Search results for: heavy vehicle
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2858

Search results for: heavy vehicle

2738 Design and Development of a Prototype Vehicle for Shell Eco-Marathon

Authors: S. S. Dol

Abstract:

Improvement in vehicle efficiency can reduce global fossil fuels consumptions. For that sole reason, Shell Global Corporation introduces Shell Eco-marathon where student teams require to design, build and test energy-efficient vehicles. Hence, this paper will focus on design processes and the development of a fuel economic vehicle which satisfying the requirements of the competition. In this project, three components are designed and analyzed, which are the body, chassis and powertrain of the vehicle. Optimum design for each component is produced through simulation analysis and theoretical calculation in which improvement is made as the project progresses.

Keywords: energy efficient, drag force, chassis, powertrain

Procedia PDF Downloads 297
2737 Assessment of Spatial and Vertical Distribution of Heavy Metals in the Mid Sand Bars of Brahmaputra River in Assam, India

Authors: Vijay Meena, Arup Kumar Sarma, Chandan Mahanta

Abstract:

The environment has been getting contaminated by anthropogenic processes including those that discharge heavy metals to air, soil and water. The present work emphasizes the spatial distribution and vertical profile of six heavy metals (Cu, Zn, Mn, Ni, Fe, Cr) in three layers of mid sand bars (bed surface layer, 50 cm and 100 cm depth) at 42 sampling stations covering around 600 km stretch of the Brahmaputra River, India. Heavy metal analysis was conducted on the sample collected from mid-sand bars in the river stretch to examine the impact of dredging for various hydrological operations in the future. Sediment quality was assessed by calculating six different indices viz., EF, CF, CD, PLI, Igeo, and PERI. In all sediment layers, heavy metal concentrations have been observed to be the same as listed, Fe > Mn > Zn > Ni > Cr > Cu in μg/g. The average concentration of Cu, Mn, and Fe was found in the middle layer while Zn, Ni, and Cr were in the Surface layer. EF indicates higher enrichment in reach 2 which is likely to be due to anthropogenic sources of industrial and urbanized effluents. The sediment of the mid-sand bar was generally found moderately polluted possessing low risk to aquatic lives and the environment. Suggesting, Dredging can be possible in the future. An examination of correlation matrices, principal components analysis, and cluster analyses indicated that these heavy metals possess similar anthropogenic origins for their enrichment.

Keywords: heavy metal contamination, risk assessment, anthropogenic impacts, sediment

Procedia PDF Downloads 71
2736 Numerical Study of Effects of Air Dam on the Flow Field and Pressure Distribution of a Passenger Car

Authors: Min Ye Koo, Ji Ho Ahn, Byung Il You, Gyo Woo Lee

Abstract:

Everything that is attached to the outside of the vehicle to improve the driving performance of the vehicle by changing the flow characteristics of the surrounding air or to pursue the external personality is called a tuning part. Typical tuning components include front or rear air dam, also known as spoilers, splitter, and side air dam. Particularly, the front air dam prevents the airflow flowing into the lower portion of the vehicle and increases the amount of air flow to the side and front of the vehicle body, thereby reducing lift force generation that lifts the vehicle body, and thus, improving the steering and driving performance of the vehicle. The purpose of this study was to investigate the role of anterior air dam in the flow around a sedan passenger car using computational fluid dynamics. The effects of flow velocity, trajectory of fluid particles on static pressure distribution and pressure distribution on body surface were investigated by varying flow velocity and size of air dam. As a result, it has been confirmed that the front air dam improves the flow characteristics, thereby reducing the generation of lift force of the vehicle, so it helps in steering and driving characteristics.

Keywords: numerical study, air dam, flow field, pressure distribution

Procedia PDF Downloads 183
2735 Assessment of the Physico-Chemical Parameters and Heavy Metal Concentration in Water and Callinectes amnicola (Swimming Crab) in a Crude Oil Exposed Community (Bodo Creek), Rivers State, Nigeria

Authors: Ehiedu Philomina Kika, Jessica Chinonso Ehilegbu

Abstract:

The exploration and production of fossil fuel particularly crude oil has led to some serious environmental damage in some oil producing communities like the Bodo Community who rely heavily on their aquatic environment for food and water. This study was therefore carried out to investigate the level of some heavy metals in water and Callinectes amnicola (Swimming Crab) in the month of August, September and October from Bodo creek, Rivers State, Nigeria. The physico-chemical parameters of the water were also analyzed in-situ. The levels of heavy metals, Lead (Pb), Cadmium (Cd), Chromium (Cr), Zinc (Zn), Copper (Cu) were analyzed in water and in Callinectes amnicola (Swimming Crab), using Atomic Absorption Spectrophotometer (AAS) after acid digestion. For the concentration of heavy metals in water, Pb ranged from 0.103 - 0.791 mg/l, Zn 0.0025 - 0.342 mg/l, Cr < 0.001 - 0.304 mg/l, Cd 0.011 - 0.116 mg/l and Cu <0.001 - 0.079 mg/l. For the concentration of heavy metals in Callinectes amnicola (Swimming Crab), the level of Pb ranged from 0.359 - 0.849 mg/l, Zn 0.134 - 0.342 mg/l, Cd 0.053 - 0.103 mg/l, Cr < 0.001 - <0.001 mg/l, Cu < 0.001 - 0.131 mg/l. The concentrations of Pb, Cd and Cr for all water and crab samples collected from the various stations were higher than permissible level suggesting serious anthropogenic influence. Thus, precaution needs to be taken to prevent further contamination and adequate purification measures need to be put in place. Therefore, there should be periodic environmental pollution monitoring, for assessment and awareness especially with regards heavy metal.

