Search results for: soil pollution
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4401

Search results for: soil pollution

4401 Investigation on Natural Pollution Sources to Arsenic in around of Hashtrood City, East Azerbayjan Province

Authors: Azita Behbahaninia

Abstract:

Soil and surface and ground waters pollution to arsenic (As) due to its high potential for food cycle entrance, has high risk for human safety. Also, this pollution can cause quality and quantity decreasing of agricultural products or some lesions in farm animals that due to low knowledge, its reason is unknown, but can relate to As pollution. This study was conducted to investigate level of soil and water pollution by As in Hashtrood city. Based on the region’s information, the surface and ground waters, soil, river sediments, and rock were sampled and analyzed for physico-chemical and As in lab. There are significant differences for mean contents between As in the samples and crust. The maximum levels of As were observed in fly ash sample. Consequently, As pollution was related to geogenic and volcanic eruptions in this region. These mechanisms are diagnosed as As pollution in the region: As release for the rock units, As sorption by oxide minerals in aerobic and acidic to neutral conditions, desorption from oxide surfaces with pH increasing, increasing of As concentration in solution, and consequently pollution.

Keywords: arsenic, flyash, groundwater, soil

Procedia PDF Downloads 294
4400 Assessment of the Soils Pollution Level of the Open Mine and Tailing Dump of Surrounding Territories of Akhtala Ore Processing Combine by Heavy Metals

Authors: K. A. Ghazaryan, T. H. Derdzyan

Abstract:

For assessment of the soils pollution level of the open mine and tailing dump of surrounding territories of Akhtala ore processing combine by heavy metals in 2013 collected soil samples and analyzed for different heavy metals, such as Cu, Zn, Pb, Ni and Cd. The main soil type in the study sites was the mountain cambisol. To classify soil pollution level contamination indices like Contamination factors (Cf), Degree of contamination (Cd), Pollution load index (PLI) and Geoaccumulation index (I-geo) are calculated. The distribution pattern of trace metals in the soil profile according to I geo, Cf and Cd values shows that the soil is very polluted. And also the PLI values for the 19 sites were >1, which indicates deterioration of site quality.

Keywords: soils pollution, heavy metal, geoaccumulation index, pollution load index, contamination factor

Procedia PDF Downloads 396
4399 Assessment the Capacity of Retention of a Natural Material for the Protection of Ground Water

Authors: Hakim Aguedal, Abdelkader Iddou, Abdalla Aziz, Abdelhadi Bentouami, Ferhat Bensalah, Salah Bensadek

Abstract:

The major environmental risk of soil pollution is the contamination of groundwater by infiltration of organic and inorganic pollutants that can cause a serious pollution. To prevent the migration of this pollution through this structure, many studies propose the installation of layers, which play a role of a barrier that inhibiting the contamination of groundwater by limiting or slowing the flow of rainwater carrying pollution through the layers of soil. However, it is practically impossible to build a barrier layer that let through only water, but it is possible to design a structure with low permeability, which reduces the infiltration of dangerous pollutant. In an environmental context of groundwater protection, the main objective of this study was to investigate the environmental and appropriate suitability method to preserve groundwater, by establishment of a permeable reactive barrier (PRB) intermediate in soil. Followed the influence of several parameters allow us to find the most effective materials and the most appropriate way to incorporate this barrier in the soil.

Keywords: Ground water, protection, permeable reactive Barrier, soil pollution.

Procedia PDF Downloads 527
4398 Predicting the Adsorptive Capacities of Biosolid as a Barrier in Soil to Remove Industrial Contaminants

Authors: H. Aguedal, H. Hentit, A. Aziz, D. R. Merouani, A. Iddou

Abstract:

The major environmental risk of soil pollution is the contamination of groundwater by infiltration of organic and inorganic pollutants that can cause a serious pollution. To protect the groundwater, in this study, we proceeded to test the reliability of a bio solid as barrier to prevent the migration of a very dangerous pollutant ‘Cadmium’ through the different soil layers. The follow-up the influence of several parameters, such as: turbidity, pluviometry, initial concentration of cadmium and the nature of soil, allow us to find the most effective manner to integrate this barrier in the soil. From the results obtained, we noted the effective intervention of the barrier. Indeed, the recorded passing quantities are lowest for the highest rainfall; we noted that the barrier has a better affinity towards higher concentrations; the most retained amounts of cadmium has been in the top layer of the two types of soil, while the lowest amounts of cadmium are recorded in the inner layers of soils.

Keywords: adsorption of cadmium, barrier, groundwater pollution, protection

Procedia PDF Downloads 330
4397 Analysis of Pollution in Agriculture Land Using Decagon Em-50 and Rock Magnetism Method

Authors: Adinda Syifa Azhari, Eleonora Agustine, Dini Fitriani

Abstract:

This measurement has been done to analyze the impact of industrial pollution on the environment. Our research is to indicate the soil which has contained some pollution by industrial activity around the area, especially in Sumedang, West Java. The parameter phsyics such as total dissolved solid, volumetric water content, electrical conductivity bulk and FD have shown that the soil has polluted and measured by Decagon EM 50. Decagon EM 50 is one of the geophysical environment instrumentation that is used to interpret the soil condition. This experiment has given a result of these parameter physics, these are: Volumetric water content (m³/m³) = 0,154 – 0,384; Electrical Conductivity Bulk (dS/m) = 0,29 – 1,11 ; Dielectric Permittivity (DP) = 77,636 – 78, 339.Based on these data, we have got the conclusion that the area has, in fact, been contaminated by dangerous materials. VWC is parameter physics that has shown water in soil. The data show the pollution of the soil at the place, of which the specifications are PH, Total Dissolved Solid (TDS), Electrical Conductivity (EC) bigger (>>) and Frequency Dependent (FD) smaller (<<); that means the soil is alkali with big grain and has high salt concentration.

