Search results for: digestion rate
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8297

Search results for: digestion rate

5357 A Sliding Mesh Technique and Compressibility Correction Effects of Two-Equation Turbulence Models for a Pintle-Perturbed Flow Analysis

Authors: J. Y. Heo, H. G. Sung

Abstract:

Numerical simulations have been performed for assessment of compressibility correction of two-equation turbulence models suitable for large scale separation flows perturbed by pintle strokes. In order to take into account pintle movement, a sliding mesh method was applied. The chamber pressure, mass flow rate, and thrust have been analyzed, and the response lag and sensitivity at the chamber and nozzle were estimated for a movable pintle. The nozzle performance for pintle reciprocating as its insertion and extraction processes, were analyzed to better understand the dynamic performance of the pintle nozzle.

Keywords: pintle, sliding mesh, turbulent model, compressibility correction

Procedia PDF Downloads 490
5356 Analysis of Syngas Combustion Characteristics in Can-Type Combustor using CFD

Authors: Norhaslina Mat Zian, Hasril Hasini, Nur Irmawati Om

Abstract:

This study focuses on the flow and combustion behavior inside gas turbine combustor used in thermal power plant. The combustion process takes place using synthetic gas and the baseline solution was made on gas turbine combustor firing natural gas (100% Methane) as the main source of fuel. Attention is given to the effect of the H2/CO ratio on the variation of the flame profile, temperature distribution, and emissions. The H2/CO ratio varies in the range of 10-80 % and the CH4 values are fixed 10% for each case. While keeping constant the mass flow rate and operating pressure, the preliminary result shows that the flow inside the can-combustor is highly swirling which indicates good mixing of fuel and air prior to the entrance of the mixture to the main combustion zone.

Keywords: cfd, combustion, flame, syngas

Procedia PDF Downloads 284
5355 Predictive Maintenance Based on Oil Analysis Applicable to Transportation Fleets

Authors: Israel Ibarra Solis, Juan Carlos Rodriguez Sierra, Ma. del Carmen Salazar Hernandez, Isis Rodriguez Sanchez, David Perez Guerrero

Abstract:

At the present paper we try to explain the analysis techniques use for the lubricating oil in a maintenance period of a city bus (Mercedes Benz Boxer 40), which is call ‘R-24 route’, line Coecillo Centro SA de CV in Leon Guanajuato, to estimate the optimal time for the oil change. Using devices such as the rotational viscometer and the atomic absorption spectrometer, they can detect the incipient form when the oil loses its lubricating properties and, therefore, cannot protect the mechanical components of diesel engines such these trucks. Timely detection of lost property in the oil, it allows us taking preventive plan maintenance for the fleet.

Keywords: atomic absorption spectrometry, maintenance, predictive velocity rate, lubricating oils

Procedia PDF Downloads 570
5354 Autologous Blood for Conjunctival Autograft Fixation in Primary Pterygium Surgery: a Systematic Review and Meta-Analysis

Authors: Mohamed Abdelmongy

Abstract:

Autologous Blood for Conjunctival Autograft Fixation in Primary Pterygium Surgery: A Systematic Review and Meta-analysis Hossam Zein1,2, Ammar Ismail1,3, Mohamed Abdelmongy1,4, Sherif Elsherif1,5,6, Ahmad Hassanen1,4, Basma Muhammad2, Fathy Assaf1,3, Ahmed Elsehili1,7, Ahmed Negida1,7, Shin Yamane9, Mohamed M. Abdel-Daim8,9 and Kazuaki Kadonosono9 https://www.ncbi.nlm.nih.gov/pubmed/30277146 BACKGROUND: Pterygium is a benign ocular lesion characterized by triangular fibrovascular growth of conjunctival tissue over the cornea. Patients complain of the bad cosmetic appearance, ocular surface irritation and decreased visual acuity if the pterygium is large enough to cause astigmatism or encroach on the pupil. The definitive treatment of pterygium is surgical removal. However, outcomes are compromised by recurrence . The aim of the current study is to systematically review the current literature to explore the efficacy and safety of fibrin glue, suture and autologous blood coagulum for conjunctivalautograft fixation in primary pterygium surgery. OBJECTIVES: To assess the effectiveness of fibrin glue compared to sutures and autologous blood coagulum in conjunctival autografting for the surgical treatment of pterygium. METHODS: During preparing this manuscript, we followed the steps adequately illustrated in the Cochrane Handbook for Systematic Reviews of Interventions version 5.3, and reported it according to the preferred reporting of systematic review and meta-analysis (PRISMA) statement guidelines. We searched PubMed, Ovid (both through Medline), ISI Web of Science, and Cochrane Central Register of Controlled Trials (Central) through January 2017, using the following keywords “Pterygium AND (blood OR glue OR suture)” SELECTION CRITERIA: We included all randomized controlled trials (RCTs) that met the following criteria: 1) comparing autologous blood vs fibrin glue for conjunctivalautograft fixation in primary pterygium surgery 2) comparing autologous blood vs sutures for conjunctivalautograft fixation in primary pterygium surgery DATA COLLECTION AND ANALYSIS: Two review authors independently screened the search results, assessed trial quality, and extracted data using standard methodological procedures expected by Cochrane. The extracted data included A) study design, sample size, and main findings, B) Baseline characteristics of patients included in this review including their age, sex, pterygium site and grade, and graft size. C) Study outcomes comprising 1) primary outcomes: recurrence rate 2) secondary outcomes: graft stability outcomes (graft retraction, graft displacement), operation time (min) and postoperative symptoms (pain, discomfort, foreign body sensation, tearing) MAIN RESULTS: We included 7 RCTs and The review included662eyes (Blood: 293; Glue: 198; Suture: 171). we assess the 1) primary outcomes: recurrence rate 2) secondary outcomes: graft stability outcomes (graft retraction, graft displacement), operation time (min) and postoperative symptoms (pain, discomfort, foreign body sensation, tearing) CONCLUSIONS: Autologous blood for conjunctivalautograft fixation in pterygium surgery is associated with lower graft stability than fibrin glue or sutures. It was not inferior to fibrin glue or sutures regarding recurrence rate. The overall quality of evidence is low. Further well designed RCTs are needed to fully explore the efficacy of this new technique.