Keywords: Bodo creek, crude oil, heavy metal, swimming crab

Procedia PDF Downloads 135
2734 Dynamic Modeling of an Unmanned Aerial Vehicle with Petro-Engine

Authors: Khaled A. Alsaif, Mosaad A. Foda

Abstract:

In the following article, we present the dynamic simulation of an unmanned aerial vehicle with main fuel engine in the middle to carry most of the weight. This configuration will increase the flight time of the vehicle for a given payload size as opposed to the traditional quad rotor, where only DC motors are used. A parametric study to investigate the effect of the propellers ratio (main rotor propeller diameter to secondary rotor propeller diameter), the angle of incidence of the main rotor and the twist angle of the main rotor blades on selected performance criteria is presented.

Keywords: unmanned aerial vehicle (UAV), quadrotor, petrol quadcopter, flying robot

Procedia PDF Downloads 425
2733 Heavy Oil Recovery with Chemical Viscosity-Reduction: An Innovative Low-Carbon and Low-Cost Technology

Authors: Lin Meng, Xi Lu, Haibo Wang, Yong Song, Lili Cao, Wenfang Song, Yong Hu

Abstract:

China has abundant heavy oil resources, and thermal recovery is the main recovery method for heavy oil reservoirs. However, high energy consumption, high carbon emission and high production costs make heavy oil thermal recovery unsustainable. It is urgent to explore a replacement for developing technology. A low Carbon and cost technology of heavy oil recovery, chemical viscosity-reduction in layer (CVRL), is developed by the petroleum exploration and development research institute of Sinopec via investigated mechanisms, synthesized products, and improved oil production technologies, as follows: (1) Proposed a cascade viscous mechanism of heavy oil. Asphaltene and resin grow from free molecules to associative structures further to bulk aggregations by π - π stacking and hydrogen bonding, which causes the high viscosity of heavy oil. (2) Aimed at breaking the π - π stacking and hydrogen bond of heavy oil, the copolymer of N-(3,4-dihydroxyphenethyl) acryl amide and 2-Acrylamido-2-methylpropane sulfonic acid was synthesized as a viscosity reducer. It achieves a viscosity reduction rate of>80% without shearing for heavy oil (viscosity < 50000 mPa‧s), of which fluidity is evidently improved in the layer. (3) Synthesized hydroxymethyl acrylamide-maleic acid-decanol ternary copolymer self-assembly plugging agent. The particle size is 0.1 μm-2 mm adjustable, and the volume is 10-500 times controllable, which can achieve the efficient transportation of viscosity reducer to enriched oil areas. CVRL has applied 400 wells until now, increasing oil production by 470000 tons, saving 81000 tons of standard coal, reducing CO2 emissions by 174000 tons, and reducing production costs by 60%. It promotes the transformation of heavy oil towards low energy consumption, low carbon emissions, and low-cost development.

Keywords: heavy oil, chemical viscosity-reduction, low carbon, viscosity reducer, plugging agent

Procedia PDF Downloads 42
2732 Smart Trust Management for Vehicular Networks

Authors: Amel Ltifi, Ahmed Zouinkhi, Med Salim Bouhlel

Abstract:

Spontaneous networks such as VANET are in general deployed in an open and thus easily accessible environment. Therefore, they are vulnerable to attacks. Trust management is one of a set of security solutions dedicated to this type of networks. Moreover, the strong mobility of the nodes (in the case of VANET) makes the establishment of a trust management system complex. In this paper, we present a concept of ‘Active Vehicle’ which means an autonomous vehicle that is able to make decision about trustworthiness of alert messages transmitted about road accidents. The behavior of an “Active Vehicle” is modeled using Petri Nets.

Keywords: active vehicle, cooperation, petri nets, trust management, VANET

Procedia PDF Downloads 374
2731 Phytoremediation: An Ecological Solution to Heavy-Metal-Polluted Soil

Authors: Nasreen Jeelani, Huining Shi , Di An, Lu Xia, Shuqing An

Abstract:

Heavy metals contamination in aquatic ecosystem is a major environmental problem since its accumulation along the food chain pose public health risk. The concentration of heavy metals (Cd, Cr, Cu, Ni, Pb and Zn) in soil and plants species collected from different streams of Suoxu River, China was investigated. This aim was to define the level of pollutants in Suoxu River, find which plant species exhibits the greatest accumulation and to evaluate whether these species could be useful for phytoremediation. While total soil Cd, Cr, Cu, Ni, Pb, and Zn concentrations varied, respectively, from 0.09 to 0.23 , 58.6 to 98, 9.72 to 80.5, 15.3 to 41, 15.2 to 27.3 and 35 to 156 (mg-kg-1), those in plants ranged from 0.035 to 0.49, 2.91 to 75.6, 4.79 to 32.4, 1.27 to 16.1, 0.62 to10.2, 18.9 to 84.6 (mg-kg-1), respectively. Based on BCFs and TFs values, most of the studied species have potential for phytostabilization. The plants with most effective in the accumulation of metals in shoots are Phragmatis australis (TF=2.29) and Iris tectorum (TF =2.07) for Pb. While Chenopodium album, (BCF =3.55), Ranunculus sceleratus, (BCF= 3.0), Polygonum hydropiper (BCF =2.46) for Cd and Iris tectorum (BCF=2.0) for Cu was suitable for phytostabilization. Among the plant species screened for Cd, Cr, Cu, Ni, Pb and Zn, most of the species were efficient to take up more than one heavy metal in roots. Our study showed that the native plant species growing on contaminated sites may have the potential uses for phytoremediation.

