Search results for: experimental and numerical modelling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11119

Search results for: experimental and numerical modelling

8419 The Effect of 12-Week Pilates Training on Flexibility and Level of Perceived Exertion of Back Muscles among Karate Players

Authors: Seyedeh Nahal Sadiri, Ardalan Shariat

Abstract:

Developing flexibility, by using pilates, would be useful for karate players by reducing the stiffness of muscles and tendons. This study aimed to determine the effects of 12-week pilates training on flexibility, and level of perceived exertion of back muscles among karate players. In this experimental study, 29 male karate players (age: 16-18 years) were randomized to pilates (n=15), and control (n=14) groups and the assessments were done in baseline and after 12-week intervention. Both groups completed 12-week of intervention (2 hours of training, 3 times weekly). The experimental group performed 30 minutes pilates within their warm-up and preparation phase, where the control group only attended their usual karate training. Digital backward flexmeter was used to evaluate the trunk extensors flexibility, and digital forward flexmeter was used to measure the trunk flexors flexibility. Borg CR-10 Scale was also used to determine the perceived exertion of back muscles. Independent samples t-test and paired sample t-test were used to analyze the data. There was a significant difference between the mean score of experimental and control groups in the level of backward trunk flexibility (P < 0.05), forward trunk flexibility (P < 0.05) after 12-week intervention. The results of Borg CR-10 scale showed a significant improvement in pilates group (P < 0.05). Karate instructors, coaches, and athletes can integrate pilates exercises with karate training in order to improve the flexibility, and level of perceived exertion of back muscles.

Keywords: pilates training, karate players, flexibility, Borg CR-10

Procedia PDF Downloads 152
8418 A Low Cost and Reconfigurable Experimental Platform for Engineering Lab Education

Authors: S. S. Kenny Lee, C. C. Kong, S. K. Ting

Abstract:

Teaching engineering lab provides opportunity for students to practice theories learned through physical experiment in the laboratory. However, building laboratories to accommodate increased number of students are expensive, making it impossible for an educational institution to afford the high expenses. In this paper, we develop a low cost and remote platform to aid teaching undergraduate students. The platform is constructed where the real experiment setting up in laboratory can be reconfigure and accessed remotely, the aim is to increase student’s desire to learn at which they can interact with the physical experiment using network enabled devices at anywhere in the campus. The platform is constructed with Raspberry Pi as a main control board that provides communication between computer interfaces to the actual experiment preset in the laboratory. The interface allows real-time remote viewing and triggering the physical experiment in the laboratory and also provides instructions and learning guide about the experimental.

Keywords: engineering lab, low cost, network, remote platform, reconfigure, real-time

Procedia PDF Downloads 295
8417 MHD Boundary Layer Flow of a Nanofluid Past a Wedge Shaped Wick in Heat Pipe

Authors: Ziya Uddin

Abstract:

This paper deals with the theoretical and numerical investigation of magneto-hydrodynamic boundary layer flow of a nano fluid past a wedge shaped wick in heat pipe used for the cooling of electronic components and different type of machines. To incorporate the effect of nanoparticle diameter, concentration of nanoparticles in the pure fluid, nano thermal layer formed around the nanoparticle and Brownian motion of nano particles etc., appropriate models are used for the effective thermal and physical properties of nano fluids. To model the rotation of nano particles inside the base fluid, microfluidics theory is used. In this investigation ethylene glycol (EG) based nanofluids, are taken into account. The non-linear equations governing the flow and heat transfer are solved by using a very effective particle swarm optimization technique along with Runge-Kutta method. The values of heat transfer coefficient are found for different parameters involved in the formulation viz. nanoparticle concentration, nanoparticle size, magnetic field and wedge angle etc. It is found that the wedge angle, presence of magnetic field, nanoparticle size and nanoparticle concentration etc. have prominent effects on fluid flow and heat transfer characteristics for the considered configuration.

Keywords: nanofluids, wedge shaped wick, heat pipe, numerical modeling, particle swarm optimization, nanofluid applications, Heat transfer

Procedia PDF Downloads 372
8416 Effect of Ausubel's Advance Organizer Model to Enhancing Meta-Cognition of Students at Secondary Level

Authors: Qaisara Parveen, M. Imran Yousuf

Abstract:

The purpose of this study was to find the effectiveness of the use of advance organizer model for enhancing meta-cognition of students in the subject of science. It was hypothesized that the students of experimental group taught through advance organizer model would show the better cognition than the students of control group taught through traditional teaching. The population of the study consisted of all secondary school students studying in government high school located in Rawalpindi. The sample of the study consisted of 50 students of 9th class of humanities group. The sample was selected on the basis of their pretest scores through matching, and the groups were randomly assigned for the treatment. The experimental group was taught through advance organizer model while the control group was taught through traditional teaching. The self-developed achievement test was used for the purpose of pretest and posttest. After collecting the pre-test score and post-test score, the data was analyzed and interpreted by use of descriptive statistics as mean and standard deviation and inferential statistics t-test. The findings indicate that students taught using advance organizers had a higher level of meta-cognition as compared to control group. Further, meta cognition level of boys was found higher than that of girls students. This study also revealed the fact that though the students at different meta-cognition level approached learning situations in a different manner, Advance organizer model is far superior to Traditional method of teaching.

