Search results for: electrical resistance method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22118

Search results for: electrical resistance method

22028 A Prediction of Electrical Cost for High-Rise Building Construction

Authors: Picha Sriprachan

Abstract:

The increase in electricity prices affects the cost of high-rise building construction. The objectives of this research are to study the electrical cost, trend of electrical cost and to forecast electrical cost of high-rise building construction. The methods of this research are: 1) to study electrical payment formats, cost data collection methods, and the factors affecting electrical cost of high-rise building construction, 2) to study the quantity and trend of cumulative percentage of the electrical cost, and 3) to forecast the electrical cost for different types of high-rise buildings. The results of this research show that the average proportion between electrical cost and the value of the construction project is 0.87 percent. The proportion of electrical cost for residential, office and commercial, and hotel buildings are closely proportional. If construction project value increases, the proportion of electrical cost and the value of the construction project will decrease. However, there is a relationship between the amount of electrical cost and the value of the construction project. During the structural construction phase, the amount of electrical cost will increase and during structural and architectural construction phase, electrical cost will be maximum. The cumulative percentage of the electrical cost is related to the cumulative percentage of the high-rise building construction cost in the same direction. The amount of service space of the building, number of floors and the duration of the construction affect the electrical cost of construction. The electrical cost of construction forecasted by using linear regression equation is close to the electrical cost forecasted by using the proportion of electrical cost and value of the project.

Keywords: high-rise building construction, electrical cost, construction phase, architectural phase

Procedia PDF Downloads 359
22027 Inversion of Electrical Resistivity Data: A Review

Authors: Shrey Sharma, Gunjan Kumar Verma

Abstract:

High density electrical prospecting has been widely used in groundwater investigation, civil engineering and environmental survey. For efficient inversion, the forward modeling routine, sensitivity calculation, and inversion algorithm must be efficient. This paper attempts to provide a brief summary of the past and ongoing developments of the method. It includes reviews of the procedures used for data acquisition, processing and inversion of electrical resistivity data based on compilation of academic literature. In recent times there had been a significant evolution in field survey designs and data inversion techniques for the resistivity method. In general 2-D inversion for resistivity data is carried out using the linearized least-square method with the local optimization technique .Multi-electrode and multi-channel systems have made it possible to conduct large 2-D, 3-D and even 4-D surveys efficiently to resolve complex geological structures that were not possible with traditional 1-D surveys. 3-D surveys play an increasingly important role in very complex areas where 2-D models suffer from artifacts due to off-line structures. Continued developments in computation technology, as well as fast data inversion techniques and software, have made it possible to use optimization techniques to obtain model parameters to a higher accuracy. A brief discussion on the limitations of the electrical resistivity method has also been presented.

Keywords: inversion, limitations, optimization, resistivity

Procedia PDF Downloads 335
22026 Control Methods Used to Minimize Losses in High-Speed Electrical Machines

Authors: Mohammad Hedar

Abstract:

This paper presents selected topics from the area of high-speed electrical machine control with a focus on loss minimization. It focuses on pulse amplitude modulation (PAM) set-up in order to minimize the inrush current peak. An overview of these machines and the control topologies that have been used with these machines are reported. The critical problem that happens when controlling a high-speed electrical motor is the high current peak in the start-up process, which will cause high power-losses. The main goal of this paper is to clarify how the inrush current peak can be minimized in the start-up process. PAM control method is proposed to use in the frequency inverter, simulation results for PAM & PWM control method, and steps to improve the PAM control are reported. The simulations were performed with data for PMSM (nominal speed: 25 000 min-1, power: 3.1 kW, load: 1.2 Nm).

Keywords: control topology, frequency inverter, high-speed electrical machines, PAM, power losses, PWM

Procedia PDF Downloads 89
22025 Exploring the Techniques of Achieving Structural Electrical Continuity for Gas Plant Facilities

Authors: Abdulmohsen Alghadeer, Fahad Al Mahashir, Loai Al Owa, Najim Alshahrani

Abstract:

Electrical continuity of steel structure members is an essential condition to ensure equipotential and ultimately to protect personnel and assets in industrial facilities. The steel structure is electrically connected to provide a low resistance path to earth through equipotential bonding to prevent sparks and fires in the event of fault currents and avoid malfunction of the plant with detrimental consequences to the local and global environment. The oil and gas industry is commonly establishing steel structure electrical continuity by bare surface connection of coated steel members. This paper presents information pertaining to a real case of exploring and applying different techniques to achieve the electrical continuity in erecting steel structures at a gas plant facility. A project was supplied with fully coated steel members even at the surface connection members that cause electrical discontinuity. This was observed while a considerable number of steel members had already been received at the job site and erected. This made the resolution of the case to use different techniques such as bolt tightening and torqueing, chemical paint stripping and single point jumpers. These techniques are studied with comparative analysis related to their applicability, workability, time and cost advantages and disadvantages.