Keywords: heavy metals, huaihe river catchments, sediment, plants

Procedia PDF Downloads 325
2730 Risk Assessment of Heavy Rainfall and Development of Damage Prediction Function for Gyeonggi-Do Province

Authors: Jongsung Kim, Daegun Han, Myungjin Lee, Soojun Kim, Hung Soo Kim

Abstract:

Recently, the frequency and magnitude of natural disasters are gradually increasing due to climate change. Especially in Korea, large-scale damage caused by heavy rainfall frequently occurs due to rapid urbanization. Therefore, this study proposed a Heavy rain Damage Risk Index (HDRI) using PSR (Pressure – State - Response) structure for heavy rain risk assessment. We constructed pressure index, state index, and response index for the risk assessment of each local government in Gyeonggi-do province, and the evaluation indices were determined by principal component analysis. The indices were standardized using the Z-score method then HDRIs were obtained for 31 local governments in the province. The HDRI is categorized into three classes, say, the safest class is 1st class. As the results, the local governments of the 1st class were 15, 2nd class 7, and 3rd class 9. From the study, we were able to identify the risk class due to the heavy rainfall for each local government. It will be useful to develop the heavy rainfall prediction function by risk class, and this was performed in this issue. Also, this risk class could be used for the decision making for efficient disaster management. Acknowledgements: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2017R1A2B3005695).

Keywords: natural disaster, heavy rain risk assessment, HDRI, PSR

Procedia PDF Downloads 161
2729 State Estimation Method Based on Unscented Kalman Filter for Vehicle Nonlinear Dynamics

Authors: Wataru Nakamura, Tomoaki Hashimoto, Liang-Kuang Chen

Abstract:

This paper provides a state estimation method for automatic control systems of nonlinear vehicle dynamics. A nonlinear tire model is employed to represent the realistic behavior of a vehicle. In general, all the state variables of control systems are not precisedly known, because those variables are observed through output sensors and limited parts of them might be only measurable. Hence, automatic control systems must incorporate some type of state estimation. It is needed to establish a state estimation method for nonlinear vehicle dynamics with restricted measurable state variables. For this purpose, unscented Kalman filter method is applied in this study for estimating the state variables of nonlinear vehicle dynamics. The objective of this paper is to propose a state estimation method using unscented Kalman filter for nonlinear vehicle dynamics. The effectiveness of the proposed method is verified by numerical simulations.

Keywords: state estimation, control systems, observer systems, nonlinear systems

Procedia PDF Downloads 108
2728 The Modeling of City Bus Fuel Economy during the JE05 Emission Test Cycle

Authors: Miroslaw Wendeker, Piotr Kacejko, Marcin Szlachetka, Mariusz Duk

Abstract:

This paper discusses a model of fuel economy in a city bus driving in a dynamic urban environment. Rapid changes in speed result in a constantly changing kinetic energy accumulated in a bus mass and an increased fuel consumption due to hardly recuperated kinetic energy. The model is based on the bench test results achieved from chassis dynamometer, airport and city street researches. The verified model was applied to simulate the behavior of a bus during the Japanese JE05 Emission Test Cycle. The fuel consumption was calculated for three separate research stages, i.e. urban, downtown and motorway. The simulations were performed for several values of vehicle mass and electrical load applied to on-board devices. The research results show fuel consumption is impacted by driving dynamics.

Keywords: city bus, heavy duty vehicle, Japanese JE05 test cycle, kinetic energy

Procedia PDF Downloads 275
2727 Co-pyrolysis of Sludge and Kaolin/Zeolite to Stabilize Heavy Metals

Authors: Qian Li, Zhaoping Zhong

Abstract:

Sewage sludge, a typical solid waste, has inevitably been produced in enormous quantities in China. Still worse, the amount of sewage sludge produced has been increasing due to rapid economic development and urbanization. Compared to the conventional method to treat sewage sludge, pyrolysis has been considered an economic and ecological technology because it can significantly reduce the sludge volume, completely kill pathogens, and produce valuable solid, gas, and liquid products. However, the large-scale utilization of sludge biochar has been limited due to the considerable risk posed by heavy metals in the sludge. Heavy metals enriched in pyrolytic biochar could be divided into exchangeable, reducible, oxidizable, and residual forms. The residual form of heavy metals is the most stable and cannot be used by organisms. Kaolin and zeolite are environmentally friendly inorganic minerals with a high surface area and heat resistance characteristics. So, they exhibit the enormous potential to immobilize heavy metals. In order to reduce the risk of leaching heavy metals in the pyrolysis biochar, this study pyrolyzed sewage sludge mixed with kaolin/zeolite in a small rotary kiln. The influences of additives and pyrolysis temperature on the leaching concentration and morphological transformation of heavy metals in pyrolysis biochar were investigated. The potential mechanism of stabilizing heavy metals in the co-pyrolysis of sludge blended with kaolin/zeolite was explained by scanning electron microscopy, X-ray diffraction, and specific surface area and porosity analysis. The European Community Bureau of Reference sequential extraction procedure has been applied to analyze the forms of heavy metals in sludge and pyrolysis biochar. All the concentrations of heavy metals were examined by flame atomic absorption spectrophotometry. Compared with the proportions of heavy metals associated with the F4 fraction in pyrolytic carbon prepared without additional agents, those in carbon obtained by co-pyrolysis of sludge and kaolin/zeolite increased. Increasing the additive dosage could improve the proportions of the stable fraction of various heavy metals in biochar. Kaolin exhibited a better effect on stabilizing heavy metals than zeolite. Aluminosilicate additives with excellent adsorption performance could capture more released heavy metals during sludge pyrolysis. Then heavy metal ions would react with the oxygen ions of additives to form silicate and aluminate, causing the conversion of heavy metals from unstable fractions (sulfate, chloride, etc.) to stable fractions (silicate, aluminate, etc.). This study reveals that the efficiency of stabilizing heavy metals depends on the formation of stable mineral compounds containing heavy metals in pyrolysis biochar.