Keywords: Decagon EM 50, electrical conductivity, industrial textiles, land, pollution

Procedia PDF Downloads 357
4396 The Role of Phytoremediation in Reclamation of Soil Pollution and Suitability of Certain Ornamental Plants to Phytoremediation

Authors: Bahriye Gülgün, Gökhan Balik, Şükrü Dursun, Kübra Yazici

Abstract:

The main reasons such as economic growth of society increase of the world population and rapid changes of industrialization cause the amount and the types of pollutants to increase over time. Soil pollution is the typical side effect of industrial activities. As a result of industrial activities, there are large amounts of heavy metal emission every year. Heavy metals are one of the highest pollution sources according to the soil pollution aspect. The usage of hyperaccumulator plants to clean heavy metal polluted soils and the selection of plants for phytoremediation gain importance recently. There are limited numbers of researches on the ornamental plant types of phytoremediation thus; researches on this subject are important. This research is prepared based on the ornamental plant types with phytoremediation abilities.

Keywords: phytoremediation, ornamental plants, landscape reclamation, soil reclamation, environmental pollution

Procedia PDF Downloads 383
4395 Measurements of Environmental Pollution in Chemical Fertilizer Industrial Area Using Magnetic Susceptibility Method

Authors: Ramadhani Yasyfi Cysela, Adinda Syifa Azhari, Eleonora Agustine

Abstract:

The World Health Organization (WHO) estimates that about a quarter of the diseases facing mankind today occur due to environmental pollution. The soil is a part of environment that have a widespread problem. The contaminated soil should no longer be used to grow food because the chemicals can leech into the food and harm people who eat it. The chemical fertilizer industry gives specific effect due to soil pollution. To determine ammonia and urea emissions from fertilizer industry, we can use physical characteristic of soil, which is magnetic susceptibility. Rock magnetism is used as a proxy indicator to determine changes in physical properties. Magnetic susceptibilities of samples in low and high frequency have been measured by Bartington MS2B magnetic susceptibility measurement device. The sample was taken from different area which located closer by pollution source and far from the pollution source. The susceptibility values of polluted samples in topsoil were quite low, with range from 187.1- 494.8 [x 10-8 m3 kg-1] when free polluted area’s sample has high values (1188.7- 2237.8 [x 10-8 m3 kg-1 ]). From this studies shows that susceptibility values in areas of the fertilizer industry are lower than the free polluted area.

Keywords: environmental, magnetic susceptibility, rock magnetism, soil pollution

Procedia PDF Downloads 313
4394 Assessment the Influence of Bitumen Emulsion PAHs Content in Arid Land

Authors: Jalil Badamfirooz

Abstract:

Soil wind erosion has a negative impact on the environment. Mulching is one of the most efficient soil protection techniques. Bitumen emulsion has recently been utilized as a soil cover that is sprayed directly over the soil and forms a thin film. The thin coating of bitumen emulsion prevents soil erosion and keeps moisture in the soil. Besides, some compounds release into the soil and cause environmental problems. In the present study, the effect of bitumen emulsion on the release of polycyclic aromatic hydrocarbons (PAHs) into the soil is studied in an arid land located in the central part of Iran. The soil was Loamy-Sand and saline with a pH of 8.03. Bitumen emulsion was used in this study as mulch at a rate of 4 L m2. The effect of this mulch on soil properties was investigated after 6 months of mulch application. Then PAHs concentrations were determined in samples collected from different depths in bitumen emulsion sprayed and control soils. In general, bitumen emulsion application on soil led to a significant increase in some PAHs, which was higher than soil pollution standards critical level of pollution for commerce, groundwater protection, pasture forest, and park and residence uses.

Keywords: mulch, bitumen emulsion, arid land, PAH

Procedia PDF Downloads 52
4393 The Investigation of Cadmium Pollution in the Metal Production Factory in Relation to Environmental Health

Authors: Seyed Armin Hashemi, Somayeh Rahimzadeh

Abstract:

Toxic metals such as lead and cadmium are among the pollutants that are created by the metal production factories and disseminated in the nature. In order to study the quantity of cadmium pollution in the environment of the metal production factories, 50 saplings of the spruce species at the peripheries of the metal production factories were examined and the samples of the leaves, roots and stems of saplings planted around the factory and the soil of the environment of the factory were studied to investigate pollution with cadmium. They were compared to the soil and saplings of the spruce trees planted outside the factory as observer region. The results showed that the quantity of pollution in the leaves, stem, and roots of the trees planted inside the factory environment were estimated at 1.1 milligram/kilogram, 1.5 milligram/kilogram and 2.5 milligram/kilogram respectively and this indicated a significant difference with the observer region (P < 0.05). The quantity of cadmium in the soil of the peripheries of the metal production factory was estimated at 6.8 milligram/kilogram in the depth of 0-10 centimeters beneath the level of the soil. The length of roots in the saplings planted around the factory of metal production stood at 11 centimeters and 14.5 centimeters in the observer region which had a significant difference with the observer region (P < 0.05). The quantity of soil resources and spruce species’ pollution with cadmium in the region has been influenced by the production processes in the factory.