Keywords: pterygium, autograft, ophthalmology, cornea

Procedia PDF Downloads 161
5353 Employability Skills: The Route to Achieve Demographic Dividend in India

Authors: Malathi Iyer, Jayesh Vaidya

Abstract:

The demographic dividend of India will last for thirty years from now. However, reduction in birth rate, an increase in working population, improvements in medicine and better health practices lead to an ever-expanding elderly population, bringing additional burden to the economy and putting an end to the demographic dividend. To reap the dividend India needs to train the youth for employability. The need of the hour is to improve their life skills which lead the youth to become industrious and have continuous employment. The study will be conducted in perceiving the skill gaps that exist in commerce students for employability. The analysis results indicate the relation between the core study and the right skills for the workforce, with the steps that are taken to open the window for the demographic dividend.

Keywords: demographic dividend, life skills, employability, workforce

Procedia PDF Downloads 523
5352 Development of a Table-Top Composite Wire Fabrication System for Additive Manufacturing

Authors: Krishna Nand, Mohammad Taufik

Abstract:

Fused Filament Fabrication (FFF) is one of the most popular additive manufacturing (AM) technology. In FFF technology, a wire form material (filament) is fed inside a heated chamber, where it gets converted into semi-solid form and extruded out of a nozzle to be deposited on the build platform to fabricate the part. FFF technology is expanding and covering the market at a very rapid rate, so the need of raw materials for 3D printing is also increasing. The cost of 3D printing is directly affected by filament cost. To make 3D printing more economic, a compact and portable filament/wire extrusion system is needed. Wire extrusion systems to extrude ordinary wire/filament made of a single material are available in the market. However, extrusion system to make a composite wire/filament are not available. Hence, in this study, initial efforts have been made to develop a table-top composite wire extruder. The developed system is consisted of mechanical parts, electronics parts, and a control system. A multiple channel hopper, extrusion screw, melting chamber and nozzle, cooling zone, and spool winder are some mechanical parts. While motors, heater, temperature sensor, cooling fans are some electronics parts, which are used to develop this system. A control board has been used to control the various process parameters like – temperature and speed of motors. For the production of composite wire/filament, two different materials could be fed through two channels of hopper, which will be mixed and carried to the heated zone by extrusion screw. The extrusion screw is rotated by a motor, and the speed of this motor will be controlled by the controller as per the requirement of material extrusion rate. In the heated zone, the material will melt with the help of a heating element and extruded out of the nozzle in the form of wire. The developed system occupies less floor space due to the vertical orientation of its heating chamber. It is capable to extrude ordinary filament as well as composite filament, which are compatible with 3D printers available in the market. Further, the developed system could be employed in the research and development of materials, processing, and characterization for 3D printer. The developed system presented in this study could be a better choice for hobbyists and researchers dealing with the fused filament fabrication process to reduce the 3D printing cost significantly by recycling the waste material into 3D printer feed material. Further, it could also be explored as a better alternative for filament production at the commercial level.

Keywords: additive manufacturing, 3D Printing, filament extrusion, pellet extrusion

Procedia PDF Downloads 168
5351 The External Debt in the Context of Economic Growth: The Sample of Turkey

Authors: Ayşen Edirneligil, Mehmet Mucuk

Abstract:

In developing countries, one of the most important restrictions about the economic growth is the lack of national savings which are supposed to finance the investments. In order to overcome this restriction and achieve the higher rate of economic growth by increasing the level of output, countries choose the external borrowing. However, there is a dispute in the literature over the correlation between external debt and economic growth. The aim of this study is to examine the effects of external debt on Turkish economic growth by using VAR analysis with the quarterly data over the period of 2002:01-2014:04. In this respect, Johansen Cointegration Test, Impulse- Response Function and Variance Decomposition Tests will be used for analyses. Empirical findings show that there is no cointegration in the long run.

Keywords: external debt, economic growth, Turkish economy, time series analysis

Procedia PDF Downloads 399
5350 Uranium Adsorption Using a Composite Material Based on Platelet SBA-15 Supported Tin Salt Tungstomolybdophosphoric Acid

Authors: H. Aghayan, F. A. Hashemi, R. Yavari, S. Zolghadri

Abstract:

In this work, a new composite adsorbent based on a mesoporous silica SBA-15 with platelet morphology and tin salt of tungstomolybdophosphoric (TWMP) acid was synthesized and applied for uranium adsorption from aqueous solution. The sample was characterized by X-ray diffraction, Fourier transfer infra-red, and N2 adsorption-desorption analysis, and then, effect of various parameters such as concentration of metal ions and contact time on adsorption behavior was examined. The experimental result showed that the adsorption process was explained by the Langmuir isotherm model very well, and predominant reaction mechanism is physisorption. Kinetic data of adsorption suggest that the adsorption process can be described by the pseudo second-order reaction rate model.

