed for four times during the years of 2013 and 2014. Two large-scale conventional activated sludge WWTPs, two wastewater watercourses, one naturally perennial stream, and five groundwater locations close to wastewater sources were sampled and analyzed by GC/MS following EPA methods (525.2). Five EDCs (estriol, estrone, testosterone, bisphenol A, and octylphenol) were detected in trace concentrations (ng/l) in wastewater streams and at inputs to WWTPs. WWTPs were not able to achieve complete removal of all EDCs, and EDCs were still found in the effluents. In this regard, the most significant environmental estrogenic impact was due to estrone concentrations. Nevertheless, no EDCs were detected in groundwater. Yet, in order for effluents to be reused, significant improvement in treatment infrastructure should be a top priority for environmental managers in the region.

Keywords: endocrine disrupting compounds, raw sewage streams, conventional activated sludge WWTPs, WWTPs effluents

Procedia PDF Downloads 374