Keywords: descriptive, experimental, humanities, meta-cognition, statistics, science

Procedia PDF Downloads 292
8415 An Experimental Study on the Influence of Brain-Break in the Classroom on the Physical Health and Academic Performance of Fourth Grade Students

Authors: Qian Mao, Xiaozan Wang, Jiarong Zhong, Xiaolin Zou

Abstract:

Introduction: As a result of the decline of students' physical health level and the increase of study pressure, students’ academic performance is not so good. Objective: This study aims to verify whether the Brain-Break intervention in the fourth-grade classroom of primary school can improve students' physical health and academic performance. Methods: According to the principle of no difference in pre-test data, students from two classes of grade four in Fuhai Road Primary School, Fushan district, Yantai city, Shandong province, were selected as experimental subjects, including 50 students in the experimental class (25 males and 25 females) and 50 students in the control class (24 males and 26 females). The content of the experiment was that the students were asked to perform a 4-minute Brain-Berak program designed by the researcher in the second class in the morning and the afternoon, and the intervention lasted for 12 weeks. In addition, the lung capacity, 50-meter run, sitting body forward bend, one-minute jumping rope and one-minute sit-ups stipulated in the national standards for physical fitness of students (revised in 2014) were selected as the indicators of physical health. The scores of Chinese, Mathematics, and English in the unified academic test of the municipal education bureau were selected as the indicators of academic performance. The independent-sample t-test was used to compare and analyze the data of each index between the two classes. The paired-sample t-test was used to compare and analyze the data of each index in the two classes. This paper presents only results with significant differences. Results: in terms of physical health, lung capacity (P=0.002, T= -2.254), one-minute rope skipping (P=0.000, T=3.043), and one-minute sit-ups (P=0.045, T=6.153) were significantly different between the experimental class and the control class. In terms of academic performance, there is a significant difference between the Chinese performance of the experimental class and the control class (P=0.009, T=4.833). Conclusion: Adding Brain-Berak intervention in the classroom can effectively improve the cardiorespiratory endurance (lung capacity), coordination (jumping rope), and abdominal strength (sit-ups) of fourth-grade students. At the same time, it can also effectively improve their Chinese performance. Therefore, it is suggested to promote micro-sports in the classroom of primary schools throughout the country so as to help students improve their physical health and academic performance.

Keywords: academic performance, brain break, fourth grade, physical health

Procedia PDF Downloads 92
8414 Comparision of Neospora caninum Experimental Infection in Pigeons and Chickens Embryonated Eggs

Authors: S. Bahrami, A. Rezaie, Z. Boroumand, S. Ghavami

Abstract:

Neospora caninum is protozoan parasite which can cause a serious disease in dogs and cattle. It has been shown that birds may be a permissive intermediate host for N. caninum since parasite DNA has been detected in tissues from birds. It is showed that embryonated chicken egg can be used as an animal model for experimental infection. The aim of present study was to compare experimental infection of Neospora in chicken and pigeons embryonated eggs. An infection with N. caninum Nc1 isolate was conducted in chicken and pigeons embryonated eggs to evaluate LD50. After calculation of LD50, 2LD50 of tachyzoites were injected to eggs. Macroscopic changes of each embryo were noticed and to investigate the parasite distribution in tissues immunohistochemistry (IHC) and molecular methods were used. In the present study, histopathological changes were considered and sections to those used for histopathological examination including heart, liver, brain and chorioallantoic (CA) membrane were subjected to IHC, too. For PCR procedure, primer pair Np21/Np6 was used for amplification of the Nc5 gene. Pigeon's embryo showed more macroscopic changes than chicken embryo. A hemorrhage of the CA was the main grass lesion. All the infected tissues had histopathological changes. Microscopic examination of tissues revealed acute neosporosis due to hemorrhage, necrosis and infiltration of mononuclear inflammatory cells. Based on IHC and molecular results, the parasite aggregation in the heart was more predominant than in the other tissues. These results reinforce that there is genetic susceptibility to N. caninum in pigeons embryonated eggs like chickens embryonated eggs and provide new insights to research an inexpensive and available animal model for N. caninum.

Keywords: immunohistochemistry, Neospora caninum, PCR, pigeon embryonated egg

Procedia PDF Downloads 331
8413 A Goal-Oriented Social Business Process Management Framework

Authors: Mohammad Ehson Rangiha, Bill Karakostas

Abstract:

Social Business Process Management (SBPM) promises to overcome limitations of traditional BPM by allowing flexible process design and enactment through the involvement of users from a social community. This paper proposes a meta-model and architecture for socially driven business process management systems. It discusses the main facets of the architecture such as goal-based role assignment that combines social recommendations with user profile, and process recommendation, through a real example of a charity organization.

Keywords: business process management, goal-based modelling, process recommendation social collaboration, social BPM

Procedia PDF Downloads 478
8412 Numerical Study of Microdrops Manipulation by MicroFluidic Oscillator

Authors: Tawfiq Chekifi, Brahim Dennai, Rachid Khelfaoui

Abstract:

Over the last few decades, modeling immiscible fluids such as oil and water have been a classical research topic. Droplet-based microfluidics presents a unique platform for mixing, reaction, separation, dispersion of drops and numerous other functions. for this purpose Several devices were studied, as well as microfluidic oscillator. The latter was obtained from wall attachment microfluidic amplifiers using a feedback loop from the outputs to the control inputs, nevertheless this device haven’t well used for microdrops applications. In this paper, we suggest a numerical CFD study of a microfluidic oscillator with two different lengths of feedback loop. In order to produce simultaneous microdrops of gasoil on water, a typical geometry that includes double T-junction is connected to the fluidic oscillator, The generation of microdrops is computed by volume-of-fluid method (VOF). Flow oscillations of microdrops were triggered by the Coanda effect of jet flow. The aim of work is to obtain a high oscillation frequency in output of this passive device, the influence of hydrodynamics and physics parameters on the microdrops frequency in the output of our microsystem is also analyzed, The computational results show that, the length of feedback loop, applied pressure on T-junction and interfacial tension have a significant effect on the dispersion of microdrops and its oscillation frequency. Across the range of low Reynold number, the microdrops generation and its dynamics have been accurately controlled by adjusting applying pressure ratio of two phases.