Keywords: coated Steel, electrical continuity, equipotential bonding, galvanized steel, gas plant facility, lightning protection, steel structure

Procedia PDF Downloads 100
22024 Investigation of Rifampicin and Isoniazid Resistance Mutated Genes in Mycobacterium Tuberculosis Isolated From Patients

Authors: Seyyed Mohammad Amin Mousavi Sagharchi, Alireza Mahmoudi Nasab, Tim Bakker

Abstract:

Introduction: Mycobacterium tuberculosis (MTB) is the most intelligent bacterium that existed in the world to our best knowledge. This bacterium can cause tuberculosis (TB) which is responsible for its spread speed and murder of millions of people around the world. MTB has the practical function to escape from anti-tuberculosis drugs (AT), for this purpose, it handles some mutations in the main genes and creates new patterns for inhibited genes. Method and materials: Researchers have their best tries to safely isolate MTB from the sputum specimens of 35 patients in some hospitals in the Tehran province and detect MTB by culture on Löwenstein-Jensen (LJ) medium and microscopic examination. DNA was extracted from the established bacterial colony by enzymatic extraction method. It was amplified by the polymerase chain reaction (PCR) method, reverse hybridization, and evaluation for detection of resistance genes; generally, researchers apply GenoType MTBDRplus assay. Results: Investigations of results declare us that 21 of the isolated specimens (about 60%) have mutation in rpoB gene, which resisted to rifampicin (most prevalence), and 8 of them (about 22.8%) have mutation in katG or inhA genes which resisted to isoniazid. Also, 4 of them (about 11.4%) don't have any mutation, and 2 of them (about 5.7%) have mutation in every three genes, which makes them resistant to the two drugs mentioned above. Conclusion: Rifampicin and isoniazid are two essential AT that using in the first line of treatment. Resistance in rpoB, and katG, and inhA genes related to mentioned drugs lead to ineffective treatment.

Keywords: mycobacterium tuberculosis, tuberculosis, drug resistance, isoniazid, rifampicin

Procedia PDF Downloads 59
22023 Geoelectical Resistivity Method in Aquifer Characterization at Opic Estate, Isheri-Osun River Basin, South Western Nigeria

Authors: B. R. Faleye, M. I. Titocan, M. P. Ibitola

Abstract:

Investigation was carried out at Opic Estate in Isheri-Osun River Basin environment using Electrical Resistivity method to study saltwater intrusion into a fresh water aquifer system from the proximal estuarine water body. The investigation is aimed at aquifer characterisation using electrical resistivity method in order to provide the depth to which fresh water fit for both domestic and industrial consumption. The 2D Electrical Resistivity and Vertical Electrical Resistivity techniques alongside Laboratory analysis of water samples obtained from the boreholes were adopted. Three traverses were investigated using Wenner and Pole-Dipole array with multi-electrode system consisting of 84 electrodes and a spread of 581 m, 664 m and 830 m were attained on the traverses. The main lithologies represented in the study area are Sand, Clay and Clayey Sand of which Sand constitutes the aquifer in the study area. Vertical Electrical Sounding data obtained at different lateral distance on the traverses have indicated that the water in the aquifer in the subsurface is brackish. Brackish water is represented by lowelectrical resistivity value signature while fresh water is characterized by relatively high electrical resistivity and in some regionfresh water is existent at depth greater than 200 m. Results of laboratory analysis of samples showed that the pH, Salinity, Total Dissolved Solid and Conductivity indicated existence of water with poor quality, indicating that salinity, TDS and Conductivity is higher in the Northern part of the study area. The 2D electrical resistivity and Vertical Electrical Sounding methods indicate that fresh water region is at ≥200m depth. Aquifers not fit for domestic use in the study area occur downwards to about 200 m in depth. In conclusion, it is recommended that wells should be sunkbeyond 220 m for the possible procurement of portable fresh water.

Keywords: 2D electrical resistivity, aquifer, brackish water, lithologies

Procedia PDF Downloads 406
22022 Modern Pedagogy Techniques for DC Motor Speed Control

Authors: Rajesh Kumar, Roopali Dogra, Puneet Aggarwal

Abstract:

Based on a survey conducted for second and third year students of the electrical engineering department at Maharishi Markandeshwar University, India, it was found that around 92% of students felt that it would be better to introduce a virtual environment for laboratory experiments. Hence, a need was felt to perform modern pedagogy techniques for students which consist of a virtual environment using MATLAB/Simulink. In this paper, a virtual environment for the speed control of a DC motor is performed using MATLAB/Simulink. The various speed control methods for the DC motor include the field resistance control method and armature voltage control method. The performance analysis of the DC motor is hence analyzed.

Keywords: DC Motor, field control, pedagogy techniques, speed control, virtual environment, voltage control

Procedia PDF Downloads 402
22021 A Technology of Hot Stamping and Welding of Carbon Reinforced Plastic Sheets Using High Electric Resistance

Authors: Tomofumi Kubota, Mitsuhiro Okayasu

Abstract:

In recent years, environmental problems and energy problems typified by global warming are intensifying, and transportation devices are required to reduce the weight of structural materials from the viewpoint of strengthening fuel efficiency regulations and energy saving. Carbon fiber reinforced plastic (CFRP) used in this research is attracting attention as a structural material to replace metallic materials. Among them, thermoplastic CFRP is expected to expand its application range in terms of recyclability and cost. High formability and weldability of the unidirectional CFRP sheets conducted by a proposed hot stamping process were proposed, in which the carbon fiber reinforced plastic sheets are heated by a designed technique. In this case, the CFRP sheets are heated by the high electric voltage applied through carbon fibers. In addition, the electric voltage was controlled by the area ratio of exposed carbon fiber on the sample surfaces. The lower exposed carbon fiber on the sample surface makes high electric resistance leading to the high sample temperature. In this case, the CFRP sheets can be heated to more than 150 °C. With the sample heating, the stamping and welding technologies can be carried out. By changing the sample temperature, the suitable stamping condition can be detected. Moreover, the proper welding connection of the CFRP sheets was proposed. In this study, we propose a fusion bonding technique using thermoplasticity, high current flow, and heating caused by electrical resistance. This technology uses the principle of resistance spot welding. In particular, the relationship between the carbon fiber exposure rate and the electrical resistance value that affect the bonding strength is investigated. In this approach, the mechanical connection using rivet is also conducted to make a comparison of the severity of welding. The change of connecting strength is reflected by the fracture mechanism. The low and high connecting strength are obtained for the separation of two CFRP sheets and fractured inside the CFRP sheet, respectively. In addition to the two fracture modes, micro-cracks in CFRP are also detected. This approach also includes mechanical connections using rivets to compare the severity of the welds. The change in bond strength is reflected by the destruction mechanism. Low and high bond strengths were obtained to separate the two CFRP sheets, each broken inside the CFRP sheets. In addition to the two failure modes, micro cracks in CFRP are also detected. In this research, from the relationship between the surface carbon fiber ratio and the electrical resistance value, it was found that different carbon fiber ratios had similar electrical resistance values. Therefore, we investigated which of carbon fiber and resin is more influential to bonding strength. As a result, the lower the carbon fiber ratio, the higher the bonding strength. And this is 50% better than the conventional average strength. This can be evaluated by observing whether the fracture mode is interface fracture or internal fracture.