Keywords: cadmium pollution, spruce, soil pollution, the factory of producing alloy metals

Procedia PDF Downloads 302
4392 Adsorption and Transformation of Lead in Coimbatore Urban Soils

Authors: K. Sivasubramanin, S. Mahimairaja, S. Pavithrapriya

Abstract:

Heavy metal pollution originating from industrial wastes is becoming a serious problem in many urban environments. These heavy metals, if not properly managed, could enter into the food chain and cause a serious health hazards in animals and humans. Industrial wastes, sewage sludge, and automobile emissions also contribute to heavy metal like Pb pollution in the urban environment. However, information is scarce on the heavy metal pollution in Coimbatore urban environment. Therefore, the current study was carried out to examine the extent of lead pollution in Coimbatore urban environment the maximum Pb concentration in Coimbatore urban environment was found in ukkadam, whose concentration in soils 352 mg kg-1. In many places, the Pb concentration was found exceeded the permissible limit of 100 mg kg-1. In laboratory, closed incubation experiment showed that the concentration of different species of Pb viz., water soluble Pb(H2O-Pb), exchangeable Pb(KNO3-Pb), organic-Pb(NaOH-Pb), and organic plus metal (Fe & Al) oxides bound-Pb(Na2 EDTA-Pb) was found significantly increased during the 15 days incubation, mainly due to biotransformation processes. Both the moisture content of soil and ambient temperature exerted a profound influence on the transformation of Pb. The results of a batch experiment has shown that the sorption data was adequately described by the Freundlich equation as indicated by the high correlation coefficients (R2= 0.64) than the Langmuir equation (R2 = 0.33). A maximum of 86 mg of Pb was found adsorbed per kilogram of soil. Consistently, a soil column experiment result had shown that only a small amount of Pb( < 1.0 µg g-1 soil) alone was found leached from the soil. This might be due to greater potential of the soil towards Pb adsorption.

Keywords: lead pollution, adsorption, transformation, heavy metal pollution

Procedia PDF Downloads 297
4391 Human Health Risk Assessment from Metals Present in a Soil Contaminated by Crude Oil

Authors: M. A. Stoian, D. M. Cocarta, A. Badea

Abstract:

The main sources of soil pollution due to petroleum contaminants are industrial processes involve crude oil. Soil polluted with crude oil is toxic for plants, animals, and humans. Human exposure to the contaminated soil occurs through different exposure pathways: Soil ingestion, diet, inhalation, and dermal contact. The present study research is focused on soil contamination with heavy metals as a consequence of soil pollution with petroleum products. Human exposure pathways considered are: Accidentally ingestion of contaminated soil and dermal contact. The purpose of the paper is to identify the human health risk (carcinogenic risk) from soil contaminated with heavy metals. The human exposure and risk were evaluated for five contaminants of concern of the eleven which were identified in soil. Two soil samples were collected from a bioremediation platform from Muntenia Region of Romania. The soil deposited on the bioremediation platform was contaminated through extraction and oil processing. For the research work, two average soil samples from two different plots were analyzed: The first one was slightly contaminated with petroleum products (Total Petroleum Hydrocarbons (TPH) in soil was 1420 mg/kgd.w.), while the second one was highly contaminated (TPH in soil was 24306 mg/kgd.w.). In order to evaluate risks posed by heavy metals due soil pollution with petroleum products, five metals known as carcinogenic were investigated: Arsenic (As), Cadmium (Cd), ChromiumVI (CrVI), Nickel (Ni), and Lead (Pb). Results of the chemical analysis performed on samples collected from the contaminated soil evidence soil contamination with heavy metals as following: As in Site 1 = 6.96 mg/kgd.w; As in Site 2 = 11.62 mg/kgd.w, Cd in Site 1 = 0.9 mg/kgd.w; Cd in Site 2 = 1 mg/kgd.w; CrVI was 0.1 mg/kgd.w for both sites; Ni in Site 1 = 37.00 mg/kgd.w; Ni in Site 2 = 42.46 mg/kgd.w; Pb in Site 1 = 34.67 mg/kgd.w; Pb in Site 2 = 120.44 mg/kgd.w. The concentrations for these metals exceed the normal values established in the Romanian regulation, but are smaller than the alert level for a less sensitive use of soil (industrial). Although, the concentrations do not exceed the thresholds, the next step was to assess the human health risk posed by soil contamination with these heavy metals. Results for risk were compared with the acceptable one (10-6, according to World Human Organization). As, expected, the highest risk was identified for the soil with a higher degree of contamination: Individual Risk (IR) was 1.11×10-5 compared with 8.61×10-6

Keywords: carcinogenic risk, heavy metals, human health risk assessment, soil pollution

Procedia PDF Downloads 397
4390 Heavy Metal Pollution in Soils of Yelagirihills,Tamilnadu by EDXRF Technique

Authors: Chandrasekaran, Ravisankar N. Harikrishnan, Rajalakshmi, K. K. Satapathy M. V. R. Prasad, K. V. Kanagasabapathy

Abstract:

Heavy metals were considered as highly toxic environmental pollutants to soil ecosystem and human health. In present study the 12 heavy metals (Mg, Al, K, Ca, Ti, Fe, V, Cr, Mn, Co,Ni and Zn.) are determined in soils of Yelagiri hills, Tamilnadu by energy dispersive X-ray fluorescence technique. Metal concentrations were used to quantify pollution contamination factors such as enrichment factor (EF), geo-accumulation index (Igeo) and contamination factor (CF) are calculated and reported.