Keywords: fluidic oscillator, microdrops manipulation, volume of fluid method, microfluidic oscillator

Procedia PDF Downloads 466
8411 A Dose Distribution Approach Using Monte Carlo Simulation in Dosimetric Accuracy Calculation for Treating the Lung Tumor

Authors: Md Abdullah Al Mashud, M. Tariquzzaman, M. Jahangir Alam, Tapan Kumar Godder, M. Mahbubur Rahman

Abstract:

This paper presents a Monte Carlo (MC) method-based dose distributions on lung tumor for 6 MV photon beam to improve the dosimetric accuracy for cancer treatment. The polystyrene which is tissue equivalent material to the lung tumor density is used in this research. In the empirical calculations, TRS-398 formalism of IAEA has been used, and the setup was made according to the ICRU recommendations. The research outcomes were compared with the state-of-the-art experimental results. From the experimental results, it is observed that the proposed based approach provides more accurate results and improves the accuracy than the existing approaches. The average %variation between measured and TPS simulated values was obtained 1.337±0.531, which shows a substantial improvement comparing with the state-of-the-art technology.

Keywords: lung tumour, Monte Carlo, polystyrene, Elekta synergy, Monaco planning system

Procedia PDF Downloads 423
8410 Investigation of the Density and Control Methods of Weed Species That Are a Problem in Broad Bean (Vicia Faba L.) Cultivation

Authors: Tamer Üstüner, Sena Nur Arı

Abstract:

This study was carried out at Kahramanmaras Sutcu Imam University, trial area Faculty of Agriculture and ÜSKİM laboratory in 2022. Many problems are encountered in broad bean (Vicia faba L.) cultivation. One of these problems is weeds. In this study, weed species, families, and densities of weeds that are a problem in broad beans were determined. A total of 47 weed species belonging to 20 different families were determined in the experimental area. Weed species found very densely in control 1 plots of the broad bean experimental area were Sinapis arvensis 11.50 pieces/m², Lolium temulentum L. 11.20, Ranunculus arvensis L. 10.95, Galium tricornutum Dany. 10.81, Avena sterilis 10.60, Bupleurum lancifolium 10.40, Convolvulus arvensis 10.25 ve Cynodon dactylon 10.14 pieces/m². The weed species Cuscuta campestris Yunck. which is very common in the control plots of the broad bean experimental area, was calculated as 11.94 units/m². It was determined that C. campestris alone caused significant yield and quality loss in broad beans. In this study, it was determined that the most effective method in reducing the weed population was hand hoeing, followed by pre-emergence pendimethalin and post-emergence herbicide with Imazamox active substance. In terms of the effect of these control applications on the pod yield, the hand hoeing application ranked first, the pendimethalin application ranked second, the Imazamox application ranked third, and the control 2 and control 1 plot took the last place.

Keywords: broad bean, weed, struggle, yield

Procedia PDF Downloads 73
8409 Characterization and Modelling of Aerosol Droplet in Absorption Columns

Authors: Hammad Majeed, Hanna Knuutila, Magne Hillestad, Hallvard F. Svendsen

Abstract:

Formation of aerosols can cause serious complications in industrial exhaust gas CO2 capture processes. SO3 present in the flue gas can cause aerosol formation in an absorption based capture process. Small mist droplets and fog formed can normally not be removed in conventional demisting equipment because their submicron size allows the particles or droplets to follow the gas flow. As a consequence of this aerosol based emissions in the order of grams per Nm3 have been identified from PCCC plants. In absorption processes aerosols are generated by spontaneous condensation or desublimation processes in supersaturated gas phases. Undesired aerosol development may lead to amine emissions many times larger than what would be encountered in a mist free gas phase in PCCC development. It is thus of crucial importance to understand the formation and build-up of these aerosols in order to mitigate the problem. Rigorous modelling of aerosol dynamics leads to a system of partial differential equations. In order to understand mechanics of a particle entering an absorber an implementation of the model is created in Matlab. The model predicts the droplet size, the droplet internal variable profiles and the mass transfer fluxes as function of position in the absorber. The Matlab model is based on a subclass method of weighted residuals for boundary value problems named, orthogonal collocation method. The model comprises a set of mass transfer equations for transferring components and the essential diffusion reaction equations to describe the droplet internal profiles for all relevant constituents. Also included is heat transfer across the interface and inside the droplet. This paper presents results describing the basic simulation tool for the characterization of aerosols formed in CO2 absorption columns and gives examples as to how various entering droplets grow or shrink through an absorber and how their composition changes with respect to time. Below are given some preliminary simulation results for an aerosol droplet composition and temperature profiles.

Keywords: absorption columns, aerosol formation, amine emissions, internal droplet profiles, monoethanolamine (MEA), post combustion CO2 capture, simulation

Procedia PDF Downloads 228
8408 Mechanistic Understanding of the Difference in two Strains Cholerae Causing Pathogens and Predicting Therapeutic Strategies for Cholera Patients Affected with new Strain Vibrio Cholerae El.tor. Using Constrain-based Modelling

Authors: Faiz Khan Mohammad, Saumya Ray Chaudhari, Raghunathan Rengaswamy, Swagatika Sahoo

Abstract:

Cholera caused by pathogenic gut bacteria Vibrio Cholerae (VC), is a major health problem in developing countries. Different strains of VC exhibit variable responses subject to different extracellular medium (Nag et al, Infect Immun, 2018). In this study, we present a new approach to model the variable VC responses in mono- and co-cultures, subject to continuously changing growth medium, which is otherwise difficult via simple FBA model. Nine VC strain and seven E. coli (EC) models were assembled and considered. A continuously changing medium is modelled using a new iterative-based controlled medium technique (ITC). The medium is appropriately prefixed with the VC model secretome. As the flux through the bacteria biomass increases secretes certain by-products. These products shall add-on to the medium, either deviating the nutrient potential or block certain metabolic components of the model, effectively forming a controlled feed-back loop. Different VC models were setup as monoculture of VC in glucose enriched medium, and in co-culture with VC strains and EC. Constrained to glucose enriched medium, (i) VC_Classical model resulted in higher flux through acidic secretome suggesting a pH change of the medium, leading to lowering of its biomass. This is in consonance with the literature reports. (ii) When compared for neutral secretome, flux through acetoin exchange was higher in VC_El tor than the classical models, suggesting El tor requires an acidic partner to lower its biomass. (iii) Seven of nine VC models predicted 3-methyl-2-Oxovaleric acid, mysirtic acid, folic acid, and acetate significantly affect corresponding biomass reactions. (iv) V. parhemolyticus and vulnificus were found to be phenotypically similar to VC Classical strain, across the nine VC strains. The work addresses the advantage of the ITC over regular flux balance analysis for modelling varying growth medium. Future expansion to co-cultures, potentiates the identification of novel interacting partners as effective cholera therapeutics.

Keywords: cholera, vibrio cholera El. tor, vibrio cholera classical, acetate

Procedia PDF Downloads 146
8407 Experimental Investigation and Constitutive Modeling of Volume Strain under Uniaxial Strain Rate Jump Test in HDPE

Authors: Rida B. Arieby, Hameed N. Hameed

Abstract:

In this work, tensile tests on high density polyethylene have been carried out under various constant strain rate and strain rate jump tests. The dependency of the true stress and specially the variation of volume strain have been investigated, the volume strain due to the phenomena of damage was determined in real time during the tests by an optical extensometer called Videotraction. A modified constitutive equations, including strain rate and damage effects, are proposed, such a model is based on a non-equilibrium thermodynamic approach called (DNLR). The ability of the model to predict the complex nonlinear response of this polymer is examined by comparing the model simulation with the available experimental data, which demonstrate that this model can represent the deformation behavior of the polymer reasonably well.

Keywords: strain rate jump tests, volume strain, high density polyethylene, large strain, thermodynamics approach

Procedia PDF Downloads 247
8406 Assessing the Impact of Antiretroviral Mediated Drug-Drug Interactions on Piperaquine Antimalarial Treatment in Pregnant Women Using Physiologically Based Pharmacokinetic Modelling

Authors: Olusola Omolola Olafuyi, Michael Coleman, Raj Kumar Singh Badhan

Abstract:

Introduction: Malaria in pregnancy has morbidity and mortality implication on both mother and unborn child. Piperaquine (PQ) based antimalarial treatment is emerging as a choice antimalarial for pregnant women in the face of resistance to current antimalarial treatment recommendation in pregnancy. Physiological and biochemical changes in pregnant women may affect the pharmacokinetics of the antimalarial drug in these. In malaria endemic regions other infectious diseases like HIV/AIDs are prevalent. Pregnant women who are co-infected with malaria and HIV/AID are at even more greater risk of death not only due to complications of the diseases but also due to drug-drug interactions (DDIs) between antimalarials (AMT) and antiretroviral (ARVs). In this study, physiologically based pharmacokinetic (PBPK) modelling was used to investigate the effect of physiological and biochemical changes on the impact of ARV mediated DDIs in pregnant women in three countries. Method: A PBPK model for PQ was developed on SimCYP® using published physicochemical and pharmacokinetic data of PQ from literature, this was validated in three customized population groups from Thailand, Sudan and Papua New Guinea with clinical data. Validation of PQ model was also done in presence of interaction with efavirenz (pre-validated on SimCYP®). Different albumin levels and pregnancy stages was simulated in the presence of interaction with standard doses of efavirenz and ritonavir. PQ day 7 concentration of 30ng/ml was used as the efficacy endpoint for PQ treatment.. Results: The median day 7 concentration of PQ remained virtually consistent throughout pregnancy and were satisfactory across the three population groups ranging from 26-34.1ng/ml; this implied the efficacy of PQ throughout pregnancy. DDI interaction with ritonavir and efavirenz resulted in modest effect on the day 7 concentrations of PQ with AUCratio ranging from 0.56-0.8 and 1.64-1.79 for efavirenz and ritonavir respectively over 10-40 gestational weeks, however, a reduction in human serum albumin level reflective of severe malaria resulted in significantly reduced the number of subjects attaining the PQ day 7 concentration in the presence of both DDIs. The model demonstrated that the DDI between PQ and ARV in pregnant women with different malaria severities can alter the pharmacokinetic of PQ.

Keywords: antiretroviral, malaria, piperaquine, pregnancy, physiologically-based pharmacokinetics

Procedia PDF Downloads 167
8405 Shape Memory Alloy Structural Damper Manufactured by Selective Laser Melting

Authors: Tiziana Biasutti, Daniela Rigamonti, Lorenzo Palmiotti, Adelaide Nespoli, Paolo Bettini

Abstract:

Aerospace industry is based on the continuous development of new technologies and solutions that allows constant improvement of the systems. Shape Memory Alloys are smart materials that can be used as dampers due to their pseudoelastic effect. The purpose of the research was to design a passive damper in Nitinol, manufactured by Selective Laser Melting, for space applications to reduce vibration between different structural parts in space structures. The powder is NiTi (50.2 at.% of Ni). The structure manufactured by additive technology allows us to eliminate the presence of joint and moving parts and to have a compact solution with high structural strength. The designed dampers had single or double cell structures with three different internal angles (30°, 45° and 60°). This particular shape has damping properties also without the pseudoelastic effect. For this reason, the geometries were reproduced in different materials, SS316L and Ti6Al4V, to test the geometry loss factor. The mechanical performances of these specimens were compared to the ones of NiTi structures, pointing out good damping properties of the designed structure and the highest performances of the NiTi pseudoelastic effect. The NiTi damper was mechanically characterized by static and dynamic tests and with DSC and microscope observations. The experimental results were verified with numerical models and with some scaled steel specimens in which optical fibers were embedded. The realized structure presented good mechanical and damping properties. It was observed that the loss factor and the dissipated energy increased with the angles of the cells.