Keywords: platelet SBA-15, tungstomolybdophosphoric acid, adsorption, uranium ion

Procedia PDF Downloads 188
5349 Dispositional Loneliness and Mental Health of the Elderly in Cross River State, Nigeria

Authors: Peter Unoh Bassey

Abstract:

The study is predicated on the current trend of the rate of dispositional loneliness experienced by the elderly in society today as a result of the breakdown in the family attachment patterns, loss of close associates, and interpersonal conflicts. The research adopted the ex-post facto research design through a survey data collected from a total of 500 elderly comprising of both retirees and community-based elders. Both the stratified and simple sampling techniques were used to select the sample. Based on the findings, it was recommended that the elderly should be trained in acquiring specific attachment styles as well as be trained in developing appropriate social skills to counter loneliness.

Keywords: dispositional loneliness, mental health, elderly, cross river state

Procedia PDF Downloads 154
5348 Lactobacillus rhamnosus GG Increases the Re-Epithelialization Rate of Model Wounds by Stimulating Keratinocyte Migration in Ex-Vivo

Authors: W. Mohammedsaeed, A. J. Mcbain, S. M. Cruickshank, C. A. O’Neill

Abstract:

Many studies have demonstrated the importance of probiotics and their potential therapeutic effects within the gut. Recently, the possible therapeutic effects of probiotics in other tissues have also begun to be investigated. Comparatively few studies have evaluated the use of topical probiotics in relation to the skin. In this study, we have conducted preliminary investigations into whether a well-known probiotic, Lactobacillus rhamnosus GG (LGG), can increase the rate of re-epithelialization in a model wound. Full-thickness skin was obtained from individuals undergoing elective cosmetic surgery. This skin was wounded using excisional punch and cultured using a serum-free medium, either in the presence or absence of L. rhamnosus GG lysate. Histological staining of the sections was performed with Haematoxylin& Eosin E to quantify “epithelial tongue length”. This is the length of the new epithelial ‘tongue’ that grows and covers the exposed dermis at the inner wound edges. The length of the new epithelial ‘tongue’ was compared in untreated section and section treated with and L. rhamnosus GG made using108CFU/ml bacterial cells. L. rhamnosus GG lysate enhanced significantly the re-epithelialisation of treated wounds compared with that of untreated wounds (P=0.005, n=3). Tongue length, at day 1 was 7.55μm 0.15, at day 3 it was 18.5μm 0.25 and at day 7 was 22.9μm 0.35. These results can be compared with untreated cultures in which tongue length was 3.25μm 0.35, day 3 was 9.65μm 0.25 and day 7 was 13.5μm 0.15 post-wounding. In ex-vivo proliferation and migration cells were measured by determining the expression of nuclear proliferation marker Ki-67 and the expression of Phosphorylated cortactin respectively demonstrated that L. rhamnosus GG significantly increased NHEK proliferation and migration rates relative to controls. However, the dominant mechanism was migration because in ex-vivo skin treated with the L. rhamnosus GG up-regulated the gene expression of the chemokine receptor and ligands CXCR2 and CXCL2 comparing with controls (P=0.02, P=0.03 respectively, n=3). High levels of CXCL2/CXCL2 have already been implicated in multiple aspects of stimulation of wound healing through activation of keratinocyte migration. These data demonstrate that lysates from Lactobacillus rhamnosus GG increase re-epithelialization by stimulation of keratinocyte migration. The current study identifies the partial mechanism that contribute to stimulating the wound-healing process ex vivo in response to L. rhamnosus GG lysate is an increase in the production of CXCL2/ CXCR2 in ex vivo models. The use of probiotic lysates potentially offers new options to develop treatments that could improve wound healing.

Keywords: Lactobacillus rhamnosus GG, wounds, migration, lysate

Procedia PDF Downloads 329
5347 Settlement Network Supplying Energy

Authors: Balázs Kulcsár

Abstract:

Few people now doubt the future of the global energy transition. The only question is whether the pace of renewables' penetration will be sufficient to compete with the rate of warming. Dynamic changes are also taking place in the Hungarian electricity system. In addition to nuclear power, which provides the basic electricity supply, the most dynamic is solar power, which is largely small-scale and residential. The emergence of solar power is outlining the emergence of energy production and supply fabric of municipalities. This creates the potential for over-producing municipalities to supply the electricity needs of neighboring settlements with lower production beyond renewables. By taking advantage of this energy sharing, electricity supply based on pure renewables can be achieved more quickly.