Keywords: co-pyrolysis, heavy metals, immobilization mechanism, sewage sludge

Procedia PDF Downloads 42
2726 Stabilization of Pb, Cr, Cd, Cu and Zn in Solid Waste and Sludge Pyrolysis by Modified Vermiculite

Authors: Yuxuan Yang, Zhaoping Zhong

Abstract:

Municipal solid waste and sludge are important sources of waste energy and their proper disposal is of great importance. Pyrolysis can fully decompose solid wastes and sludge, and the pyrolysis products (charcoal, oil and gas) have important recovery values. Due to the complex composition of solid wastes and sludge, the pyrolysis process at high temperatures is prone to heavy metal emissions, which are harmful to humans and the environment and reduce the safety of pyrolysis products. In this paper, heavy metal emissions during pyrolysis of municipal sewage sludge, paper mill sludge, municipal domestic waste, and aged refuse at 450-650°C were investigated and the emissions and hazards of heavy metals (Pb, Cr, Cd, Cu and Zn) were effectively reduced by adding modified vermiculite as an additive. The vermiculite was modified by intercalation with cetyltrimethylammonium bromide, which resulted in more than twice the original layer spacing of the vermiculite. Afterward, the interpolated vermiculite was made into vermiculite flakes by exfoliation modification. After that, the expansion rate of vermiculite flakes was increased by Mg2+ modification and thermal activation. The expanded vermiculite flakes were acidified to improve the textural characteristics of the vermiculite. The modified vermiculite was analysed by XRD, FT-IR, BET and SEM to clarify the modification effect. The incorporation of modified vermiculite resulted in more than 80% retention of all heavy metals at 450°C. Cr, Cu and Zn were better retained than Pb and Cd. The incorporation of modified vermiculite effectively reduced the risk of heavy metals, and all risks were low for Pb, Cr, Cu and Zn. The toxicity of all heavy metals was greatly reduced by the incorporation of modified vermiculite and the morphology of heavy metals was transformed from Exchangeable and acid-soluble (F1) and Reducible (F2) to Oxidizable (F3) and Residual (F4). In addition, the increase in temperature favored the stabilization of heavy metal forms. This study provides a new insight into the cleaner use of energy and the safe management of solid waste.

Keywords: heavy metal, pyrolysis, vermiculite, solid waste

Procedia PDF Downloads 37
2725 Modeling of a Vehicle Wheel System having a Built-in Suspension Structure Consisted of Radially Deployed Colloidal Spokes between Hub and Rim

Authors: Barenten Suciu

Abstract:

In this work, by replacing the traditional solid spokes with colloidal spokes, a vehicle wheel with a built-in suspension structure is proposed. Following the background and description of the wheel system, firstly, a vibration model of the wheel equipped with colloidal spokes is proposed, and based on such model the equivalent damping coefficients and spring constants are identified. Then, a modified model of a quarter-vehicle moving on a rough pavement is proposed in order to estimate the transmissibility of vibration from the road roughness to vehicle body. In the end, the optimal design of the colloidal spokes and the optimum number of colloidal spokes are decided in order to minimize the transmissibility of vibration, i.e., to maximize the ride comfort of the vehicle.

Keywords: built-in suspension, colloidal spoke, intrinsic spring, vibration analysis, wheel

Procedia PDF Downloads 485
2724 Remediation of Heavy Metal Contaminated Soil with Vivianite Nanoparticles

Authors: Shinen B., Bavor J., Dorjkhand B., Suvd B., Maitsetseg B.

Abstract:

A number of remediation techniques are available for the treatment of soils and sediments contaminated by heavy metals. However, some of these techniques are expensive and environmentally disruptive. Nanomaterials are used in the environment as environmental catalysts to convert toxic substances from water, soil, and sediment into environmentally benign compounds. This study was carried out to scrutinize the feasibility of vivianite nanoparticles for remediation of soils contaminated with heavy metals. Column experiments were performed in the laboratory to examine nanoparticle sequestration of metal in soil amended with vivianite nanoparticle suspension. The effect of environmental parameters such as temperature, pH and redox potential on metal leachability and bioavailability of soil amended with nanoparticle suspension was examined and compared with non-amended soils. The vivianite was effective in reducing the leachability of metals in soils. It is suggested that vivianite nanoparticles could be applied for the remediation of contaminated sites polluted by heavy metals due to mining activities, particularly in Mongolia, where mining industries have been developing rapidly in the last decade.