Keywords: soil, heavy metals, EDXRF, pollution contamination factors

Procedia PDF Downloads 303
4389 A Study of Soil Heavy Metal Pollution in the Manganese Mining in Drama, Greece

Authors: A. Argiri, A. Molla, Tzouvalekas, E. Skoufogianni, N. Danalatos

Abstract:

The release of heavy metals into the environment has increased over the last years. In this study, 25 soil samples (0-15 cm) from the fields near the mining area in Drama region were selected. The samples were analyzed in the laboratory for their physicochemical properties and for seven “pseudo-total’’ heavy metals content, namely Pb, Zn, Cd, Cr, Cu, Ni, and Mn. The total metal concentrations (Pb, Zn, Cd, Cr, Cu, Ni and Mn) in digests were determined by using the atomic absorption spectrophotometer. According to the results, the mean concentration of the listed heavy metals in 25 soil samples are Cd 1.1 mg/kg, Cr 15 mg/kg, Cu 21.7 mg/kg, Ni 30.1 mg/kg, Pd 50.8 mg/kg, Zn 99.5 mg/kg and Mn 815.3 mg/kg. The results show that the heavy metals remain in the soil even if the mining closed many years ago.

Keywords: Greece, heavy metals, mining, pollution

Procedia PDF Downloads 88
4388 Soil Quality State and Trends in New Zealand’s Largest City after Fifteen Years

Authors: Fiona Curran-Cournane

Abstract:

Soil quality monitoring is a science-based soil management tool that assesses soil ecosystem health. A soil monitoring program in Auckland, New Zealand’s largest city, extends from 1995 to the present. The objective of this study was to firstly determine changes in soil parameters (basic soil properties and heavy metals) that were assessed from rural land in 1995-2000 and repeated in 2008-2012. The second objective was to determine differences in soil parameters across various land uses including native bush, rural (horticulture, pasture and plantation forestry) and urban land uses using soil data collected in more recent years (2009-2013). Across rural land, mean concentrations of Olsen P had significantly increased in the second sampling period and was identified as the indicator of most concern, followed by soil macroporosity, particularly for horticultural and pastoral land. Mean concentrations of Cd were also greatest for pastoral and horticultural land and a positive correlation existed between these two parameters, which highlights the importance of analysing basic soil parameters in conjunction with heavy metals. In contrast, mean concentrations of As, Cr, Pb, Ni and Zn were greatest for urban sites. Native bush sites had the lowest concentrations of heavy metals and were used to calculate a ‘pollution index’ (PI). The mean PI was classified as high (PI > 3) for Cd and Ni and moderate for Pb, Zn, Cr, Cu, As, and Hg, indicating high levels of heavy metal pollution across both rural and urban soils. From a land use perspective, the mean ‘integrated pollution index’ was highest for urban sites at 2.9 followed by pasture, horticulture and plantation forests at 2.7, 2.6, and 0.9, respectively. It is recommended that soil sampling continues over time because a longer spanning record will allow further identification of where soil problems exist and where resources need to be targeted in the future. Findings from this study will also inform policy and science direction in regional councils.

Keywords: heavy metals, pollution index, rural and urban land use, soil quality

Procedia PDF Downloads 346
4387 Spatial Variability of Soil Pollution and Health Risks Due to Long-Term Wastewater Irrigation in Egypt

Authors: Mohamed Eladham Fadl M. E. Fadl

Abstract:

In Egypt, wastewater has been used for irrigation in areas with fresh water scarcity. However, continuous applications may cause potential risks. Thus, the current study aims at screening the impacts of long-term wastewater irrigation on soil pollution and human health due to the exposure of heavy metals. Soils of nine sites in Al-Qalyubiyah Governorate, Egypt were sampled and analyzed for different properties. Wastewater resulted in a build-up of metals in soils. The pollution index (PI) showed the order of Cd > Pb > Ni > Zn. The integrated pollution index of Nemerow’s (IPIN) exceeded the safe limit of 0.7. The enrichment factor (EF) surpassed 1.0 value proving anthropogenic effects. The geo-accumulation index (Igeo) indicated that Pb, Ni, and Zn-induced none to moderate pollution, while high threats were associated with Cd. The calculated hazard index proved a potential health risk for humans, particularly children. It is recommended to perform a treatment to the wastewater used in irrigation to avoid such threats.