Keywords: renewable energy, energy geography, self-sufficiency, energy transition

Procedia PDF Downloads 181
5346 Assessment of Online Web-Based Learning for Enhancing Student Grades in Chemistry

Authors: Ian Marc Gealon Cabugsa, Eleanor Pastrano Corcino, Gina Lapaza Montalan

Abstract:

This study focused on the effect of Online Web-Learning (OWL) in the performance of the freshmen Civil Engineering Students of Ateneo de Davao University in their Chem 12 subject. The grades of the students that were required to use OWL were compared to students without OWL. The result of the study suggests promising result for the use of OWL in increasing the performance rate of students taking up Chem 12. Furthermore, there was a positive correlation between the final grade and OWL grade of the students that had OWL. While the majority of the students find OWL to be helpful in supporting their chemistry knowledge needs, most of them still prefer to learn using the traditional face-to-face instruction.

Keywords: chemistry education, enhanced performance, engineering chemistry, online web-based learning

Procedia PDF Downloads 374
5345 Poly(ε-caprolactone)/Halloysite Nanotube Nanocomposites Scaffolds for Tissue Engineering

Authors: Z. Terzopoulou, I. Koliakou, D. Bikiaris

Abstract:

Tissue engineering offers a new approach to regenerate diseased or damaged tissues such as bone. Great effort is devoted to eliminating the need of removing non-degradable implants at the end of their life span, with biodegradable polymers playing a major part. Poly(ε-caprolactone) (PCL) is one of the best candidates for this purpose due to its high permeability, good biodegradability and exceptional biocompatibility, which has stimulated extensive research into its potential application in the biomedical fields. However, PCL degrades much slower than other known biodegradable polymers and has a total degradation of 2-4 years depending on the initial molecular weight of the device. This is due to its relatively hydrophobic character and high crystallinity. Consequently, much attention has been given to the tunable degradation of PCL to meet the diverse requirements of biomedicine. Poly(ε-caprolactone) (PCL) is a biodegradable polyester that lacks bioactivity, so when used in bone tissue engineering, new bone tissue cannot bond tightly on the polymeric surface. Therefore, it is important to incorporate reinforcing fillers into PCL matrix in order to result in a promising combination of bioactivity, biodegradability, and strength. Natural clay halloysite nanotubes (HNTs) were incorporated into PCL polymeric matrix, via in situ ring-opening polymerization of caprolactone, in concentrations 0.5, 1 and 2.5 wt%. Both unmodified and modified with aminopropyltrimethoxysilane (APTES) HNTs were used in this study. The effect of nanofiller concentration and functionalization with end-amino groups on the physicochemical properties of the prepared nanocomposites was studied. Mechanical properties were found enhanced after the incorporation of nanofillers, while the modification increased further the values of tensile and impact strength. Thermal stability of PCL was not affected by the presence of nanofillers, while the crystallization rate that was studied by Differential Scanning Calorimetry (DSC) and Polarized Light Optical Microscopy (POM) increased. All materials were subjected to enzymatic hydrolysis in phosphate buffer in the presence of lipases. Due to the hydrophilic nature of HNTs, the biodegradation rate of nanocomposites was higher compared to neat PCL. In order to confirm the effect of hydrophilicity, contact angle measurements were also performed. In vitro biomineralization test confirmed that all samples were bioactive as mineral deposits were detected by X-ray diffractometry after incubation in SBF. All scaffolds were tested in relevant cell culture using osteoblast-like cells (MG-63) to demonstrate their biocompatibility

Keywords: biomaterials, nanocomposites, scaffolds, tissue engineering

Procedia PDF Downloads 316
5344 Dry Modifications of PCL/Chitosan/PCL Tissue Scaffolds

Authors: Ozan Ozkan, Hilal Turkoglu Sasmazel

Abstract:

Natural polymers are widely used in tissue engineering applications, because of their biocompatibility, biodegradability and solubility in the physiological medium. On the other hand, synthetic polymers are also widely utilized in tissue engineering applications, because they carry no risk of infectious diseases and do not cause immune system reaction. However, the disadvantages of both polymer types block their individual usages as tissue scaffolds efficiently. Therefore, the idea of usage of natural and synthetic polymers together as a single 3D hybrid scaffold which has the advantages of both and the disadvantages of none has been entered to the literature. On the other hand, even though these hybrid structures support the cell adhesion and/or proliferation, various surface modification techniques applied to the surfaces of them to create topographical changes on the surfaces and to obtain reactive functional groups required for the immobilization of biomolecules, especially on the surfaces of synthetic polymers in order to improve cell adhesion and proliferation. In a study presented here, to improve the surface functionality and topography of the layer by layer electrospun 3D poly-epsilon-caprolactone/chitosan/poly-epsilon-caprolactone hybrid tissue scaffolds by using atmospheric pressure plasma method, thus to improve cell adhesion and proliferation of these tissue scaffolds were aimed. The formation/creation of the functional hydroxyl and amine groups and topographical changes on the surfaces of scaffolds were realized by using two different atmospheric pressure plasma systems (nozzle type and dielectric barrier discharge (DBD) type) carried out under different gas medium (air, Ar+O2, Ar+N2). The plasma modification time and distance for the nozzle type plasma system as well as the plasma modification time and the gas flow rate for DBD type plasma system were optimized with monitoring the changes in surface hydrophilicity by using contact angle measurements. The topographical and chemical characterizations of these modified biomaterials’ surfaces were carried out with SEM and ESCA, respectively. The results showed that the atmospheric pressure plasma modifications carried out with both nozzle type plasma and DBD plasma caused topographical and functionality changes on the surfaces of the layer by layer electrospun tissue scaffolds. However, the shelf life studies indicated that the hydrophilicity introduced to the surfaces was mainly because of the functionality changes. Therefore, according to the optimized results, samples treated with nozzle type air plasma modification applied for 9 minutes from a distance of 17 cm and Ar+O2 DBD plasma modification applied for 1 minute under 70 cm3/min O2 flow rate were found to have the highest hydrophilicity compared to pristine samples.