Keywords: bioavailability, heavy metals, nanoparticles, remediation

Procedia PDF Downloads 150
2723 Heavy Metal Contamination and Its Ecological Risks in the Beach Sediments along the Atlantic Ocean

Authors: Armel Zacharie Ekoa Bessa, Annick Kwewouo Janpou

Abstract:

Sediments collected along the beaches of the Atlantic Ocean in Africa were analyzed by geochemical proxies such as the ICP-MS technique to determine their heavy metal contamination and related ecological risks. Several metals were selected and show a decreasing trend: Fe > Mn > Ni > Cu > Co > Zn > Cr > Cd. Several pollution indices have been calculated, including the enrichment factor (EF), whose values are generally higher than 1. 5; the geo-accumulation index (I-geo), with values of some elements (Co, Ni and Cu) in the sediments of the study area being higher than 0, and other metals (Zn, Cr, Fe and Mn) being lower than 0; the contamination factor (CF), where the values of all the selected elements are between 1 and 3; and the pollution load index (PLI), where the values in almost all the study sites are higher than 1. These results show moderate contamination of the investigated sediments with heavy metals. The potential ecological risk assessment (Eri and RI) suggests that this part of the African coast is a low to a slight risk area. Statistical analyses indicate that heavy metals have shown fairly similar trends with anthropogenic and natural sources. This study shows that this coastal area is not highly concentrated in heavy metals and reveals that the Atlantic coast of Africa would be moderately polluted by the metals studied, with a low to moderate ecological risk.

Keywords: heavy metals, pollution, atlantic ocean, sediments

Procedia PDF Downloads 48
2722 Principles of Municipal Sewage Sludge Bioconversion into Biomineral Fertilizer

Authors: K. V. Kalinichenko, G. N. Nikovskaya

Abstract:

The efficiency of heavy metals removal from sewage sludge in bioleaching with heterotrophic, chemoautotrophic (sulphur-oxidizing) sludge cenoses and chemical leaching (in distilled water, weakly acidic or alkaline medium) was compared. The efficacy of heavy metals removal from sewage sludge varied from 83 % (Zn) up to 14 % (Cr) and followed the order: Zn > Mn > Cu > Ni > Co > Pb > Cr. The advantages of metals bioleaching process at heterotrophic metabolism was shown. A new process for bioconversation of sewage sludge into fertilizer at middle temperature after partial heavy metals removal was developed. This process is based on enhancing vital ability of heterotrophic microorganisms by adding easily metabolized nutrients and synthesis of metabolites by growing sludge cenoses. These metabolites possess the properties of heavy metals extractants and flocculants which provide sludge flocks sedimentation and concentration. The process results in biomineral fertilizer with immobilized sludge bioelements with prolonged action. The fertilizer obtained satisfied the EU limits for the sewage sludge of agricultural utilization. High efficiency of the biomineral fertilizers obtained has been demonstrated in vegetation experiments.

Keywords: fertilizer, heavy metals, leaching, sewage sludge

Procedia PDF Downloads 353
2721 A Review of Recent Studies on Advanced Technologies for Water Treatment

Authors: Deniz Sahin

Abstract:

Growing concern for the presence and contamination of heavy metals in our water supplies has steadily increased over the last few years. A number of specialized technologies including precipitation, coagulation/flocculation, ion exchange, cementation, electrochemical operations, have been developed for the removal of heavy metals from wastewater. However, these technologies have many limitations in the application, such as high cost, low separation efficiency, Recently, numerous approaches have been investigated to overcome these difficulties and membrane filtration, advanced oxidation technologies (AOPs), and UV irradiation etc. are sufficiently developed to be considered as alternative treatments. Many factors come into play when selecting wastewater treatment technology, such as type of wastewater, operating conditions, economics etc. This study describes these various treatment technologies employed for heavy metal removal. Advantages and disadvantages of these technologies are also compared to highlight their current limitations and future research needs. For example, we investigated the applicability of the ultrafiltration technology for treating of heavy metal ions (e.g., Cu(II), Pb(II), Cd(II), Zn(II)) from synthetic wastewater solutions. Results shown that complete removal of metal ions, could be achieved.

Keywords: heavy metal, treatment methodologies, water, water treatment

Procedia PDF Downloads 126
2720 Analysis of Dust Particles in Snow Cover in the Surroundings of the City of Ostrava: Particle Size Distribution, Zeta Potential and Heavy Metal Content

Authors: Roman Marsalek

Abstract:

In this paper, snow samples containing dust particles from several sampling points around the city of Ostrava were analyzed. The pH values of sampled snow were measured and solid particles analyzed. Particle size, zeta potential and content of selected heavy metals were determined in solid particles. The pH values of most samples lay in the slightly acid region. Mean values of particle size ranged from 290.5 to 620.5 nm. Zeta potential values varied between -5 and -26.5 mV. The following heavy metal concentration ranges were found: copper 0.08-0.75 mg/g, lead 0.05-0.9 mg/g, manganese 0.45-5.9 mg/g and iron 25.7-280.46 mg/g. The highest values of copper and lead were found in the vicinity of busy crossroads, and on the contrary, the highest levels of manganese and iron were detected close to a large steelworks. The proportion between pH values, zeta potentials, particle sizes and heavy metal contents was established. Zeta potential decreased with rising pH values and, simultaneously, heavy metal content in solid particles increased. At the same time, higher metal content corresponded to lower particle size.