Keywords: CFRP, hot stamping, weliding, deforamtion, mechanical property

Procedia PDF Downloads 99
22020 Resistance Analysis for a Trimaran

Authors: C. M. De Marco Muscat-Fenech, A. M. Grech La Rosa

Abstract:

Importance has been given to resistance analysis for various types of vessels; however explicit guidelines applied to multihull vessels have not been clearly defined. The purpose of this investigation is to highlight the importance of the vessel’s layout in terms of three axes positioning, the transverse (separation), the longitudinal (stagger) and the vertical (draught) with respect to resistance analysis. A vessel has the potential to experience less resistance, at a particular range of speeds, for a vast selection of hull positioning. Many potential layouts create opportunities of various design for both the commercial and leisure market.

Keywords: multihull, reistance, trimaran, vessels

Procedia PDF Downloads 439
22019 Modification of Four Layer through the Thickness Woven Structure for Improved Impact Resistance

Authors: Muhammad Liaqat, Hafiz Abdul Samad, Syed Talha Ali Hamdani, Yasir Nawab

Abstract:

In the current research, the four layers, orthogonal through the thickness, 2D woven, 3D fabric structure was modified to improve the impact resistance of 3D fabric reinforced composites. This was achieved by imparting the auxeticity into four layers through the thickness woven structure. A comparison was made between the standard and modified four layers through the thickness woven structure in terms of auxeticity, penetration and impact resistance. It was found that the modified structure showed auxeticity in both warp and weft direction. It was also found that the penetration resistance of modified sample was less as compared to the standard structure, but impact resistance was improved up to 6.7% of modified four layers through the thickness woven structure.

Keywords: 2D woven, 3D fabrics, auxetic, impact resistance, orthogonal through the thickness

Procedia PDF Downloads 304
22018 Comparison and Effectiveness of Cranial Electrical Stimulation Treatment, Brain Training and Their Combination on Language and Verbal Fluency of Patients with Mild Cognitive Impairment: A Single Subject Design

Authors: Firoozeh Ghazanfari, Kourosh Amraei, Parisa Poorabadi

Abstract:

Mild cognitive impairment is one of the neurocognitive disorders that go beyond age-related decline in cognitive functions, but in fact, it is not so severe which affects daily activities. This study aimed to investigate and compare the effectiveness of treatment with cranial electrical stimulation, brain training and their double combination on the language and verbal fluency of the elderly with mild cognitive impairment. This is a single-subject method with comparative intervention designs. Four patients with a definitive diagnosis of mild cognitive impairment by a psychiatrist were selected via purposive and convenience sampling method. Addenbrooke's Cognitive Examination Scale (2017) was used to assess language and verbal fluency. Two groups were formed with different order of cranial electrical stimulation treatment, brain training by pencil and paper method and their double combination, and two patients were randomly replaced in each group. The arrangement of the first group included cranial electrical stimulation, brain training, double combination and the second group included double combination, cranial electrical stimulation and brain training, respectively. Treatment plan included: A1, B, A2, C, A3, D, A4, where electrical stimulation treatment was given in ten 30-minutes sessions (5 mA and frequency of 0.5-500 Hz) and brain training in ten 30-minutes sessions. Each baseline lasted four weeks. Patients in first group who first received cranial electrical stimulation treatment showed a higher percentage of improvement in the language and verbal fluency subscale of Addenbrooke's Cognitive Examination in comparison to patients of the second group. Based on the results, it seems that cranial electrical stimulation with its effect on neurotransmitters and brain blood flow, especially in the brain stem, may prepare the brain at the neurochemical and molecular level for a better effectiveness of brain training at the behavioral level, and the selective treatment of electrical stimulation solitude in the first place may be more effective than combining it with paper-pencil brain training.

Keywords: cranial electrical stimulation, treatment, brain training, verbal fluency, cognitive impairment

Procedia PDF Downloads 61
22017 Electrochemical Performance of Carbon Nanotube Based Supercapacitor

Authors: Jafar Khan Kasi, Ajab Khan Kasi, Muzamil Bokhari

Abstract:

Carbon nanotube is one of the most attractive materials for the potential applications of nanotechnology due to its excellent mechanical, thermal, electrical and optical properties. In this paper we report a supercapacitor made of nickel foil electrodes, coated with multiwall carbon nanotubes (MWCNTs) thin film using electrophoretic deposition (EPD) method. Chemical vapor deposition method was used for the growth of MWCNTs and ethanol was used as a hydrocarbon source. High graphitic multiwall carbon nanotube was found at 750 C analyzing by Raman spectroscopy. We observed the electrochemical performance of supercapacitor by cyclic voltammetry. The electrodes of supercapacitor fabricated from MWCNTs exhibit considerably small equivalent series resistance (ESR), and a high specific power density. Electrophoretic deposition is an easy method in fabricating MWCNT electrodes for high performance supercapacitor.