Keywords: biomaterial, chitosan, hybrid, plasma

Procedia PDF Downloads 276
5343 Effect of Laser Ablation OTR Films and High Concentration Carbon Dioxide for Maintaining the Freshness of Strawberry ‘Maehyang’ for Export in Modified Atmosphere Condition

Authors: Hyuk Sung Yoon, In-Lee Choi, Min Jae Jeong, Jun Pill Baek, Ho-Min Kang

Abstract:

This study was conducted to improve storability by using suitable laser ablation oxygen transmission rate (OTR) films and effectiveness of high carbon dioxide at strawberry 'Maehyang' for export. Strawberries were grown by hydroponic system in Gyeongsangnam-do province. These strawberries were packed by different laser ablation OTR films (Daeryung Co., Ltd.) such as 1,300 cc, 20,000 cc, 40,000 cc, 80,000 cc, and 100,000 cc•m-2•day•atm. And CO2 injection (30%) treatment was used 20,000 cc•m-2•day•atm OTR film and perforated film was as a control. Temperature conditions were applied simulated shipping and distribution conditions from Korea to Singapore, there were stored at 3 ℃ (13 days), 10 ℃ (an hour), and 8 ℃ (7 days) for 20 days. Fresh weight loss rate was under 1% as maximum permissible weight loss in treated OTR films except perforated film as a control during storage. Carbon dioxide concentration within a package for the storage period showed a lower value than the maximum CO2 concentration tolerated range (15 %) in treated OTR films and even the concentration of high OTR film treatment; from 20,000cc to 100,000cc were less than 3%. 1,300 cc had a suitable carbon dioxide range as over 5 % under 15 % at 5 days after storage until finished experiments and CO2 injection treatment was quickly drop the 15 % at storage after 1 day, but it kept around 15 % during storage. Oxygen concentration was maintained between 10 to 15 % in 1,300 cc and CO2 injection treatments, but other treatments were kept in 19 to 21 %. Ethylene concentration was showed very higher concentration at the CO2 injection treatment than OTR treatments. In the OTR treatments, 1,300 cc showed the highest concentration in ethylene and 20,000 cc film had lowest. Firmness was maintained highest in 1,300cc, but there was not shown any significant differences among other OTR treatments. Visual quality had shown the best result in 20,000 cc that showed marketable quality until 20 days after storage. 20,000 cc and perforated film had better than other treatments in off-odor and the 1,300 cc and CO2 injection treatments have occurred strong off-odor even after 10 minutes. As a result of the difference between Hunter ‘L’ and ‘a’ values of chroma meter, the 1,300cc and CO2 injection treatments were delayed color developments and other treatments did not shown any significant differences. The results indicate that effectiveness for maintaining the freshness was best achieved at 20,000 cc•m-2•day•atm. Although 1,300 cc and CO2 injection treatments were in appropriate MA condition, it showed darkening of strawberry calyx and excessive reduction of coloring due to high carbon dioxide concentration during storage. While 1,300cc and CO2 injection treatments were considered as appropriate treatments for exports to Singapore, but the result was shown different. These results are based on cultivar characteristics of strawberry 'Maehyang'.

Keywords: carbon dioxide, firmness, shelf-life, visual quality

Procedia PDF Downloads 399
5342 New Result for Optical OFDM in Code Division Multiple Access Systems Using Direct Detection

Authors: Cherifi Abdelhamid

Abstract:

In optical communication systems, OFDM has received increased attention as a means to overcome various limitations of optical transmission systems such as modal dispersion, relative intensity noise, chromatic dispersion, polarization mode dispersion and self-phase modulation. The multipath dispersion limits the maximum transmission data rates. In this paper we investigate OFDM system where multipath induced intersymbol interference (ISI) is reduced and we increase the number of users by combining OFDM system with OCDMA system using direct detection Incorporate OOC (orthogonal optical code) for minimize a bit error rate.

Keywords: OFDM, OCDMA, OOC (orthogonal optical code), (ISI), prim codes (Pc)

Procedia PDF Downloads 652
5341 Numerical Study of a Nanofluid in a Truncated Cone

Authors: B. Mahfoud, A. Bendjaghlouli

Abstract:

Natural convection is simulated in a truncated cone filled with nanofluid. Inclined and top walls have constant temperature where the heat source is located on the bottom wall of the conical container which is thermally insulated. A finite volume approach is used to solve the governing equations using the SIMPLE algorithm for different parameters such as Rayleigh number, inclination angle of inclined walls of the enclosure and heat source length. The results showed an enhancement in cooling system by using a nanofluid, when conduction regime is assisted. The inclination angle of inclined sidewall and heat source length affect the heat transfer rate and the maximum temperature.