Keywords: dust, snow, zeta potential, particles size distribution, heavy metals

Procedia PDF Downloads 340
2719 Software Tool Design for Heavy Oil Upgrading by Hydrogen Donor Addition in a Hydrodynamic Cavitation Process

Authors: Munoz A. Tatiana, Solano R. Brandon, Montes C. Juan, Cierco G. Javier

Abstract:

The hydrodynamic cavitation is a process in which the energy that the fluids have in the phase changes is used. From this energy, local temperatures greater than 5000 °C are obtained where thermal cracking of the fluid molecules takes place. The process applied to heavy oil affects variables such as viscosity, density, and composition, which constitutes an important improvement in the quality of crude oil. In this study, the need to design a software through mathematical integration models of mixing, cavitation, kinetics, and reactor, allows modeling changes in density, viscosity, and composition of a heavy oil crude, when the fluid passes through a hydrodynamic cavitation reactor. In order to evaluate the viability of this technique in the industry, a heavy oil of 18° API gravity, was simulated using naphtha as a hydrogen donor at concentrations of 1, 2 and 5% vol, where the simulation results showed an API gravity increase to 0.77, 1.21 and 1.93° respectively and a reduction viscosity by 9.9, 12.9 and 15.8%. The obtained results allow to have a favorable panorama on this technological development, an appropriate visualization on the generation of innovative knowledge of this technique and the technical-economic opportunity that benefits the development of the hydrocarbon sector related to heavy crude oil that includes the largest world oil production.

Keywords: hydrodynamic cavitation, thermal cracking, hydrogen donor, heavy oil upgrading, simulator

Procedia PDF Downloads 124
2718 Biosorption of Heavy Metals from Aqueous Solutions by Plant Biomass

Authors: Yamina Zouambia, Khadidja Youcef Ettoumi, Mohamed Krea, Nadji Moulai Mostefa

Abstract:

Environment pollution through various wastes (particularly by heavy metals) is a major environmental problem due to industrialization and the development of various human activities. Considerable attention has been focused, in recent years, upon the field of biosorption which represents a biotechnological innovation as well as an excellent tool for removal of metal ions from aqueous effluents. So the purpose of this study is to valorize by-product which are orange peels and an extract of these peels (pectin; a heteropolysaccharide) in treatment of water containing heavy metals. All biosorption experiments were carried out at room temperature, an indicated pH, a precise amount of biosorbent and under continuous stirring. Biosorption kinetic was determined by evaluating the residual concentration of the metal ion at different time intervals using UV spectroscopy. The results obtained show that the orange peels and pectin are interesting biosorbents with maximum biosorption capacity of up to 140 mg/g.

Keywords: orange peels, pectin, heavy metals, biosorption

Procedia PDF Downloads 307
2717 Modified Fe₃O₄ Nanoparticles for Electrochemical Sensing of Heavy Metal Ions Pb²⁺, Hg²⁺, and Cd²⁺ in Water

Authors: Megha, Diksha, Seema Rani, Balwinder Kaur, Harminder Kaur

Abstract:

Fe₃O₄@SiO₂@SB functionalized magnetic nanoparticles were synthesized and used to detect heavy metal ions such as Pb²⁺, Hg²⁺, and Cd²⁺ in water. The formation of Fe₃O₄@SiO₂@SB nanocatalyst was confirmed by XRD, SEM, TEM, and IR. The simultaneous determination of analyte cations was carried out using square wave anodic stripping voltammetry (SWASV). Investigation and optimisation were done to study how experimental variables affected the performance of the modified magnetic electrode. Pb²⁺, Hg²⁺, and Cd²⁺ were successfully detected using the designed sensor in the presence of various possibly interfering ions. The recovery rate was found to be 97.5% for Pb²⁺, 96.2% for Hg²⁺, 103.5% for Cd²⁺. The electrochemical sensor was also employed to determine the presence of heavy metal ions in drinking water samples, which are well below the World Health Organization (WHO) guidelines.

Keywords: magnetic nanoparticles, heavy metal ions, electrochemical sensor, environmental water samples

Procedia PDF Downloads 43
2716 Assessment of Pollution Cd, Pb and as in Rice Cultivation in Savadkooh

Authors: Ghazal Banitahmasb, Nazanin Khakipour

Abstract:

More than 90 percent of the world's rice is produced and consumed in Asia. Heavy metal contamination of soil and water environments is a serious and growing problem. Toxin by human activities causes pollution in soils so that the intensity of metals in soils was exceeded. This study was done on 7 samples of rice cultivated in Savadkooh of Mazandaran province and soils; they were grown. The amount of heavy metals Arsenic, Lead and Cadmium were measured by atomic absorption. The test results showed that the amount of Lead in rice strain, Tarom A, was 0.768 ppm, the maximum amount of Cadmium in rice strain, Hashemi B, was 0.09 ppm and the highest levels of Arsenic was in red Tarom, 0.39 ppm. According to the results obtained in this study can be found all rice grown in Savadkooh city of Arsenic, Cadmium and Lead, but the measurements are less than specified in the national standard, and their use is safe for consumers. These results also indicate that positive and significant correlation between the studied heavy metals in soil and rice strains that grow there and by increasing the amount of heavy metals in the soil, the amount of these metals in crops grown on them is also increasing.

Keywords: heavy metals, Oryza sativa L., soil pollution, Savadkooh

Procedia PDF Downloads 383
2715 Removal of Mixed Heavy Metals from Contaminated Clay Soils Using Pulsed Electrokinetic Process

Authors: Nuhu Dalhat Mu’azu, Abdullahi Usman, A. Bukhari, Muhammad Hussain Essa, Salihu Lukman

Abstract:

Electrokinetic remediation process was employed for the removal of four (4) heavy metals (Cr, Cu, Hg and Pb) from contaminated clay and bentonite soils under pulsed current supply mode. The effects of voltage gradient, pulse duty cycle and bentonite/clay ratio on the simultaneous removal efficiencies of the heavy metals were investigated. A total of thirteen experiments were designed and conducted according to factorial design with each experiment allowed to continuously ran for 3 weeks. Results obtained showed that increase in bentonite ratio decreased the removal efficiency of the heavy metals with no significant effect on the energy consumption. Conversely, increase in both voltage gradient and pulse duty cycle increased the heavy metals removal efficiencies with increased in energy consumption. Additionally, increase in voltage gradient increased the electrical conductivity and the soil pH due to due to continuous refill and replacement of process fluids as they decomposed under the induced voltage gradient. Under different operating conditions, the maximum removal efficiencies obtained for Cr, Cu, Hg, and Pb were 21.87, 83.2, 62.4, 78.06 and 16.65% respectively.