Keywords: carbon nanotube, chemical vapor deposition, catalyst, charge, cyclic voltammetry

Procedia PDF Downloads 527
22016 The Effect of Carbon Nanotubes in Copolyamide Nonwovens on the Properties of CFRP Laminates

Authors: Kamil Dydek, Anna Boczkowska, Paulina Latko-Duralek, Rafal Kozera, Michal Salacinski

Abstract:

In recent years there has been increasing interest in many industries, such as the aviation, automotive, and military industries, in Carbon Fibre Reinforced Polymers (CFRP). This is because of the excellent properties of CFRP, which are characterized by very high strength and stiffness in relation to their mass, low density (almost twice as low as aluminum and more than five times as low as steel), and corrosion resistance. However, they do not have sufficient electrical conductivity, which is required in some applications. Therefore, work is underway to improve their electrical conductivity, for example, by incorporating carbon nanotubes (CNTs) into the CFRP structure. CNTs possess excellent properties, such as high electrical conductivity, high aspect ratio, high Young’s modulus, and high tensile strength. An idea developed by our team is a modification of CFRP by the use of thermoplastic nonwovens containing CNTs. Nanocomposite fibers were made from three different masterbatches differing in the content of multi-wall carbon nanotubes, and then nonwovens that differed in areal weight were produced using a thermo-press. The out of autoclave method was used to fabricate the laminates from commercial carbon-epoxy prepreg dedicated to aviation applications - one without the nonwovens (reference) and five containing nonwovens placed between each prepreg layer. The volume of electrical conductivity of the manufactured laminates was measured in three directions. In order to investigate the adhesion between carbon fibers and nonwovens, the microstructure of the produced laminates was observed. The mechanical properties of the CFRP composites were measured in a short-beam shear test. In addition, the influence of thermoplastic nonwovens on the thermos-mechanical properties of laminates was analyzed by Dynamic Mechanical Analysis. The studies were carried out within grant no. DOB-1-3/1/PS/2014 financed by the National Centre for Research and Development in Poland.

Keywords: CFRP, thermoplastic nonwovens, carbon nanotubes, electrical conductivity

Procedia PDF Downloads 100
22015 An Approach for Thermal Resistance Prediction of Plain Socks in Wet State

Authors: Tariq Mansoor, Lubos Hes, Vladimir Bajzik

Abstract:

Socks comfort has great significance in our daily life. This significance even increased when we have undergone a work of low or high activity. It causes the sweating of our body with different rates. In this study, plain socks with differential fibre composition were wetted to saturated level. Then after successive intervals of conditioning, these socks are characterized by thermal resistance in dry and wet states. Theoretical thermal resistance is predicted by using combined filling coefficients and thermal conductivity of wet polymers instead of dry polymer (fibre) in different models. By this modification, different mathematical models could predict thermal resistance at different moisture levels. Furthermore, predicted thermal resistance by different models has reasonable correlation range between (0.84 -0.98) with experimental results in both dry (lab conditions moisture) and wet states. "This work is supported by Technical University of Liberec under SGC-2019. Project number is 21314".

Keywords: thermal resistance, mathematical model, plain socks, moisture loss rate

Procedia PDF Downloads 166
22014 Investigation of Different Stimulation Patterns to Reduce Muscle Fatigue during Functional Electrical Stimulation

Authors: R. Ruslee, H. Gollee

Abstract:

Functional electrical stimulation (FES) is a commonly used technique in rehabilitation and often associated with rapid muscle fatigue which becomes the limiting factor in its applications. The objective of this study is to investigate the effects on the onset of fatigue of conventional synchronous stimulation, as well as asynchronous stimulation that mimic voluntary muscle activation targeting different motor units which are activated sequentially or randomly via multiple pairs of stimulation electrodes. We investigate three different approaches with various electrode configurations, as well as different patterns of stimulation applied to the gastrocnemius muscle: Conventional Synchronous Stimulation (CSS), Asynchronous Sequential Stimulation (ASS) and Asynchronous Random Stimulation (ARS). Stimulation was applied repeatedly for 300 ms followed by 700 ms of no-stimulation with 40 Hz effective frequency for all protocols. Ten able-bodied volunteers (28±3 years old) participated in this study. As fatigue indicators, we focused on the analysis of Normalized Fatigue Index (NFI), Fatigue Time Interval (FTI) and pre-post Twitch-Tetanus Ratio (ΔTTR). The results demonstrated that ASS and ARS give higher NFI and longer FTI confirming less fatigue for asynchronous stimulation. In addition, ASS and ARS resulted in higher ΔTTR than conventional CSS. In this study, we proposed a randomly distributed stimulation method for the application of FES and investigated its suitability for reducing muscle fatigue compared to previously applied methods. The results validated that asynchronous stimulation reduces fatigue, and indicates that random stimulation may improve fatigue resistance in some conditions.