Keywords: heat source, truncated cone, nanofluid, natural convection

Procedia PDF Downloads 308
5340 An Investigation of Machinability of Inconel 718 in EDM Using Different Cryogenic Treated Tools

Authors: Pradeep Joshi, Prashant Dhiman, Shiv Dayal Dhakad

Abstract:

Inconel 718 is a family if Nickel-Chromium based Superalloy; it has very high oxidation and corrosion resistance. Inconel 718 is widely being used in aerospace, engine, turbine etc. due to its high mechanical strength and creep resistance. Being widely used, its machining should be easy but in real its machining is very difficult, especially by using traditional machining methods. It becomes easy to machine only by using non Traditional machining such as EDM. During EDM machining there is wear of both tool and workpiece, the tool wear is undesired because it changes tool shape, geometry. To reduce the tool wear rate (TWR) cryogenic treatment is performed on tool before the machining operation. The machining performances of the process are to be evaluated in terms of MRR, TWR which are functions of Discharge current, Pulse on-time, Pulse Off-time.

Keywords: EDM, cyrogenic, TWR, MRR

Procedia PDF Downloads 457
5339 Study of Fast Etching of Silicon for the Fabrication of Bulk Micromachined MEMS Structures

Authors: V. Swarnalatha, A. V. Narasimha Rao, P. Pal

Abstract:

The present research reports the investigation of fast etching of silicon for the fabrication of microelectromechanical systems (MEMS) structures using silicon wet bulk micromachining. Low concentration tetramethyl-ammonium hydroxide (TMAH) and hydroxylamine (NH2OH) are used as main etchant and additive, respectively. The concentration of NH2OH is varied to optimize the composition to achieve best etching characteristics such as high etch rate, significantly high undercutting at convex corner for the fast release of the microstructures from the substrate, and improved etched surface morphology. These etching characteristics are studied on Si{100} and Si{110} wafers as they are most widely used in the fabrication of MEMS structures as wells diode, transistors and integrated circuits.

Keywords: KOH, MEMS, micromachining, silicon, TMAH, wet anisotropic etching

Procedia PDF Downloads 202
5338 Integrated Passive Cooling Systems for Tropical Residential Buildings: A Review through the Lens of Latent Heat Assessment

Authors: O. Eso, M. Mohammadi, J. Darkwa, J. Calautit

Abstract:

Residential buildings are responsible for 22% of the global end-use energy demand and 17% of global CO₂ emissions. Tropical climates particularly present higher latent heat gains, leading to more cooling loads. However, the cooling processes are all based on conventional mechanical air conditioning systems which are energy and carbon intensive technologies. Passive cooling systems have in the past been considered as alternative technologies for minimizing energy consumption in buildings. Nevertheless, replacing mechanical cooling systems with passive ones will require a careful assessment of the passive cooling system heat transfer to determine if suitable to outperform their conventional counterparts. This is because internal heat gains, indoor-outdoor heat transfer, and heat transfer through envelope affects the performance of passive cooling systems. While many studies have investigated sensible heat transfer in passive cooling systems, not many studies have focused on their latent heat transfer capabilities. Furthermore, combining heat prevention, heat modulation and heat dissipation to passively cool indoor spaces in the tropical climates is critical to achieve thermal comfort. Since passive cooling systems use only one of these three approaches at a time, integrating more than one passive cooling system for effective indoor latent heat removal while still saving energy is studied. This study is a systematic review of recently published peer review journals on integrated passive cooling systems for tropical residential buildings. The missing links in the experimental and numerical studies with regards to latent heat reduction interventions are presented. Energy simulation studies of integrated passive cooling systems in tropical residential buildings are also discussed. The review has shown that comfortable indoor environment is attainable when two or more passive cooling systems are integrated in tropical residential buildings. Improvement occurs in the heat transfer rate and cooling performance of the passive cooling systems when thermal energy storage systems like phase change materials are included. Integrating passive cooling systems in tropical residential buildings can reduce energy consumption by 6-87% while achieving up to 17.55% reduction in indoor heat flux. The review has highlighted a lack of numerical studies regarding passive cooling system performance in tropical savannah climates. In addition, detailed studies are required to establish suitable latent heat transfer rate in passive cooling ventilation devices under this climate category. This should be considered in subsequent studies. The conclusions and outcomes of this study will help researchers understand the overall energy performance of integrated passive cooling systems in tropical climates and help them identify and design suitable climate specific options for residential buildings.

Keywords: energy savings, latent heat, passive cooling systems, residential buildings, tropical residential buildings

Procedia PDF Downloads 149
5337 Impact of Hybrid Optical Amplifiers on 16 Channel Wavelength Division Multiplexed System

Authors: Inderpreet Kaur, Ravinder Pal Singh, Kamal Kant Sharma

Abstract:

This paper addresses the different configurations used of optical amplifiers with 16 channels in Wavelength Division Multiplexed system. The systems with 16 channels have been simulated for evaluation of various parameters; Bit Error Rate, Quality Factor, for threshold values for a range of wavelength from 1471 nm to 1611 nm. Comparison of various combination of configurations have been analyzed with EDFA and FRA but EDFA-FRA configuration performance has been found satisfactory in terms of performance indices and stable region. The paper also compared various parameters quantized with different configurations individually. It has been found that Q factor has high value with less value of BER and high resolution for EDFA-FRA configuration.