Keywords: clay, bentonite, soil remediation, mixed contaminants, heavy metals, and electrokinetic-adsorption

Procedia PDF Downloads 404
2714 Design of a Vehicle Door Structure Based on Finite Element Method

Authors: Tawanda Mushiri, Charles Mbohwa

Abstract:

The performance of door assembly is very significant for the vehicle design. In the present paper, the finite element method is used in the development processes of the door assembly. The stiffness, strength, modal characteristic, and anti-extrusion of a newly developed passenger vehicle door assembly are calculated and evaluated by several finite element analysis commercial software. The structural problems discovered by FE analysis have been modified and finally achieved the expected door structure performance target of this new vehicle. The issue in focus is to predict the performance of the door assembly by powerful finite element analysis software, and optimize the structure to meet the design targets. It is observed that this method can be used to forecast the performance of vehicle door efficiently when it’s designed. In order to reduce lead time and cost in the product development of vehicles more development will be made virtually.

Keywords: vehicle door, structure, strength, stiffness, modal characteristic, anti-extrusion, Finite Element Method

Procedia PDF Downloads 395
2713 Phytoextraction of Heavy Metals in a Contaminated Site in Assam, India Using Indian Pennywort and Fenugreek: An Experimental Study

Authors: Chinumani Choudhury

Abstract:

Heavy metal contamination is an alarming problem, which poses a serious risk to human health and the surrounding geology. Soils get contaminated with heavy metals due to the un-regularized industrial discharge of the toxic metal-rich effluents. Under such a condition, the remediation of the contaminated sites becomes imperative for a sustainable, safe, and healthy environment. Phytoextraction, which involves the removal of heavy metals from the soil through root absorption and uptake, is a viable remediation technique, which ensures extraction of the toxic inorganic compound available in the soil even at low concentrations. The soil present in the Silghat Region of Assam, India, is mostly contaminated with Zinc (Zn) and Lead (Pb), having concentrations as high as to cause a serious environmental problem if proper measures are not taken. In the present study, an extensive experimental study was carried out to understand the effectiveness of two commonly planted trees in Assam, namely, i) Indian Pennywort and ii) Fenugreek, in the removal of heavy metals from the contaminated soil. The basic characterization of the soil in the contaminated site of the Silghat region was performed and the field concentration of Zn and Pb was recorded. Various long-term laboratory pot tests were carried out by sowing the seeds of Indian Pennywort and Fenugreek in a soil, which was spiked, with a very high dosage of Zn and Pb. The tests were carried out for different concentration of a particular heavy metal and the individual effectiveness in the absorption of the heavy metal by the plants were studied. The concentration of the soil was monitored regularly to assess the rate of depletion and the simultaneous uptake of the heavy metal from the soil to the plant. The amount of heavy metal uptake by the plant was also quantified by analyzing the plant sample at the end of the testing period. Finally, the study throws light on the applicability of the studied plants in the field for effective remediation of the contaminated sites of Assam.

Keywords: phytoextraction, heavy-metals, Indian pennywort, fenugreek

Procedia PDF Downloads 94
2712 New Suspension Mechanism for a Formula Car using Camber Thrust

Authors: Shinji Kajiwara

Abstract:

The basic ability of a vehicle is the ability to “run”, “turn” and “stop”. The safeness and comfort during a drive on various road surfaces and speed depends on the performance of these basic abilities of the vehicle. Stability and maneuverability of a vehicle is vital in automotive engineering. Stability of a vehicle is the ability of the vehicle to revert back to a stable state during a drive when faced with crosswind and irregular road conditions. Maneuverability of a vehicle is the ability of the vehicle to change direction during a drive swiftly based on the steering of the driver. The stability and maneuverability of a vehicle can also be defined as the driving stability of the vehicle. Since fossil fueled vehicle is the main type of transportation today, the environmental factor in automotive engineering is also vital. By improving the fuel efficiency of the vehicle, the overall carbon emission will be reduced thus reducing the effect of global warming and greenhouse gas on the Earth. Another main focus of the automotive engineering is the safety performance of the vehicle especially with the worrying increase of vehicle collision every day. With better safety performance on a vehicle, every driver will be more confidence driving every day. Next, let us focus on the “turn” ability of a vehicle. By improving this particular ability of the vehicle, the cornering limit of the vehicle can be improved thus increasing the stability and maneuverability factor. In order to improve the cornering limit of the vehicle, a study to find the balance between the steering systems, the stability of the vehicle, higher lateral acceleration and the cornering limit detection must be conducted. The aim of this research is to study and develop a new suspension system that that will boost the lateral acceleration of the vehicle and ultimately improving the cornering limit of the vehicle. This research will also study environmental factor and the stability factor of the new suspension system. The double wishbone suspension system is widely used in four-wheel vehicle especially for high cornering performance sports car and racing car. The double wishbone designs allow the engineer to carefully control the motion of the wheel by controlling such parameters as camber angle, caster angle, toe pattern, roll center height, scrub radius, scuff and more. The development of the new suspension system will focus on the ability of the new suspension system to optimize the camber control and to improve the camber limit during a cornering motion. The research will be carried out using the CAE analysis tool. Using this analysis tool we will develop a JSAE Formula Machine equipped with the double wishbone system and also the new suspension system and conduct simulation and conduct studies on performance of both suspension systems.