Keywords: additive manufacturing, damper, nitinol, pseudo elastic effect, selective laser melting, shape memory alloys

Procedia PDF Downloads 88
8404 Heat Transfer and Trajectory Models for a Cloud of Spray over a Marine Vessel

Authors: S. R. Dehghani, G. F. Naterer, Y. S. Muzychka

Abstract:

Wave-impact sea spray creates many droplets which form a spray cloud traveling over marine objects same as marine vessels and offshore structures. In cold climates such as Arctic reigns, sea spray icing, which is ice accretion on cold substrates, is strongly dependent on the wave-impact sea spray. The rate of cooling of droplets affects the process of icing that can yield to dry or wet ice accretion. Trajectories of droplets determine the potential places for ice accretion. Combining two models of trajectories and heat transfer for droplets can predict the risk of ice accretion reasonably. The majority of the cooling of droplets is because of droplet evaporations. In this study, a combined model using trajectory and heat transfer evaluate the situation of a cloud of spray from the generation to impingement. The model uses some known geometry and initial information from the previous case studies. The 3D model is solved numerically using a standard numerical scheme. Droplets are generated in various size ranges from 7 mm to 0.07 mm which is a suggested range for sea spray icing. The initial temperature of droplets is considered to be the sea water temperature. Wind velocities are assumed same as that of the field observations. Evaluations are conducted using some important heading angles and wind velocities. The characteristic of size-velocity dependence is used to establish a relation between initial sizes and velocities of droplets. Time intervals are chosen properly to maintain a stable and fast numerical solution. A statistical process is conducted to evaluate the probability of expected occurrences. The medium size droplets can reach the highest heights. Very small and very large droplets are limited to lower heights. Results show that higher initial velocities create the most expanded cloud of spray. Wind velocities affect the extent of the spray cloud. The rate of droplet cooling at the start of spray formation is higher than the rest of the process. This is because of higher relative velocities and also higher temperature differences. The amount of water delivery and overall temperature for some sample surfaces over a marine vessel are calculated. Comparing results and some field observations show that the model works accurately. This model is suggested as a primary model for ice accretion on marine vessels.

Keywords: evaporation, sea spray, marine icing, numerical solution, trajectory

Procedia PDF Downloads 210
8403 Fabrication and Evaluation of Particleboards from Oil Palm Fronds Blend with Empty Fruit Bunch Fibre

Authors: Ghazi Faisal Najmuldeen, Wahida Amat Fadzila

Abstract:

The aim of this study is to investigate physical and mechanical properties of experimental particleboards manufactured from mixing the oil palm fronds particles with empty fruit bunch fibers. Variables were two blending ratios (100:0 and 70:30), press temperature (160°C and 180°C) and press time (180 and 300 s). Experimental boards with a target density of 750 kg m-3 were manufactured from these two particles and fibers blended with urea formaldehyde resin and compressed into targeted thickness. The effect of these manufacturing conditions on bending strength, internal bonding, water absorption and thickness swelling were determined. From this research, it can be concluded that hybridization of fibers with fronds particles improved some properties of particleboard. Empty fruit bunch fibers and fronds particleboard showed better modulus of rupture and internal bonding than fronds particleboards.

Keywords: oil palm fronds, empty fruit bunch, particleboards, chemistry, environment

Procedia PDF Downloads 309
8402 PET/CT Patient Dosage Assay

Authors: Gulten Yilmaz, A. Beril Tugrul, Mustafa Demir, Dogan Yasar, Bayram Demir, Bulent Buyuk

Abstract:

A Positron Emission Tomography (PET) is a radioisotope imaging technique that illustrates the organs and the metabolisms of the human body. This technique is based on the simultaneous detection of 511 keV annihilation photons, annihilated as a result of electrons annihilating positrons that radiate from positron-emitting radioisotopes that enter biological active molecules in the body. This study was conducted on ten patients in an effort to conduct patient-related experimental studies. Dosage monitoring for the bladder, which was the organ that received the highest dose during PET applications, was conducted for 24 hours. Assessment based on measuring urination activities after injecting patients was also a part of this study. The MIRD method was used to conduct dosage calculations for results obtained from experimental studies. Results obtained experimentally and theoretically were assessed comparatively.

Keywords: PET/CT, TLD, MIRD, dose measurement, patient doses

Procedia PDF Downloads 507
8401 Cantilever Secant Pile Constructed in Sand: Numerical Comparative Study and Design Aids – Part II

Authors: Khaled R. Khater

Abstract:

All civil engineering projects include excavation work and therefore need some retaining structures. Cantilever secant pile walls are an economical supporting system up to 5.0-m depths. The parameters controlling wall tip displacement are the focus of this paper. So, two analysis techniques have been investigated and arbitrated. They are the conventional method and finite element analysis. Accordingly, two computer programs have been used, Excel sheet and Plaxis-2D. Two soil models have been used throughout this study. They are Mohr-Coulomb soil model and Isotropic Hardening soil models. During this study, two soil densities have been considered, i.e. loose and dense sand. Ten wall rigidities have been analyzed covering ranges of perfectly flexible to completely rigid walls. Three excavation depths, i.e. 3.0-m, 4.0-m and 5.0-m were tested to cover the practical range of secant piles. This work submits beneficial hints about secant piles to assist designers and specification committees. Also, finite element analysis, isotropic hardening, is recommended to be the fair judge when two designs conflict. A rational procedure using empirical equations has been suggested to upgrade the conventional method to predict wall tip displacement ‘δ’. Also, a reasonable limitation of ‘δ’ as a function of excavation depth, ‘h’ has been suggested. Also, it has been found that, after a certain penetration depth any further increase of it does not positively affect the wall tip displacement, i.e. over design and uneconomic.

