Search results for: lung cancer diagnosis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4049

Search results for: lung cancer diagnosis

3809 An Exploration of the Pancreatic Cancer miRNome during the Progression of the Disease

Authors: Barsha Saha, Shouvik Chakravarty, Sukanta Ray, Kshaunish Das, Nidhan K. Biswas, Srikanta Goswami

Abstract:

Pancreatic Ductal Adenocarcinoma is a well-recognised cause of cancer death with a five-year survival rate of about 9%, and its incidence in India has been found to be increased manifold in recent years. Due to delayed detection, this highly metastatic disease has a poor prognosis. Several molecular alterations happen during the progression of the disease from pre-cancerous conditions, and many such alterations could be investigated for their biomarker potential. MicroRNAs have been shown to be prognostic for PDAC patients in a variety of studies. We hereby used NGS technologies to evaluate the role of small RNA changes during pancreatic cancer development from chronic pancreatitis. Plasma samples were collected from pancreatic cancer patients (n=16), chronic pancreatitis patients (n=8), and also from normal individuals (n=16). Pancreatic tumour tissue (n=5) and adjacent normal tissue samples (n=5) were also collected. Sequencing of small RNAs was carried out after small RNAs were isolated from plasma samples and tissue samples. We find that certain microRNAs are highly deregulated in pancreatic cancer patients in comparison to normal samples. A combinatorial analysis of plasma and tissue microRNAs and subsequent exploration of their targets and altered molecular pathways could not only identify potential biomarkers for disease diagnosis but also help to understand the underlying mechanism.

Keywords: small RNA sequencing, pancreatic cancer, biomarkers, tissue sample

Procedia PDF Downloads 94
3808 Hyper Tuned RBF SVM: Approach for the Prediction of the Breast Cancer

Authors: Surita Maini, Sanjay Dhanka

Abstract:

Machine learning (ML) involves developing algorithms and statistical models that enable computers to learn and make predictions or decisions based on data without being explicitly programmed. Because of its unlimited abilities ML is gaining popularity in medical sectors; Medical Imaging, Electronic Health Records, Genomic Data Analysis, Wearable Devices, Disease Outbreak Prediction, Disease Diagnosis, etc. In the last few decades, many researchers have tried to diagnose Breast Cancer (BC) using ML, because early detection of any disease can save millions of lives. Working in this direction, the authors have proposed a hybrid ML technique RBF SVM, to predict the BC in earlier the stage. The proposed method is implemented on the Breast Cancer UCI ML dataset with 569 instances and 32 attributes. The authors recorded performance metrics of the proposed model i.e., Accuracy 98.24%, Sensitivity 98.67%, Specificity 97.43%, F1 Score 98.67%, Precision 98.67%, and run time 0.044769 seconds. The proposed method is validated by K-Fold cross-validation.

Keywords: breast cancer, support vector classifier, machine learning, hyper parameter tunning

Procedia PDF Downloads 67
3807 Mobile Health Approaches in the Management of Breast Cancer: A Qualitative Content Analysis

Authors: Hyekyung Woo, Gwihyun Kim

Abstract:

mHealth, which encompasses mobile health technologies and interventions, is rapidly evolving in various medical specialties, and its impact is evident in oncology. This review describes current trends in research addressing the integration of mHealth into the management of breast cancer by examining evaluations of mHealth and its contributions across the cancer care continuum. Mobile technologies are perceived as effective in prevention and as feasible for managing breast cancer, but the diagnostic accuracy of these tools remains in doubt. Not all phases of breast cancer treatment involve mHealth, and not all have been addressed by research. These drawbacks in the application of mHealth to breast cancer management call for intensified research to strengthen its role in breast cancer care.