Keywords: automobile, camber thrust, cornering force, suspension

Procedia PDF Downloads 290
2711 Identification and Characterization of Heavy Metal Resistant Bacteria from the Klip River

Authors: P. Chihomvu, P. Stegmann, M. Pillay

Abstract:

Pollution of the Klip River has caused microorganisms inhabiting it to develop protective survival mechanisms. This study isolated and characterized the heavy metal resistant bacteria in the Klip River. Water and sediment samples were collected from six sites along the course of the river. The pH, turbidity, salinity, temperature and dissolved oxygen were measured in-situ. The concentrations of six heavy metals (Cd, Cu, Fe, Ni, Pb, and Zn) of the water samples were determined by atomic absorption spectroscopy. Biochemical and antibiotic profiles of the isolates were assessed using the API 20E® and Kirby Bauer Method. Growth studies were carried out using spectrophotometric methods. The isolates were identified using 16SrDNA sequencing. The uppermost part of the Klip River with the lowest pH had the highest levels of heavy metals. Turbidity, salinity and specific conductivity increased measurably at Site 4 (Henley on Klip Weir). MIC tests showed that 16 isolates exhibited high iron and lead resistance. Antibiotic susceptibility tests revealed that the isolates exhibited multi-tolerances to drugs such as tetracycline, ampicillin, and amoxicillin.

Keywords: Klip River, heavy metals, resistance, 16SrDNA

Procedia PDF Downloads 297
2710 Heavy Metal Contamination of a Dumpsite Environment as Assessed with Pollution Indices

Authors: Olubunmi S. Shittu, Olufemi J. Ayodele, Augustus O. A. Ilori, Abidemi O. Filani, Adetola T. Afuye

Abstract:

Indiscriminate refuse dumping in and around Ado-Ekiti combined with improper management of few available dumpsites, such as Ilokun dumpsite, posed the threat of heavy metals pollution in the surrounding soils and underground water that needs assessment using pollution indices. Surface soils (0-15 cm) were taken from the centre of Ilokun dumpsite (0 m) and environs at different directions and distances during the dry and wet seasons, as well as a background sample at 1000 m away, adjacent to the dumpsite at Ilokun, Ado-Ekiti, Nigeria. The concentration of heavy metals used to calculate the pollution indices for the soils were determined using Atomic Adsorption Spectrophotometer. The soils recorded high concentrations of all the heavy metals above the background concentrations irrespective of the season with highest concentrations at the 0 m except Ni and Fe at 50 m during the dry and wet season, respectively. The heavy metals concentration were in the order of Ni > Mn > Pb > Cr > Cu > Cd > Fe during the dry season, and Fe > Cr > Cu > Pb > Ni > Cd > Mn during the wet season. Using the Contamination Factor (CF), the soils were classified to be moderately contaminated with Cd and Fe to very high contamination with other metals during the dry season and low Cd contamination (0.87), moderate contamination with Fe, Pb, Mn and Ni and very high contamination with Cr and Cu during the wet season. At both seasons, the Pollution Load Index (PLI) indicates the soils to be generally polluted with heavy metals and the Geoaccumulation Index (Igeo) calculated shown the soils to be in unpolluted to moderately polluted levels. Enrichment Factor (EF) implied the soils to be deficiently enriched with all the heavy metals except Cr (7.90) and Cu (6.42) that were at significantly enrichment levels during the wet season. Modified Degree of Contamination (mCd) recorded, indicated the soils to be of very high to extremely high degree of contamination during the dry season and moderate degree of contamination during the wet season except 0 m with high degree of contamination. The concentration of heavy metals in the soils combined with some of the pollution indices indicated the soils in and around the Ilokun Dumpsite are being polluted with heavy metals from anthropogenic sources constituted by the indiscriminate refuse dumping.

Keywords: contamination factor, enrichment factor, geoaccumulation index, modified degree of contamination, pollution load index

Procedia PDF Downloads 348
2709 Potential of Safflower (Carthamus tinctorius L.) for Phytoremediation of Soils Contaminated with Heavy Metals

Authors: Violina R. Angelova, Vanja I. Akova, Stefan V. Krustev, Krasimir I. Ivanov

Abstract:

A field study was conducted to evaluate the efficacy of safflower plant for phytoremediation of contaminated soils. The experiment was performed on an agricultural fields contaminated by the Non-Ferrous-Metal Works near Plovdiv, Bulgaria. The concentrations of Pb, Zn and Cd in safflower (roots, stems, leaves and seeds), safflower oil and meal were determined. A correlation was found between the quantity of the mobile forms and the uptake of Pb, Zn and Cd by the safflower seeds. Safflower is a plant which is tolerant to heavy metals and can be grown on contaminated soils, and which can be referred to the hyperaccumulators of cadmium and the accumulators of lead and zinc, and can be successfully used in the phytoremediation of heavy metal contaminated soils. The processing of seeds to oil and using the obtained oil for nutritional purposes will greatly reduce the cost of phytoremediation. The possibility of further industrial processing will make safflower economically interesting crops for farmers of phytoremediation technology.

Keywords: heavy metals, phytoremediation, polluted soils, safflower

Procedia PDF Downloads 288