Keywords: design aids, numerical analysis, secant pile, Wall tip displacement

Procedia PDF Downloads 176
8400 The Influence of the Diameter of the Flow Conducts on the Rheological Behavior of a Non-Newtonian Fluid

Authors: Hacina Abchiche, Mounir Mellal, Imene Bouchelkia

Abstract:

The knowledge of the rheological behavior of the used products in different fields is essential, both in digital simulation and the understanding of phenomenon involved during the flow of these products. The fluids presenting a nonlinear behavior represent an important category of materials used in the process of food-processing, chemical, pharmaceutical and oil industries. The issue is that the rheological characterization by classical rheometer cannot simulate, or take into consideration, the different parameters affecting the characterization of a complex fluid flow during real-time. The main objective of this study is to investigate the influence of the diameter of the flow conducts or pipe on the rheological behavior of a non-Newtonian fluid and Propose a mathematical model linking the rheologic parameters and the diameter of the conduits of flow. For this purpose, we have developed an experimental system based on the principal of a capillary rheometer.

Keywords: rhéologie, non-Newtonian fluids, experimental stady, mathematical model, cylindrical conducts

Procedia PDF Downloads 273
8399 Measurements of Flow Mixing Behaviors Using a Wire-Mesh Sensor in a Wire-Wrapped 37-Pin Rod Assembly

Authors: Hyungmo Kim, Hwang Bae, Seok-Kyu Chang, Dong Won Lee, Yung Joo Ko, Sun Rock Choi, Hae Seob Choi, Hyeon Seok Woo, Dong-Jin Euh, Hyeong-Yeon Lee

Abstract:

Flow mixing characteristics in the wire-wrapped 37-pin rod bundle were measured by using a wire-mesh sensing system for a sodium-cooled fast reactor (SFR). The subchannel flow mixing in SFR core subchannels was an essential characteristic for verification of a core thermal design and safety analysis. A dedicated test facility including the wire-mesh sensor system and tracing liquid injection system was developed, and the conductivity fields at the end of 37-pin rod bundle were visualized in several different flow conditions. These experimental results represented the reasonable agreements with the results of CFD, and the uncertainty of the mixing experiments has been conducted to evaluate the experimental results.

Keywords: core thermal design, flow mixing, a wire-mesh sensor, a wire-wrap effect

Procedia PDF Downloads 612
8398 Research for Hollow Reinforced Concrete Bridge Piers in Korea

Authors: Ho Young Kim, Jae Hoon Lee, Do Kyu Hwang, Im Jong Kwahk, Tae Hoon Kim, Seung Hoon Lee

Abstract:

Hollow section for bridge columns has some advantages. However, current seismic design codes do not provide design regulations for hollow bridge piers. There have been many experimental studied for hollow reinforced concrete piers in the world. But, Study for hollow section for bridge piers in Korea has been begun with approximately 2000s. There has been conducted experimental study for hollow piers of flexural controlled sections by Yeungnam University, Sung kyunkwan University, Korea Expressway Corporation in 2009. This study concluded that flexural controlled sections for hollow piers showed the similar behavior to solid sections. And there have been conducted experimental study for hollow piers of compression controlled sections by Yeungnam University, Korea Institute of Construction Technology in 2012. This study concluded that compression controlled sections for hollow piers showed compression fracture of concrete in inside wall face. Samsung C&T Engineering & Construction Group has been conducted study with Yeungnam University for reduce the quantity of reinforcement details about hollow piers. Reduce the quantity of reinforcement details are triangular cross tie. This study concluded that triangular reinforcement details showed the similar behavior as compared with existing reinforcement details.

Keywords: hollow pier, flexural controlled section, compression controlled section, reduce the quantity of reinforcement, details

Procedia PDF Downloads 400
8397 The Effect of Fetal Movement Counting on Maternal Antenatal Attachment

Authors: Esra Güney, Tuba Uçar

Abstract:

Aim: This study has been conducted for the purpose of determining the effects of fetal movement counting on antenatal maternal attachment. Material and Method: This research was conducted on the basis of the real test model with the pre-test /post-test control groups. The study population consists of pregnant women registered in the six different Family Health Centers located in the central Malatya districts of Yeşilyurt and Battalgazi. When power analysis is done, the sample size was calculated for each group of at least 55 pregnant women (55 tests, 55 controls). The data were collected by using Personal Information Form and MAAS (Maternal Antenatal Attachment Scale) between July 2015-June 2016. Fetal movement counting training was given to pregnant women by researchers in the experimental group after the pre-test data collection. No intervention was applied to the control group. Post-test data for both groups were collected after four weeks. Data were evaluated with percentage, chi-square arithmetic average, chi-square test and as for the dependent and independent group’s t test. Result: In the MAAS, the pre-test average of total scores in the experimental group is 70.78±6.78, control group is also 71.58±7.54 and so there was no significant difference in mean scores between the two groups (p>0.05). MAAS post-test average of total scores in the experimental group is 78.41±6.65, control group is also is 72.25±7.16 and so the mean scores between groups were found to have statistically significant difference (p<0.05). Conclusion: It was determined that fetal movement counting increases the maternal antenatal attachments.