Keywords: EDFA, FRA, WDM, Q factor, BER

Procedia PDF Downloads 354
5336 Optimal Operation of a Photovoltaic Induction Motor Drive Water Pumping System

Authors: Nelson K. Lujara

Abstract:

The performance characteristics of a photovoltaic induction motor drive water pumping system with and without maximum power tracker is analyzed and presented. The analysis is done through determination and assessment of critical loss components in the system using computer aided design (CAD) tools for optimal operation of the system. The results can be used to formulate a well-calibrated computer aided design package of photovoltaic water pumping systems based on the induction motor drive. The results allow the design engineer to pre-determine the flow rate and efficiency of the system to suit particular application.

Keywords: photovoltaic, water pumping, losses, induction motor

Procedia PDF Downloads 302
5335 Using Vulnerability to Reduce False Positive Rate in Intrusion Detection Systems

Authors: Nadjah Chergui, Narhimene Boustia

Abstract:

Intrusion Detection Systems are an essential tool for network security infrastructure. However, IDSs have a serious problem which is the generating of massive number of alerts, most of them are false positive ones which can hide true alerts and make the analyst confused to analyze the right alerts for report the true attacks. The purpose behind this paper is to present a formalism model to perform correlation engine by the reduction of false positive alerts basing on vulnerability contextual information. For that, we propose a formalism model based on non-monotonic JClassicδє description logic augmented with a default (δ) and an exception (є) operator that allows a dynamic inference according to contextual information.

Keywords: context, default, exception, vulnerability

Procedia PDF Downloads 259
5334 The Impact of Metacognitive Knowledge and Experience on Top Management Team Diversity and Small to Medium Enterprises Performance

Authors: Jo Rhodes, Peter Lok, Zahra Sadeghinejad

Abstract:

The aim of this study is to determine the impact of metacognition on top management team members and firm performance based on full team integration. A survey of 1500 small to medium enterprises (SMEs) was initiated and 140 firms were obtained in this study (with response rate of 9%). The result showed that different metacognitive abilities of managers [knowledge and experience] could enhance team decision-making and problem solving, resulting in greater firm performance. This is a significant finding for SMEs because these organisations have small teams with owner leadership and entrepreneurial orientation.

Keywords: metacognition, behavioural integration, top management team (TMT), performance

Procedia PDF Downloads 377
5333 An E-Retailing System Architecture Based on Cloud Computing

Authors: Chanchai Supaartagorn

Abstract:

E-retailing is the sale of goods online that takes place over the Internet. The Internet has shrunk the entire World. The world e-retailing is growing at an exponential rate in the Americas, Europe, and Asia. However, e-retailing costs require expensive investment, such as hardware, software, and security systems. Cloud computing technology is internet-based computing for the management and delivery of applications and services. Cloud-based e-retailing application models allow enterprises to lower their costs with their effective implementation of e-retailing activities. In this paper, we describe the concept of cloud computing and present the architecture of cloud computing, combining the features of e-retailing. In addition, we propose a strategy for implementing cloud computing with e-retailing. Finally, we explain the benefits from the architecture.

Keywords: architecture, cloud computing, e-retailing, internet-based

Procedia PDF Downloads 397
5332 Real-time Rate and Rhythms Feedback Control System in Patients with Atrial Fibrillation

Authors: Mohammad A. Obeidat, Ayman M. Mansour

Abstract:

Capturing the dynamic behavior of the heart to improve control performance, enhance robustness, and support diagnosis is very important in establishing real time models for the heart. Control Techniques and strategies have been utilized to improve system costs, reliability, and estimation accuracy for different types of systems such as biomedical, industrial, and other systems that required tuning input/output relation and/or monitoring. Simulations are performed to illustrate potential applications of the technology. In this research, a new control technology scheme is used to enhance the performance of the Af system and meet the design specifications.

Keywords: atrial fibrillation, dynamic behavior, closed loop, signal, filter

Procedia PDF Downloads 421
5331 Morphostructural Characterization of Zinc and Manganese Nano-Oxides

Authors: Adriana-Gabriela Plaiasu, Catalin Marian Ducu

Abstract:

The interest in the unique properties associated with materials having structures on a nanometer scale has been increasing at an exponential rate in last decade. Among the functional mineral compounds such as perovskite (CaTiO3), rutile (TiO2), CaF2, spinel (MgAl2O4), wurtzite (ZnS), zincite (ZnO) and the cupric oxide (CuO) has been used in numerous applications such as catalysis, semiconductors, batteries, gas sensors, biosensors, field transistors and medicine. The Solar Physical Vapor Deposition (SPVD) presented in the paper as elaboration method is an original process to prepare nanopowders working under concentrated sunlight in 2kW solar furnaces. The influence of the synthesis parameters on the chemical and microstructural characteristics of zinc and manganese oxides synthesized nanophases has been systematically studied using XRD, TEM and SEM.