Keywords: pollution, health risks, heavy metals, effluent, irrigation, GIS techniques

Procedia PDF Downloads 309
4386 The Evaluation of Heavy Metal Pollution Degree in the Soils Around the Zangezur Copper and Molybdenum Combine

Authors: K. A. Ghazaryan, G. A. Gevorgyan, H. S. Movsesyan, N. P. Ghazaryan, K. V. Grigoryan

Abstract:

The heavy metal pollution degree in the soils around the Zangezur copper and molybdenum combine in Syunik Marz, Armenia was aessessed. The results of the study showed that heavy metal pollution degree in the soils mainly decreased with increasing distance from the open mine and the ore enrichment combine which indicated that the open mine and the ore enrichment combine were the main sources of heavy metal pollution. The only exception was observed in the northern part of the open mine where pollution degree in the sites (along the open mine) situated 600 meters far from the mine was higher than that in the sites located 300 meters far from the mine. This can be explained by the characteristics of relief and air currents as well as the weak vegetation cover of these sites and the characteristics of soil structure. According to geo-accumulation index (I-geo), contamination factor (Cf), contamination degree (Cd) and pollution load index (PLI) values, the pollution degree in the soils around the open mine and the ore enrichment combine was higher than that in the soils around the tailing dumps which was due to the proper and accurate operation of the Artsvanik tailing damp and the recultivation of the Voghji tailing dump. The high Cu and Mo pollution of the soils was conditioned by the character of industrial activities, the moving direction of air currents as well as the physicochemical peculiarities of the soils.

Keywords: Armenia, Zangezur copper and molybdenum combine, soil, heavy metal pollution degree

Procedia PDF Downloads 269
4385 Soil Remediation Technologies towards Green Remediation Strategies

Authors: G. Petruzzelli, F. Pedron, M. Grifoni, M. Barbafieri, I. Rosellini, B. Pezzarossa

Abstract:

As a result of diverse industrial activities, pollution from numerous contaminant affects both groundwater and soils. Many contaminated sites have been discovered in industrialized countries and their remediation is a priority in environmental legislations. The aim of this paper is to provide the evolution of remediation from consolidated invasive technologies to environmental friendly green strategies. Many clean-up technologies have been used. Nowadays the technologies selection is no longer exclusively based on eliminating the source of pollution, but the aim of remediation includes also the recovery of soil quality. “Green remediation”, a strategy based on “soft technologies”, appears the key to tackle the issue of remediation of contaminated sites with the greatest attention to environmental quality, including the preservation of soil functionality.

Keywords: bioremediation, Green Remediation, phytoremediation, remediation technologies, soil

Procedia PDF Downloads 199
4384 Assessment of Pollution Cd, Pb and as in Rice Cultivation in Savadkooh

Authors: Ghazal Banitahmasb, Nazanin Khakipour

Abstract:

More than 90 percent of the world's rice is produced and consumed in Asia. Heavy metal contamination of soil and water environments is a serious and growing problem. Toxin by human activities causes pollution in soils so that the intensity of metals in soils was exceeded. This study was done on 7 samples of rice cultivated in Savadkooh of Mazandaran province and soils; they were grown. The amount of heavy metals Arsenic, Lead and Cadmium were measured by atomic absorption. The test results showed that the amount of Lead in rice strain, Tarom A, was 0.768 ppm, the maximum amount of Cadmium in rice strain, Hashemi B, was 0.09 ppm and the highest levels of Arsenic was in red Tarom, 0.39 ppm. According to the results obtained in this study can be found all rice grown in Savadkooh city of Arsenic, Cadmium and Lead, but the measurements are less than specified in the national standard, and their use is safe for consumers. These results also indicate that positive and significant correlation between the studied heavy metals in soil and rice strains that grow there and by increasing the amount of heavy metals in the soil, the amount of these metals in crops grown on them is also increasing.

Keywords: heavy metals, Oryza sativa L., soil pollution, Savadkooh

Procedia PDF Downloads 379
4383 Pollution-Sources, Controls, and Impact Analysis

Authors: Aditi Acharya

Abstract:

Environmental pollution is threatening the environmental and human health in the most drastic way. This paper provides insight about the affects of environmental pollution in the perspective of water pollution. Sewage in drinking water, the increasing contamination of water bodies and water resources and the human beings are the major contributors, increasing the harsh activities of pollution. The research presents information about the sources of pollution, its impacts and control activities to be undertaken to make our environment free from water pollution.

Keywords: environmental pollution, water pollution, nanotechnology, nanomaterials

Procedia PDF Downloads 332
4382 Phytoremediation Potenciality of ‘Polypogon monspeliensis L. in Detoxification of Petroleum-Contaminated Soils

Authors: Mozhgan Farzami Sepehr, Farhad Nourozi

Abstract:

In a greenhouse study, decontamination capacity of the species Polypogon monspoliensis, for detoxification of petroleum-polluted soils caused by sewage and waste materials of Tehran Petroleum Refinery. For this purpose, the amount of total oil and grease before and 45 days after transplanting one-month-old seedlings in the soils of five different treatments in which pollution-free agricultural soil and contaminated soil were mixed together with the weight ratio of respectively 1 to 9 (% 10), 2 to 8 (%20), 3 to 7 (%30) , 4 to 6 (%40), and 5 to 5 (%50) were evaluated and compared with the amounts obtained from control treatment without vegetation, but with the same concentration of pollution. Findings demonstrated that the maximum reduction in the petroleum rate ,as much as 84.85 percent, is related to the treatment 10% containing the plant. Increasing the shoot height in treatments 10% and 20% as well as the root dry and fresh weight in treatments 10% , 20% , and 30% shows that probably activity of more rhizosphere microorganisms of the plant in these treatments has led to the improvement in growth of plant organs comparing to the treatments without pollution.