Keywords: asynchronous stimulation, electrode configuration, functional electrical stimulation (FES), muscle fatigue, pattern stimulation, random stimulation, sequential stimulation, synchronous stimulation

Procedia PDF Downloads 281
22013 Correlates of Peer Influence and Resistance to HIV/AIDS Counselling and Testing among Students in Tertiary Institutions in Kano State, Nigeria

Authors: A. S. Haruna, M. U. Tambawal, A. A. Salawu

Abstract:

The psychological impact of peer influence on its individual group members, can make them resist HIV/AIDS counselling and testing. This study investigated the correlate of peer influence and resistance to HIV/AIDS counselling and testing among students in tertiary institutions in Kano state, Nigeria. To achieve this, three null hypotheses were postulated and tested. Cross-Sectional Survey Design was employed in which 1512 sample was selected from a student population of 104,841.Simple Random Sampling was used in the selection. A self-developed 20-item scale called Peer Influence and Psychological Resistance Inventory (PIPRI) was used for data collection. Pearson Product Moment Correlation (PPMCC) via test-retest method was applied to estimate a reliability coefficient of 0.86 for the scale. Data obtained was analyzed using t-test and PPMCC at 0.05 level of confidence. Results reveal 26.3% (397) of the respondents being influenced by their peer group, while 39.8% showed resistance. Also, the t-tests and PPMCC statistics were greater than their respective critical values. This shows that there was a significant gender difference in peer influence and a difference between peer influence and resistance to HIV/AIDS counselling and testing. However, a positive relationship between peer influence and resistance to HIV/AIDS counselling and testing was shown. A major recommendation offered suggests the use of reinforcement and social support for positive attitudes and maintenance of safe behaviour among students who patronize HIV/AIDS counselling.

Keywords: peer group influence, HIV/AIDS counselling and testing, psychological resistance, students

Procedia PDF Downloads 366
22012 Evaluation of Antibiotic Resistance Profiles of Staphlyococci Isolated from Various Clinical Specimens

Authors: Recep Kesli, Merih Simsek, Cengiz Demir, Onur Turkyilmaz

Abstract:

Objective: Goal of this study was to determine the antibiotic resistance of Staphylococcus aureus (S. aureus) and Methicillin resistant staphylococcus aureus (MRSA) strains isolated at Medical Microbiology Laboratory of ANS Application and Research Hospital, Afyon Kocatepe University, Turkey. Methods: S. aureus strains isolated between October 2012 and September 2016, from various clinical specimens were evaluated retrospectively. S. aureus strains were identified by both the conventional methods and automated identification system -VITEK 2 (bio-Mérieux, Marcy l’etoile, France), and Meticillin resistance was verified using oxacillin disk with disk-diffusion method. Antibiotic resistance testing was performed by Kirby-Bauer disc diffusion method according to CLSI criteria, and intermediate susceptible strains were considered as resistant. Results: Seven hundred S.aureus strains which were isolated from various clinical specimens were included in this study. These strains were mostly isolated from blood culture, tissue, wounds and bronchial aspiration. All of 306 (43,7%) were oxacillin resistant. While all the S.aureus strains were found to be susceptible to vancomycin, teicoplanin, daptomycin and linezolid, 38 (9.6 %), 77 (19.5 %), 116 (29.4 %), 152 (38.6 %) and 28 (7.1 %) were found to be resistant aganist to clindamycin, erythromycin, gentamicin, tetracycline and sulfamethoxazole/trimethoprim, retrospectively. Conclusions: Comparing to the Methicillin sensitive staphylococcus aureus (MSSA) strains, increased resistance rates of, trimethoprim-sulfamethoxazole, clindamycin, erythromycin, gentamicin, and tetracycline were observed among the MRSA strains. In this study, the most effective antibiotic on the total of strains was found to be trimethoprim-sulfamethoxazole, the least effective antibiotic on the total of strains was found to be tetracycline.

Keywords: antibiotic resistance, MRSA, Staphylococcus aureus, VITEK 2

Procedia PDF Downloads 219
22011 Effects of Resistance Exercise Training on Blood Profile and CRP in Men with Type 2 Diabetes Mellitus

Authors: Mohsen Salesi, Seyyed Zoheir Rabei

Abstract:

Exercise has been considered a cornerstone of diabetes prevention and treatment for decades, but the benefits of resistance training are less clear. The purpose of this study was to determine the impact of resistance training on blood profile and inflammatory marker (CRP) of type 2 diabetes mellitus people. Thirty diabetic male were recruited (age: 50.34±10.28 years) and randomly assigned to 8 weeks resistance exercise training (n=15) and control groups (n=15). Before and after training blood pressure, weight, lipid profile (TC, TG, LDL-c, and HDL-c) and hs-CRP were measured. The resistance exercise training group took part in supervised 50–80 minutes resistance training sessions, three days a week on non-consecutive days for 8 weeks. Each exercise session included approximately 10 min of warm-up and cool-down periods. Results showed that TG significantly decreased (pre 210.19±9.31 vs. 101.12±7.25, p=0.03) and HDL-c significantly increased (pre 42.37±3.15 vs. 47.50±2.19, p=0.01) after exercise training. However, there was no difference between groups in TC, LDL-c, BMI and weight. In addition, a decrease in fasting blood glucose levels showed significant difference between groups (pre 144.65±5.73 vs. 124.21±6.48 p=0.04). Regular resistance exercise training can improve the lipid profile and reducing the cardiovascular risk factors in T2DM patients.

Keywords: lipid profile, resistance exercise, type 2 diabetes mellitus, men

Procedia PDF Downloads 377
22010 Study of Electrical Properties of An-Fl Based Organic Semiconducting Thin Film

Authors: A.G. S. Aldajani, N. Smida, M. G. Althobaiti, B. Zaidi

Abstract:

In order to exploit the good electrical properties of anthracene and the excellent properties of fluorescein, new hybrid material has been synthesized (An-Fl). Current-voltage measurements were done on a new single-layer ITO/An-FL/Al device of typically 100 nm thickness. Atypical diode behavior is observed with a turn-on voltage of 4.4 V, a dynamic resistance of 74.07 KΩ and a rectification ratio of 2.02 due to unbalanced transport. Results show also that the current-voltage characteristics present three different regimes of the power-law (J~Vᵐ) for which the conduction mechanism is well described with space-charge-limited current conduction mechanism (SCLC) with a charge carrier mobility of 2.38.10⁻⁵cm2V⁻¹S⁻¹. Moreover, the electrical transport properties of this device have been carried out using a dependent frequency study in the range (50 Hz–1.4 MHz) for different applied biases (from 0 to 6 V). At lower frequency, the σdc values increase with bias voltage rising, supporting that the mobile ion can hop successfully to its nearest vacant site. From σac and impedance measurements, the equivalent electrical circuit is evidenced, where the conductivity process is coherent with an exponential trap distribution caused by structural defects and/or chemical impurities.