Keywords: characterization, morphological, nano-oxides, structural

Procedia PDF Downloads 278
5330 Microstructure and Mechanical Properties of Nb: Si: (a-C) Thin Films Prepared Using Balanced Magnetron Sputtering System

Authors: Sara Khamseh, Elahe Sharifi

Abstract:

321 alloy steel is austenitic stainless steel with high oxidation resistance and is commonly used to fabricate heat exchangers and steam generators. However, the low hardness and weak tribological performance can cause dangerous failures during industrial operations. The well-designed protective coatings on 321 alloy steel surfaces with high hardness and good tribological performance can guarantee their safe applications. The surface protection of metal substrates using protective coatings showed high efficiency in prevailing these problems. Carbon-based multicomponent coatings, such as metal-added amorphous carbon coatings, are crucially necessary because of their remarkable mechanical and tribological performances. In the current study, (Nb: Si: a-C) multicomponent coatings (a-C: amorphous carbon) were coated on 321 alloys using a balanced magnetron (BM) sputtering system at room temperature. The effects of the Si/Nb ratio on microstructure, mechanical and tribological characteristics of (Nb: Si: a-C) composite coatings were investigated. The XRD and Raman analysis results showed that the coatings formed a composite structure of cubic diamond (C-D), NbC, and graphite-like carbon (GLC). The NbC phase's abundance decreased when the C-D phase's affluence increased with an increasing Si/Nb ratio. The coatings' indentation hardness and plasticity index (H³/E² ratio) increased with an increasing Si/Nb ratio. The better mechanical properties of the coatings with higher Si content can be attributed to the higher cubic diamond (C-D) content. The cubic diamond (C-D) is a challenging phase and can positively affect the mechanical performance of the coatings. It is well documented that in hard protective coatings, Si encourages amorphization. In addition, THE studies showed that Nb and Mo can act as a catalyst for nucleation and growth of hard cubic (C-D) and hexagonal (H-D) diamond phases in a-C coatings. In the current study, it seems that fully arranged nanocomposite coatings contain hard C-D and NbC phases that embedded in the amorphous carbon (GLC) phase is formed. This unique structure decreased grain boundary density and defects and resulted in high hardness and H³/E² ratio. Moreover, the COF and wear rate of the coatings decreased with increasing Si/Nb ratio. This can be attributed to the good mechanical properties of the coatings and the formation of graphite-like carbon (GLC) structure with lamellae arrangement in the coatings. The complex and self-lubricant coatings are successfully formed on the surface of 321 alloys. The results of the present study clarified that Si addition to (Nb: a-C) coatings improve the mechanical and tribological performance of the coatings on 321 alloy.

Keywords: COF, mechanical properties, microstructure, (Nb: Si: a-C) coatings, Wear rate

Procedia PDF Downloads 90
5329 Activity Data Analysis for Status Classification Using Fitness Trackers

Authors: Rock-Hyun Choi, Won-Seok Kang, Chang-Sik Son

Abstract:

Physical activity is important for healthy living. Recently wearable devices which motivate physical activity are quickly developing, and become cheaper and more comfortable. In particular, fitness trackers provide a variety of information and need to provide well-analyzed, and user-friendly results. In this study, frequency analysis was performed to classify various data sets of Fitbit into simple activity status. The data from Fitbit cloud server consists of 263 subjects who were healthy factory and office workers in Korea from March 7th to April 30th, 2016. In the results, we found assumptions of activity state classification seem to be sufficient and reasonable.

Keywords: activity status, fitness tracker, heart rate, steps

Procedia PDF Downloads 384
5328 Quantification and Detection of Non-Sewer Water Infiltration and Inflow in Urban Sewer Systems

Authors: M. Beheshti, S. Saegrov, T. M. Muthanna

Abstract:

Separated sewer systems are designed to transfer the wastewater from houses and industrial sections to wastewater treatment plants. Unwanted water in the sewer systems is a well-known problem, i.e. storm-water inflow is around 50% of the foul sewer, and groundwater infiltration to the sewer system can exceed 50% of total wastewater volume in deteriorated networks. Infiltration and inflow of non-sewer water (I/I) into sewer systems is unfavorable in separated sewer systems and can trigger overloading the system and reducing the efficiency of wastewater treatment plants. Moreover, I/I has negative economic, environmental, and social impacts on urban areas. Therefore, for having sustainable management of urban sewer systems, I/I of unwanted water into the urban sewer systems should be considered carefully and maintenance and rehabilitation plan should be implemented on these water infrastructural assets. This study presents a methodology to identify and quantify the level of I/I into the sewer system. Amount of I/I is evaluated by accurate flow measurement in separated sewer systems for specified isolated catchments in Trondheim city (Norway). Advanced information about the characteristics of I/I is gained by CCTV inspection of sewer pipelines with high I/I contribution. Achieving enhanced knowledge about the detection and localization of non-sewer water in foul sewer system during the wet and dry weather conditions will enable the possibility for finding the problem of sewer system and prioritizing them and taking decisions for rehabilitation and renewal planning in the long-term. Furthermore, preventive measures and optimization of sewer systems functionality and efficiency can be executed by maintenance of sewer system. In this way, the exploitation of sewer system can be improved by maintenance and rehabilitation of existing pipelines in a sustainable way by more practical cost-effective and environmental friendly way. This study is conducted on specified catchments with different properties in Trondheim city. Risvollan catchment is one of these catchments with a measuring station to investigate hydrological parameters through the year, which also has a good database. For assessing the infiltration in a separated sewer system, applying the flow rate measurement method can be utilized in obtaining a general view of the network condition from infiltration point of view. This study discusses commonly used and advanced methods of localizing and quantifying I/I in sewer systems. A combination of these methods give sewer operators the possibility to compare different techniques and obtain reliable and accurate I/I data which is vital for long-term rehabilitation plans.

Keywords: flow rate measurement, infiltration and inflow (I/I), non-sewer water, separated sewer systems, sustainable management

Procedia PDF Downloads 333