Keywords: phytoremediation, total oil and grease, rhizosphere, microorganisms, petroleum-contaminated soil

Procedia PDF Downloads 378
4381 Evaluation of Spatial Distribution Prediction for Site-Scale Soil Contaminants Based on Partition Interpolation

Authors: Pengwei Qiao, Sucai Yang, Wenxia Wei

Abstract:

Soil pollution has become an important issue in China. Accurate spatial distribution prediction of pollutants with interpolation methods is the basis for soil remediation in the site. However, a relatively strong variability of pollutants would decrease the prediction accuracy. Theoretically, partition interpolation can result in accurate prediction results. In order to verify the applicability of partition interpolation for a site, benzo (b) fluoranthene (BbF) in four soil layers was adopted as the research object in this paper. IDW (inverse distance weighting)-, RBF (radial basis function)-and OK (ordinary kriging)-based partition interpolation accuracies were evaluated, and their influential factors were analyzed; then, the uncertainty and applicability of partition interpolation were determined. Three conclusions were drawn. (1) The prediction error of partitioned interpolation decreased by 70% compared to unpartitioned interpolation. (2) Partition interpolation reduced the impact of high CV (coefficient of variation) and high concentration value on the prediction accuracy. (3) The prediction accuracy of IDW-based partition interpolation was higher than that of RBF- and OK-based partition interpolation, and it was suitable for the identification of highly polluted areas at a contaminated site. These results provide a useful method to obtain relatively accurate spatial distribution information of pollutants and to identify highly polluted areas, which is important for soil pollution remediation in the site.

Keywords: accuracy, applicability, partition interpolation, site, soil pollution, uncertainty

Procedia PDF Downloads 111
4380 Interaction of between Cd and Zn in Barley (Hordeum vulgare L.) Plant for Phytoextraction Method

Authors: S. Adiloğlu, K. Bellitürk, Y. Solmaz, A. Adiloğlu

Abstract:

The aim of this research is to remediation of the cadmium (Cd) pollution in agricultural soils by using barley (Hordeum vulgare L.) plant. For this purpose, a pot experiment was done in greenhouse conditions. Cadmium (100 mg/kg) as CdSO4.8H2O forms was applied to each pot and incubated during 30 days. Then Ethylenediamine tetraacetic acid (EDTA) chelate was applied to each pot at five doses (0, 3, 6, 8 and 10 mmol/kg) 20 days before harvesting time of the barley plants. The plants were harvested after two months planting. According to the pot experiment results, Cd and Zn amounts of barley plant increased with increasing EDTA application and Zn and Cd contents of barley 20,13 and 1,35 mg/kg for 0 mmol /kg EDTA; 58,61 and 113,24 mg/kg for 10 mmol/kg EDTA doses, respectively. On the other hand, Cd and Zn concentrations of experiment soil increased with EDTA application to the soil samples. Zinc and Cd concentrations of soil 0,31 and 0,021 mg/kg for 0 mmol /kg EDTA; 2,39 and 67,40 mg/kg for 10 mmol/kg EDTA doses, respectively. These increases were found to be statistically significant at the level of 1 %. According to the results of the pot experiment, some heavy metal especially Cd pollution of barley (Hordeum vulgare L.) plant province can be remediated by the phytoextraction method.

Keywords: Barley, Hordeum vulgare L., cadmium, zinc, phytoextraction, soil pollution

Procedia PDF Downloads 418
4379 Spatial Assessment of Soil Contamination from Informal E-Waste Recycling Site in Agbogbloshie, Ghana

Authors: Kyere Vincent Nartey, Klaus Greve, Atiemo Sampson

Abstract:

E-waste is discarded electrical electronic equipment inclusive of all components, sub-assemblies and consumables which are part of the product at the time of discarding and known to contain both hazardous and valuable fractions. E-waste is recycled within the proposed ecological restoration of the Agbogbloshie enclave using crude and rudimental recycling procedures such as open burning and manual dismantling which result in pollution and contamination of soil, water and air. Using GIS, this study was conducted to examine the spatial distribution and extent of soil contamination by heavy metals from the e-waste recycling site in Agbogbloshie. From the month of August to November 2013, 146 soil samples were collected in addition to their coordinates using GPS. Elemental analysis performed on the collected soil samples using X-Ray fluorescence revealed over 30 elements including, Ni, Cr, Zn, Cu, Pb and Mn. Using geostatistical techniques in ArcGIS 10.1 spatial assessment and distribution maps were generated. Mathematical models or equations were used to estimate the degree of contamination and pollution index. Results from soil analysis from the Agbogbloshie enclave showed that levels of measured or observed elements were significantly higher than the Canadian EPA and Dutch environmental standards.