Keywords: antenatal maternal attachment, fetal movement counting, pregnancy, midwifery

Procedia PDF Downloads 251
8396 D-Lysine Assisted 1-Ethyl-3-(3-Dimethylaminopropyl)Carbodiimide / N-Hydroxy Succinimide Initiated Crosslinked Collagen Scaffold with Controlled Structural and Surface Properties

Authors: G. Krishnamoorthy, S. Anandhakumar

Abstract:

The effect of D-Lysine (D-Lys) on collagen with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide(EDC)/N-hydroxysuccinimide(NHS) initiated cross linking using experimental and modelling tools are evaluated. The results of the Coll-D-Lys-EDC/NHS scaffold also indicate an increase in the tensile strength (TS), percentage of elongation (% E), denaturation temperature (Td), and decrease the decomposition rate compared to L-Lys-EDC/NHS. Scanning electron microscopic (SEM) and atomic force microscopic (AFM) analyses revealed a well ordered with properly oriented and well-aligned structure of scaffold. The D-Lys stabilizes the scaffold against degradation by collagenase than L-Lys. The cell assay showed more than 98% fibroblast viability (NIH3T3) and improved cell adhesions, protein adsorption after 72h of culture when compared with native scaffold. Cell attachment after 74h was robust, with cytoskeletal analysis showing that the attached cells were aligned along the fibers assuming a spindle-shape appearance, despite, gene expression analyses revealed no apparent alterations in mRNA levels, although cell proliferation was not adversely affected. D-Lysine (D-Lys) plays a pivotal role in the self-assembly and conformation of collagen fibrils. The D-Lys assisted EDC/NHS initiated cross-linking induces the formation of an carboxamide by the activation of the side chain -COOH group, followed by aminolysis of the O-iso acylurea intermediates by the -NH2 groups are directly joined via an isopeptides bond. This leads to the formation of intra- and inter-helical cross links. Modeling studies indicated that D-Lys bind with collagen-like peptide (CLP) through multiple H-bonding and hydrophobic interactions. Orientational changes in collagenase on CLP-D-Lys are observed which may decrease its accessibility to degradation and stabilize CLP against the action of the former. D-Lys has lowest binding energy and improved fibrillar-assembly and staggered alignment without the undesired structural stiffness and aggregations. The proteolytic machinery is not well equipped to deal with Coll-D-Lys than Coll-L-Lys scaffold. The information derived from the present study could help in designing collagenolytically stable heterochiral collagen based scaffold for biomedical applications.

Keywords: collagen, collagenase, collagen like peptide, D-lysine, heterochiral collagen scaffold

Procedia PDF Downloads 374
8395 Modelling and Control of Milk Fermentation Process in Biochemical Reactor

Authors: Jožef Ritonja

Abstract:

The biochemical industry is one of the most important modern industries. Biochemical reactors are crucial devices of the biochemical industry. The essential bioprocess carried out in bioreactors is the fermentation process. A thorough insight into the fermentation process and the knowledge how to control it are essential for effective use of bioreactors to produce high quality and quantitatively enough products. The development of the control system starts with the determination of a mathematical model that describes the steady state and dynamic properties of the controlled plant satisfactorily, and is suitable for the development of the control system. The paper analyses the fermentation process in bioreactors thoroughly, using existing mathematical models. Most existing mathematical models do not allow the design of a control system for controlling the fermentation process in batch bioreactors. Due to this, a mathematical model was developed and presented that allows the development of a control system for batch bioreactors. Based on the developed mathematical model, a control system was designed to ensure optimal response of the biochemical quantities in the fermentation process. Due to the time-varying and non-linear nature of the controlled plant, the conventional control system with a proportional-integral-differential controller with constant parameters does not provide the desired transient response. The improved adaptive control system was proposed to improve the dynamics of the fermentation. The use of the adaptive control is suggested because the parameters’ variations of the fermentation process are very slow. The developed control system was tested to produce dairy products in the laboratory bioreactor. A carbon dioxide concentration was chosen as the controlled variable. The carbon dioxide concentration correlates well with the other, for the quality of the fermentation process in significant quantities. The level of the carbon dioxide concentration gives important information about the fermentation process. The obtained results showed that the designed control system provides minimum error between reference and actual values of carbon dioxide concentration during a transient response and in a steady state. The recommended control system makes reference signal tracking much more efficient than the currently used conventional control systems which are based on linear control theory. The proposed control system represents a very effective solution for the improvement of the milk fermentation process.

Keywords: biochemical reactor, fermentation process, modelling, adaptive control

Procedia PDF Downloads 114
8394 Environmental Potential of Biochar from Wood Biomass Thermochemical Conversion

Authors: Cora Bulmău

Abstract:

Soil polluted with hydrocarbons spills is a major global concern today. As a response to this issue, our experimental study tries to put in evidence the option to choose for one environmentally friendly method: use of the biochar, despite to a classical procedure; incineration of contaminated soil. Biochar represents the solid product obtained through the pyrolysis of biomass, its additional use being as an additive intended to improve the quality of the soil. The positive effect of biochar addition to soil is represented by its capacity to adsorb and contain petroleum products within its pores. Taking into consideration the capacity of the biochar to interact with organic contaminants, the purpose of the present study was to experimentally establish the effects of the addition of wooden biomass-derived biochar on a soil contaminated with oil. So, the contaminated soil was amended with biochar (10%) produced by pyrolysis in different operational conditions of the thermochemical process. After 25 days, the concentration of petroleum hydrocarbons from soil treated with biochar was measured. An analytical method as Soxhlet extraction was adopted to estimate the concentrations of total petroleum products (TPH) in the soil samples: This technique was applied to contaminated soil, also to soils remediated by incineration/adding biochar. The treatment of soil using biochar obtained from pyrolysis of the Birchwood led to a considerable decrease in the concentrations of petroleum products. The incineration treatments conducted under experimental stage to clean up the same soil, contaminated with petroleum products, involved specific parameters: temperature of about 600°C, 800°C and 1000°C and treatment time 30 and 60 minutes. The experimental results revealed that the method using biochar has registered values of efficiency up to those of all incineration processes applied for the shortest time.