Keywords: semiconducting polymer, conductivity, SCLC, impedance spectroscopy

Procedia PDF Downloads 152
22009 A Program of Data Analysis on the Possible State of the Antibiotic Resistance in Bangladesh Environment in 2019

Authors: S. D. Kadir

Abstract:

Background: Antibiotics have always been at the centrum of the revolution of modern microbiology. Micro-organisms and its pathogenicity, resistant organisms, inappropriate or over usage of various types of antibiotic agents are fuelled multidrug-resistant pathogenic organisms. Our present time review report mainly focuses on the therapeutic condition of antibiotic resistance and the possible roots behind the development of antibiotic resistance in Bangladesh in 2019. Methodology: The systemic review has progressed through a series of research analyses on various manuscripts published on Google Scholar, PubMed, Research Gate, and collected relevant information from established popular healthcare and diagnostic center and its subdivisions all over Bangladesh. Our research analysis on the possible assurance of antibiotic resistance been ensured by the selective medical reports and on random assay on the extent of individual antibiotic in 2019. Results: 5 research articles, 50 medical report summary, and around 5 patients have been interviewed while going through the estimation process. We have prioritized research articles where the research analysis been performed by the appropriate use of the Kirby-Bauer method. Kirby-Bauer technique is preferred as it provides greater efficiency, ensures lower performance expenditure, and supplies greater convenience and simplification in the application. In most of the reviews, clinical and laboratory standards institute guidelines were strictly followed. Most of our reports indicate significant resistance shown by the Beta-lactam drugs. Specifically by the derivatives of Penicillin's, Cephalosporin's (rare use of the first generation Cephalosporin and overuse of the second and third generation of Cephalosporin and misuse of the fourth generation of Cephalosporin), which are responsible for almost 67 percent of the bacterial resistance. Moreover, approximately 20 percent of the resistance was due to the fact of drug pumping from the bacterial cell by tetracycline and sulphonamides and their derivatives. Conclusion: 90 percent of the approximate antibiotic resistance is due to the usage of relative and true broad-spectrum antibiotics. The environment has been created by the following circumstances where; the excessive usage of broad-spectrum antibiotics had led to a condition where the disruption of native bacteria and a series of anti-microbial resistance causing a disturbance of the surrounding environments in medium, leading to a state of super-infection.

Keywords: antibiotics, antibiotic resistance, Kirby Bauer method, microbiology

Procedia PDF Downloads 100
22008 Effect of Al Particles on Corrosion Resistance of Electrodeposited Ni-Al Composite Coatings

Authors: M. Adabi, A. Amadeh

Abstract:

Electrodeposition is known as a relatively economical and simple technique commonly used for preparation of metallic and composite coatings. Electrodeposited composite coatings produced by dispersion of particles into the metal matrix show better properties than pure metallic coatings. In recent years, many researches were carried out on Ni matrix coatings reinforced by ceramic particles such as Ni-SiC, Ni-Al2O3, Ni-WC, Ni-CeO2, Ni-ZrO2, Ni-TiO2 to improve their corrosion and wear resistance. However, little effort has been made on incorporation of metal particles into Ni matrix. Therefore, the aim of this work was to produce Ni–Al composite coating on 6061 aluminum alloy by pulse plating and to investigate the effects of electrodeposition parameters, e.g. concentration Al particles in the electrolyte and current density, on composition and corrosion resistance of the composite coatings. The morphology and corrosion behavior of the coated 6061 Al alloys were studied by means of scanning electron microscope (SEM) equipped with energy dispersive X-ray spectrometer (EDS) and potentiodynamic polarization method, respectively. The results indicated that the addition of Al particles up to 50 g L-1 increased the amount of co-deposited Al particles in nickel matrix. It is also observed that the incorporation of Al particles decreased with increasing current density. Meanwhile, the corrosion resistance of the coatings shows an increment by increasing the content of Al particles into nickel matrix.

Keywords: Ni-Al composite coating, current density, corrosion resistance

Procedia PDF Downloads 460
22007 Operation Parameters of Vacuum Cleaned Filters

Authors: Wilhelm Hoeflinger, Thomas Laminger, Johannes Wolfslehner

Abstract:

For vacuum cleaned dust filters, used e. g. in textile industry, there exist no calculation methods to determine design parameters (e. g. traverse speed of the nozzle, filter area...). In this work a method to calculate the optimum traverse speed of the nozzle of an industrial-size flat dust filter at a given mean pressure drop and filter face velocity was elaborated. Well-known equations for the design of a cleanable multi-chamber bag-house-filter were modified in order to take into account a continuously regeneration of a dust filter by a nozzle. Thereby, the specific filter medium resistance and the specific cake resistance values are needed which can be derived from filter tests under constant operation conditions. A lab-scale filter test rig was used to derive the specific filter media resistance value and the specific cake resistance value for vacuum cleaned filter operation. Three different filter media were tested and the determined parameters were compared to each other.