Keywords: e-waste, geostatistics, soil contamination, spatial distribution

Procedia PDF Downloads 482
4378 Application of Various Methods for Evaluation of Heavy Metal Pollution in Soils around Agarak Copper-Molybdenum Mine Complex, Armenia

Authors: K. A. Ghazaryan, H. S. Movsesyan, N. P. Ghazaryan

Abstract:

The present study was aimed in assessing the heavy metal pollution of the soils around Agarak copper-molybdenum mine complex and related environmental risks. This mine complex is located in the south-east part of Armenia, and the present study was conducted in 2013. The soils of the five riskiest sites of this region were studied: surroundings of the open mine, the sites adjacent to processing plant of Agarak copper-molybdenum mine complex, surroundings of Darazam active tailing dump, the recultivated tailing dump of “ravine - 2”, and the recultivated tailing dump of “ravine - 3”. The mountain cambisol was the main soil type in the study sites. The level of soil contamination by heavy metals was assessed by Contamination factors (Cf), Degree of contamination (Cd), Geoaccumulation index (I-geo) and Enrichment factor (EF). The distribution pattern of trace metals in the soil profile according to Cf, Cd, I-geo and EF values shows that the soil is much polluted. Almost in all studied sites, Cu, Mo, Pb, and Cd were the main polluting heavy metals, and this was conditioned by Agarak copper-molybdenum mine complex activity. It is necessary to state that the pollution problem becomes pressing as some parts of these highly polluted region are inhabited by population, and agriculture is highly developed there; therefore, heavy metals can be transferred into human bodies through food chains and have direct influence on public health. Since the induced pollution can pose serious threats to public health, further investigations on soil and vegetation pollution are recommended. Finally, Cf calculating based on distance from the pollution source and the wind direction can provide more reasonable results.

Keywords: Agarak copper-molybdenum mine complex, heavy metals, soil contamination, enrichment factor (EF), Armenia

Procedia PDF Downloads 199
4377 Magnetic Susceptibility Measurements of Urban Areas in Denizli City and Showing the Distributions of Heavy Metal Pollution

Authors: Ali Aydin

Abstract:

Three hundred and fifty soil samples were collected around the urban and residential area, for the purpose of a magnetic susceptibility study on pollution in Denizli City, Turkiye. Measurements of volume-specific magnetic susceptibility (к) and mass-specific magnetic susceptibility (χ) show a significant variation range from place to place collected soil samples. In this study, we did a primary magnetic study near the high heavy traffic pollution in a part of Denizli city, Turkiye which was said the most polluted city in Aegean Region of Turkey. The magnetic susceptibility measurements increased from the garden area to residential area and reached the high levels near the industrial areas of the city. Magnetic particle concentration and grain size sourced exhaust gasses, and other pollution sources increase with the increasing distance from a residential area, indicating the high traffic road area.

Keywords: magnetic susceptibility, pollution, magnetic particle, Denizli

Procedia PDF Downloads 264
4376 The Effect of Filter Cake Powder on Soil Stability Enhancement in Active Sand Dunes, In the Long and Short Term

Authors: Irit Rutman Halili, Tehila Zvulun, Natali Elgabsi, Revaya Cohen, Shlomo Sarig

Abstract:

Active sand dunes (ASD) may cause significant damage to field crops and livelihood, and therefore, it is necessary to find a treatment that would enhance ADS soil stability. Biological soil crusts (biocrusts) contain microorganisms on the soil surface. Metabolic polysaccharides secreted by biocrust cyanobacteria glue the soil particles into aggregates, thereby stabilizing the soil surface. Filter cake powder (FCP) is a waste by-product in the final stages of the production of sugar from sugarcane, and its disposal causes significant environmental pollution. FCP contains high concentrations of polysaccharides and has recently been shown to be soil stability enhancing agent in ASD. It has been reported that adding FCP to the ASD soil surface by dispersal significantly increases the level of penetration resistance of soil biocrust (PRSB) nine weeks after a single treatment. However, it was not known whether a similar effect could be obtained by administering the FCP in liquid form by means of spraying. It has now been found that spraying a water solution of FCP onto the ASD soil surface significantly increased the level of penetration resistance of soil biocrust (PRSB) three weeks after a single treatment. These results suggest that FCP spraying can be used as a short-term soil stability-enhancing agent for ASD, while administration by dispersal might be more efficient over the long term. Finally, an additional benefit of using FCP as a soil stabilizer, either by dispersal or by spraying, is the reduction in environmental pollution that would otherwise result from the disposal of FCP solid waste.

Keywords: active sand dunes, filter cake powder, biological soil crusts, penetration resistance of soil biocrust

Procedia PDF Downloads 121
4375 Presence of High Concentrations of Toxic Metals from the Collected Soil Samples Due to Excessive E-Waste Burning in the Various Areas of Moradabad City, U.P India

Authors: Aprajita Singh, Anamika Tripathi, Surya P. Dwivedi

Abstract:

Moradabad is a small town in the Northern area of Uttar Pradesh, India. It is situated on the bank of river Ramganga which is also known as ‘Brass City of India’. There is eventually increase in the environmental pollution due to uncontrolled and inappropriate e-waste burning (recycling) activities which have been reported in many areas of Moradabad. In this paper, analysis of toxic heavy metals, causing pollution to the surrounding environment released from the e-waste burning and much other recycling process. All major e-waste burning sites are situated on the banks of the river which is burned in open environmental conditions. Soil samples were collected from seven (n=3) different sites including control site, after digestion of soil samples using triacid mixture, analysis of different toxic metals (Pb, Ar, Hg, Cd, Cr, Cu, Zn, Fe, and Ni) has been carried out with the help of instrument ICP-AAS. After the study, the outcome is that the soil of those areas contains a relatively high level of the toxic metals in order of Cu>Fe>Pb>Cd>Cr>Zn>Ar>Hg. The concentration of Cd, Pb, Cr, Ar and Zn (the majority of samples experimentally proved) exceeded the maximum standard level of WHO. Sequentially this study showed that uncontrolled e-waste processing operations caused serious pollution to local soil and release of toxic metals in the environment is also causing adverse effect on the health of people living in the nearby areas making them more prone to various harmful diseases.

Keywords: brass city, environment pollution, e-waste, toxic heavy metals

Procedia PDF Downloads 278
4374 Some Characteristics and Identification of Fungi Contaminated by Alkomos Cement Factory

Authors: Abdulmajeed Bashir Mlitan, Ethan Hack

Abstract:

Soil samples were collected from and around Alkomos cement factory, Alkomos town, Libya. Soil physiochemical properties were determined. In addition, olive leaves were scanned for their fungal content. This work can conclude that the results obtained for the examined physiochemical characteristics of soil in the area studied prove that cement dust from the Alkomos cement factory in Libya has had a significant impact on the soil. The affected soil properties are pH and total calcium content. These characteristics were found to be higher than those in similar soils from the same area. The increment of soil pH in the same area may be a result of precipitation of cement dust over the years. Different responses were found in each season and each site. For instance, the dominance of fungi of soil and leaves was lowest at 100 m from the factory and the evenness and diversity increased at this site compared to the control area and 250 m from the factory.

Keywords: pollution, soil microbial, alkomos, Libya

Procedia PDF Downloads 576
4373 Analysis of Pollution Caused by the Animal Feed Industry and the Fertilizer Industry Using Rock Magnetic Method

Authors: Kharina Budiman, Adinda Syifa Azhari, Eleonora Agustine

Abstract:

Industrial activities get increase in this globalization era, one of the major impacts of industrial activities is a problem to the environment. This can happen because at the industrial production term will bring out pollutant in the shape of solid, liquid or gas. Normally this pollutant came from some dangerous materials for environment. However not every industry produces the same amount of pollutant, every industry produces different kind of pollution. To compare the pollution impact of industrial activities, soil sample has been taken around the animal feed industry and the fertilizer industry. This study applied the rock magnetic method and used Bartington MS2B to measured magnetic susceptibility (χ) as the physical parameter. This study tested soil samples using the value of susceptibility low frequency (χ lf) and Frequency Dependent (χ FD). Samples only taken in the soil surface with 0-5 cm depth and sampling interval was 20 cm. The animal feed factory has susceptibility low frequency (χ lf) = 111,9 – 325,7 and Frequency Dependent (χ FD) = 0,8 – 3,57 %. And the fertilizer factory has susceptibility low frequency (χ lf) = 187,1 – 494,8 and Frequency Dependent (χ FD) = 1,37 – 2,46 %. Based on the results, the highest value of susceptibility low frequency (χ lf) is the fertilizer factory, but the highest value of Frequency Dependent (FD) is the animal feed factory.

Keywords: industrial, pollution, magnetic susceptibility, χlf, χfd, animal feed industry and fertilizer industry

Procedia PDF Downloads 366
4372 Comparison between Experimental Modeling and HYDRUS-2D for Nitrate Transport through a Saturated Soil Column

Authors: Mohamed Eltarabily, Abdelazim Negm, Chihiro Yoshimura

Abstract:

Recently, the pollution of groundwater from the use of nitrogenous fertilizer is at the increase. Also, due to the increase in area under cultivation and regular use of fertilizer in irrigated agriculture, groundwater pollution from agricultural activities is becoming a major concern. Because of the high mobility of Nitrate (NO3-) in soil which is governed by electrostatic processes, particularly anion exclusion, nitrate can be intercepted by shallow subsurface drainage pipe systems and then discharged offsite into streams, rivers, and lakes causing many hazards. In order to solve these environmental problems associated with nitrate, a better understanding of how NO3- moves through the soil profile under flow conditions is required. In the present paper, the results of a comparative study between experimental and numerical modeling of Nitrate transport through a saturated soil column are presented and analyzed. In order to achieve that, three water fluxes densities; 0.008, 0.007, and 0.006 m sec-1 and N concentration rates 10 mol cm-3 were used. The same concentrations were used in the simulation using HYDRUS-2D. The physical and chemical properties of the collected soil samples were calculated. Besides, the soil texture was determined which was silty sand. Results showed that HYDRUS-2D can successfully predict the relative behavior of N transport in the present experiment. Nitrate concentrations will reach deeper depth with the increase in the water flux. Overall, it was overestimated in the final concentration of (NO3-) in the soil by numerical simulation than by experimental column test. The column experiment is a useful tool for assessing the nitrate concentrations in the soil profile.

Keywords: groundwater, nitrate leaching, HYDRUS-2D, soil column

Procedia PDF Downloads 200