Keywords: biochar, biomass, remediaton, soil, TPH

Procedia PDF Downloads 216
8393 Experimental Characterization of the Shear Behavior of Fiber Reinforced Concrete Beam Elements in Chips

Authors: Djamal Atlaoui, Youcef Bouafia

Abstract:

This work deals with the experimental study of the mechanical behavior, by shear tests (fracture shear), elements of concrete beams reinforced with fibers in chips. These fibers come from the machining waste of the steel parts. The shear tests are carried out on prismatic specimens of dimensions 10 x 20 x 120 cm3. The fibers are characterized by mechanical resistance and tearing. The optimal composition of the concrete was determined by the workability test. Two fiber contents are selected for this study (W = 0.6% and W = 0.8%) and a BT control concrete (W = 0%) of the same composition as the matrix is developed to serve as a reference with a sand-to-gravel ratio (S/G) of concrete matrix equal to 1. The comparison of the different results obtained shows that the chips fibers confer a significant ductility to the material after cracking of the concrete. Also, the fibers used limit diagonal cracks in shear and improve strength and rigidity.

Keywords: characterization, chips fibers, cracking mode, ductility, undulation, shear

Procedia PDF Downloads 116
8392 Numerical Investigation of the Effect of Geometrical Shape of Plate Heat Exchangers on Heat Transfer Efficiency

Authors: Hamed Sanei, Mohammad Bagher Ayani

Abstract:

Optimizations of Plate Heat Exchangers (PHS) have received great attention in the past decade. In this study, heat transfer and pressure drop coefficients are compared for rectangular and circular PHS employing numerical simulations. Plates are designed to have equivalent areas. Simulations were implemented to investigate the efficiency of PHSs considering heat transfer, friction factor and pressure drop. Amount of heat transfer and pressure drop was obtained for different range of Reynolds numbers. These two parameters were compared with aim of F "weighting factor correlation". In this comparison, the minimum amount of F indicates higher efficiency. Results reveal that the F value for rectangular shape is less than circular plate, and hence using rectangular shape of PHS is more efficient than circular one. It was observed that, the amount of friction factor is correlated to the Reynolds numbers, such that friction factor decreased in both rectangular and circular plates with an increase in Reynolds number. Furthermore, such simulations revealed that the amount of heat transfer in rectangular plate is more than circular plate for different range of Reynolds numbers. The difference is more distinct for higher Reynolds number. However, amount of pressure drop in circular plate is less than rectangular plate for the same range of Reynolds numbers which is considered as a negative point for rectangular plate efficiency. It can be concluded that, while rectangular PHSs occupy more space than circular plate, the efficiency of rectangular plate is higher.

Keywords: Chevron corrugated plate heat exchanger, heat transfer, friction factor, Reynolds numbers

Procedia PDF Downloads 286
8391 The Effect of Sulfur and Calcium on the Formation of Dioxin in a Bubbling Fluidized Bed Incinerator

Authors: Chien-Song Chyang, Wei-Chih Wang

Abstract:

For the incineration process, the inhibition of dioxin formation is an important issue. Many investigations indicate that adding sulfur compounds in the combustion process can be an effectively inhibition for the dioxin formation. In the process, the ratio of sulfur-to-chlorine plays an important role for the reduction efficiency of dioxin formation. Ca-base sorbent is also a common used for the acid gas removing. Moreover, that is also the indirectly way for dioxin inhibition. Although sulfur and calcium can reduce the dioxin formation, it still have some confusion exists between these additives. To understand and clarify the relationship between the dioxin and simultaneous addition of sulfur and calcium are presented in this study. The experimental data conducted in a pilot scale fluidized bed combustion system at various operating conditions are analysis comprehensively. The focus is on the dioxin of fly ash in this study. The experimental data in this study showed that the PCDD/Fs concentration in the fly ash collected from the baghouse is increased slightly as the simultaneous addition of sulfur and calcium. This work described the CO concentration with the addition of sulfur and calcium at the freeboard temperature from 800°C to 900°C, which is raised by the fuel complexity. The positive correlation exists between the dioxin concentration and CO concentration and carbon contained in the fly ash.. At the same sulfur/chlorine ratio, the toxic equivalent quantity (TEQ) can be reduced by increasing the actual concentration of sulfur and calcium. The homologue profiles showed that the P₅CDD and P₅CDF were the two major sources for the toxicity of dioxin. 2,3,7,8-TCDD and 2,3,7,8-TCDF reduced by the addition of pyrite and hydrated lime. The experimental results showed that the trend of PCDD/Fs concentration in the fly ash was different by the different sulfur/chlorine ratio with the addition of sulfur at 800°C.

Keywords: reduction of dioxin emissions, sulfur-to-chlorine ratio, de-chlorination, Ca-based sorbent

Procedia PDF Downloads 136
8390 Performance Evaluation of a Small Microturbine Cogeneration Functional Model

Authors: Jeni A. Popescu, Sorin G. Tomescu, Valeriu A. Vilag

Abstract:

The paper focuses on the potential methods of increasing the performance of a microturbine by combining additional elements available for utilization in a cogeneration plant. The activity is carried out within the framework of a project aiming to develop, manufacture and test a microturbine functional model with high potential in energetic industry utilization. The main goal of the analysis is to determine the parameters of the fluid flow passing through each section of the turbine, based on limited data available in literature for the focus output power range or provided by experimental studies, starting from a reference cycle, and considering different cycle options, including simple, intercooled and recuperated options, in order to optimize a small cogeneration plant operation. The studied configurations operate under the same initial thermodynamic conditions and are based on a series of assumptions, in terms of individual performance of the components, pressure/velocity losses, compression ratios, and efficiencies. The thermodynamic analysis evaluates the expected performance of the microturbine cycle, while providing a series of input data and limitations to be included in the development of the experimental plan. To simplify the calculations and to allow a clear estimation of the effect of heat transfer between fluids, the working fluid for all the thermodynamic evolutions is, initially, air, the combustion being modelled by simple heat addition to the system. The theoretical results, along with preliminary experimental results are presented, aiming for a correlation in terms of microturbine performance.

Keywords: cogeneration, microturbine, performance, thermodynamic analysis

Procedia PDF Downloads 155