Keywords: design of dust filter, dust removing, filter regeneration, operation parameters

Procedia PDF Downloads 353
22006 Electrical Equivalent Analysis of Micro Cantilever Beams for Sensing Applications

Authors: B. G. Sheeparamatti, J. S. Kadadevarmath

Abstract:

Microcantilevers are the basic MEMS devices, which can be used as sensors, actuators, and electronics can be easily built into them. The detection principle of microcantilever sensors is based on the measurement of change in cantilever deflection or change in its resonance frequency. The objective of this work is to explore the analogies between the mechanical and electrical equivalent of microcantilever beams. Normally scientists and engineers working in MEMS use expensive software like CoventorWare, IntelliSuite, ANSYS/Multiphysics, etc. This paper indicates the need of developing the electrical equivalent of the MEMS structure and with that, one can have a better insight on important parameters, and their interrelation of the MEMS structure. In this work, considering the mechanical model of the microcantilever, the equivalent electrical circuit is drawn and using a force-voltage analogy, it is analyzed with circuit simulation software. By doing so, one can gain access to a powerful set of intellectual tools that have been developed for understanding electrical circuits. Later the analysis is performed using ANSYS/Multiphysics - software based on finite element method (FEM). It is observed that both mechanical and electrical domain results for a rectangular microcantilevers are in agreement with each other.

Keywords: electrical equivalent circuit analogy, FEM analysis, micro cantilevers, micro sensors

Procedia PDF Downloads 370
22005 Determination of Identification and Antibiotic Resistance Rates of Pseudomonas aeruginosa Strains from Various Clinical Specimens in a University Hospital for Two Years, 2013-2015

Authors: Recep Kesli, Gulsah Asik, Cengiz Demir, Onur Turkyilmaz

Abstract:

Objective: Pseudomonas aeruginosa (P. aeruginosa) is an important nosocomial pathogen which causes serious hospital infections and is resistant to many commonly used antibiotics. P. aeruginosa can develop resistance during therapy and also it is very resistant to disinfectant chemicals. It may be found in respiratory support devices in hospitals. In this study, the antibiotic resistance of P. aeruginosa strains isolated from bronchial aspiration samples was evaluated retrospectively. Methods: Between October 2013 and September 2015, a total of 318 P. aeruginosa were isolated from clinical samples obtained from various intensive care units and inpatient patients hospitalized at Afyon Kocatepe University, ANS Practice and Research Hospital. Isolated bacteria identified by using both the conventional methods and automated identification system-VITEK 2 (bioMerieux, Marcy l’etoile France). Antibacterial resistance tests were performed by using Kirby-Bauer disc (Oxoid, Hampshire, England) diffusion method following the recommendations of CLSI. Results: Antibiotic resistance rates of identified 318 P. aeruginosa strains were found as follows for tested antibiotics; 32 % amikacin, 42% gentamicin, 43% imipenem, 43% meropenem, 50% ciprofloxacin, 57% levofloxacin, 38% cefepime, 63% ceftazidime, and 85% piperacillin/tazobactam. Conclusion: Resistance profiles change according to years and provinces for P. aeruginosa, so these findings should be considered empirical treatment choices. In this study, the highest and lowest resistance rates found against piperacillin/tazobactam % 85, and amikacin %32.

Keywords: Pseudomonas aeruginosa, antibiotic resistance rates, intensive care unit, Pseudomonas spp.

Procedia PDF Downloads 261
22004 The Influence of Psychological Capital Dimensions to Performance through OCB with Resistance to Change as Moderating Variable

Authors: Bambang Suko Priyono, Tristiana Rijanti

Abstract:

This study examines the influence of Psychological Capital Dimensions to Organizational Citizenship Behavior. There are four dimensions of Psychological Capital such as hope, optimism, resilience, and self-efficacy. It also tests the moderation effect of Resistance to Change in the relation between Psychological Capital’s dimensions and Organizational Citizenship Behavior, and the influence of Organizational Citizenship Behavior to employees’ performance. The data from the chosen 160 respondents from Public Service Institution is processed using multiple regression and interaction method. The study results in: 1) Hope positively significantly influences Organizational Citizenship Behavior, 2) Optimism positively significantly influences Organizational Citizenship Behavior, 3) Resilience positively significantly influences Organizational Citizenship Behavior, 4) Self-efficacy positively significantly influences Organizational Citizenship Behavior, 5) Resistance to change is moderating variable between hope and Organizational Citizenship Behavior, 6) Resistance to change is moderating variable between self-efficacy and Organizational Citizenship Behavior, 7) Organizational Citizenship Behavior positively significantly influences performance. On the contrary, resistance to change as a moderating variable is proven for hope and resilience.

Keywords: organizational citizenship behavior, performance, psychological capital’s dimensions, and resistance to change

Procedia PDF Downloads 655
22003 Improvement of Wear Resistance of 356 Aluminum Alloy by High Energy Electron Beam Irradiation

Authors: M. Farnush

Abstract:

This study is concerned with the microstructural analysis and improvement of wear resistance of 356 aluminum alloy by a high energy electron beam. Shock hardening on material by high energy electron beam improved wear resistance. Particularly, in the surface of material by shock hardening, the wear resistance was greatly enhanced to 29% higher than that of the 356 aluminum alloy substrate. These findings suggested that surface shock hardening using high energy electron beam irradiation was economical and useful for the development of surface shock hardening with improved wear resistance.

Keywords: Al356 alloy, HEEB, wear resistance, frictional characteristics

Procedia PDF Downloads 288
22002 Detection of Intravenous Infiltration Using Impedance Parameters in Patients in a Long-Term Care Hospital

Authors: Ihn Sook Jeong, Eun Joo Lee, Jae Hyung Kim, Gun Ho Kim, Young Jun Hwang

Abstract:

This study investigated intravenous (IV) infiltration using bioelectrical impedance for 27 hospitalized patients in a long-term care hospital. Impedance parameters showed significant differences before and after infiltration as follows. First, the resistance (R) after infiltration significantly decreased compared to the initial resistance. This indicates that the IV solution flowing from the vein due to infiltration accumulates in the extracellular fluid (ECF). Second, the relative resistance at 50 kHz was 0.94 ± 0.07 in 9 subjects without infiltration and was 0.75 ± 0.12 in 18 subjects with infiltration. Third, the magnitude of the reactance (Xc) decreased after infiltration. This is because IV solution and blood components released from the vein tend to aggregate in the cell membrane (and acts analogously to the linear/parallel circuit), thereby increasing the capacitance (Cm) of the cell membrane and reducing the magnitude of reactance. Finally, the data points plotted in the R-Xc graph were distributed on the upper right before infiltration but on the lower left after infiltration. This indicates that the infiltration caused accumulation of fluid or blood components in the epidermal and subcutaneous tissues, resulting in reduced resistance and reactance, thereby lowering integrity of the cell membrane. Our findings suggest that bioelectrical impedance is an effective method for detection of infiltration in a noninvasive and quantitative manner.

Keywords: intravenous infiltration, impedance, parameters, resistance, reactance

Procedia PDF Downloads 152
22001 Major Histocompatibility Complex (MHC) Polymorphism and Disease Resistance

Authors: Oya Bulut, Oguzhan Avci, Zafer Bulut, Atilla Simsek

Abstract:

Livestock breeders have focused on the improvement of production traits with little or no attention for improvement of disease resistance traits. In order to determine the association between the genetic structure of the individual gene loci with possibility of the occurrence and the development of diseases, MHC (major histocompatibility complex) are frequently used. Because of their importance in the immune system, MHC locus is considered as candidate genes for resistance/susceptibility against to different diseases. Major histocompatibility complex (MHC) molecules play a critical role in both innate and adaptive immunity and have been considered candidate molecular markers of an association between polymorphisms and resistance/susceptibility to diseases. The purpose of this study is to give some information about MHC genes become an important area of study in recent years in terms of animal husbandry and determine the relation between MHC genes and resistance/susceptibility to disease.

Keywords: MHC, polymorphism, disease, resistance

Procedia PDF Downloads 604
22000 Evaluation of Antimicrobial Susceptibility Profile of Urinary Tract Infections in Massoud Medical Laboratory: 2018-2021

Authors: Ali Ghorbanipour

Abstract:

The aim of this study is to investigate the drug resistance pattern and the value of the MIC (minimum inhibitory concentration)method to reduce the impact of infectious diseases and the slow development of resistance. Method: The study was conducted on clinical specimens collected between 2018 to 2021. identification of isolates and antibiotic susceptibility testing were performed using conventional biochemical tests. Antibiotic resistance was determined using kibry-Bauer disk diffusion and MIC by E-test methods comparative with microdilution plate elisa method. Results were interpreted according to CLSI. Results: Out of 249600 different clinical specimens, 18720 different pathogenic bacteria by overall detection ratio 7.7% were detected. Among pathogen bacterial were Gram negative bacteria (70%,n=13000) and Gram positive bacteria(30%,n=5720).Medically relevant gram-negative bacteria include a multitude of species such as E.coli , Klebsiella .spp , Pseudomonas .aeroginosa , Acinetobacter .spp , Enterobacterspp ,and gram positive bacteria Staphylococcus.spp , Enterococcus .spp , Streptococcus .spp was isolated . Conclusion: Our results highlighted that the resistance ratio among Gram Negative bacteria and Gram positive bacteria with different infection is high it suggest constant screening and follow-up programs for the detection of antibiotic resistance and the value of MIC drug susceptibility reporting that provide a new way to the usage of resistant antibiotic in combination with other antibiotics or accurate weight of antibiotics that inhibit or kill bacteria. Evaluation of wrong medication in the expansion of resistance and side effects of over usage antibiotics are goals. Ali ghorbanipour presently working as a supervision at the microbiology department of Massoud medical laboratory. Iran. Earlier, he worked as head department of pulmonary infection in firoozgarhospital, Iran. He received master degree in 2012 from Fergusson College. His research prime objective is a biologic wound dressing .to his credit, he has Published10 articles in various international congresses by presenting posters.

Keywords: antimicrobial profile, MIC & MBC Method, microplate antimicrobial assay, E-test

Procedia PDF Downloads 106
21999 Fire Resistance Capacity of Reinforced Concrete Member Strengthened by Fiber Reinforced Polymer

Authors: Soo-Yeon Seo, Jong-Wook Lim, Se-Ki Song

Abstract:

Currently, FRP (Fiber Reinforced Polymer) materials have been widely used for reinforcement of building structural members. However, since the FRP and the epoxy material for attaching it have very low resistance to heat, there is a problem in application where high temperature is an issue. In this paper, the resistance performance of FRP member made of carbon fiber at high temperature was investigated through experiment under temperature change. As a result, epoxy encapsulating FRP is damaged at not high temperatures, and the fibers are degraded. Therefore, when reinforcing a structure using FRP, a separate refractory heat treatment is necessary. The use of a 30 mm thick calcium silicate board as a fireproofing method can protect FRP up to 600ᵒC outside temperature.

Keywords: FRP (Fiber Reinforced Polymer), high temperature, experiment under temperature change, calcium silicate board

Procedia PDF Downloads 366