Keywords: mobile application, breast cancer, content analysis, mHealth

Procedia PDF Downloads 312
3806 Breastfeeding in Childhood Asthma: A Boon or a Bane

Authors: Harish Peri, Amit Devgan

Abstract:

The aim of this study was to evaluate the impact of exclusive breastfeeding on asthma and lung function in childhood asthma. A case-control study comprising 80 cases (children with asthma) and 80 controls(children without asthma) in the age group 6-12 years were included. A diagnosis was made by the treating pediatrician. A parental questionnaire was given and data regarding the name, age, sex of the child, duration of asthma, whether breastfed or not, duration, exclusiveness of breastfeeding and maternal asthmatic status were collected. Peak Expiratory Flow Rate was measured for every child using a Peak Expiratory Flow Meter. Results showed Exclusively Breastfed children were found to better protected against asthma and have improved lung function as compared to Non-exclusively Breastfeed children, irrespective of the mother’s asthmatic status. This study demonstrated that exclusive breastfeeding has a protective action against childhood asthma.

Keywords: asthmatic mothers, childhood asthma, exclusive breastfeeding, non-asthmatic mothers

Procedia PDF Downloads 290
3805 In Silico Exploration of Quinazoline Derivatives as EGFR Inhibitors for Lung Cancer: A Multi-Modal Approach Integrating QSAR-3D, ADMET, Molecular Docking, and Molecular Dynamics Analyses

Authors: Mohamed Moussaoui

Abstract:

A series of thirty-one potential inhibitors targeting the epidermal growth factor receptor kinase (EGFR), derived from quinazoline, underwent 3D-QSAR analysis using CoMFA and CoMSIA methodologies. The training and test sets of quinazoline derivatives were utilized to construct and validate the QSAR models, respectively, with dataset alignment performed using the lowest energy conformer of the most active compound. The best-performing CoMFA and CoMSIA models demonstrated impressive determination coefficients, with R² values of 0.981 and 0.978, respectively, and Leave One Out cross-validation determination coefficients, Q², of 0.645 and 0.729, respectively. Furthermore, external validation using a test set of five compounds yielded predicted determination coefficients, R² test, of 0.929 and 0.909 for CoMFA and CoMSIA, respectively. Building upon these promising results, eighteen new compounds were designed and assessed for drug likeness and ADMET properties through in silico methods. Additionally, molecular docking studies were conducted to elucidate the binding interactions between the selected compounds and the enzyme. Detailed molecular dynamics simulations were performed to analyze the stability, conformational changes, and binding interactions of the quinazoline derivatives with the EGFR kinase. These simulations provided deeper insights into the dynamic behavior of the compounds within the active site. This comprehensive analysis enhances the understanding of quinazoline derivatives as potential anti-cancer agents and provides valuable insights for lead optimization in the early stages of drug discovery, particularly for developing highly potent anticancer therapeutics

Keywords: 3D-QSAR, CoMFA, CoMSIA, ADMET, molecular docking, quinazoline, molecular dynamic, egfr inhibitors, lung cancer, anticancer

Procedia PDF Downloads 48
3804 The Application of FSI Techniques in Modeling of Realist Pulmonary Systems

Authors: Abdurrahim Bolukbasi, Hassan Athari, Dogan Ciloglu

Abstract:

The modeling lung respiratory system which has complex anatomy and biophysics presents several challenges including tissue-driven flow patterns and wall motion. Also, the lung pulmonary system because of that they stretch and recoil with each breath, has not static walls and structures. The direct relationship between air flow and tissue motion in the lung structures naturally prefers an FSI simulation technique. Therefore, in order to toward the realistic simulation of pulmonary breathing mechanics the development of a coupled FSI computational model is an important step. A simple but physiologically-relevant three dimensional deep long geometry is designed and fluid-structure interaction (FSI) coupling technique is utilized for simulating the deformation of the lung parenchyma tissue which produces airflow fields. The real understanding of respiratory tissue system as a complex phenomenon have been investigated with respect to respiratory patterns, fluid dynamics and tissue visco-elasticity and tidal breathing period.

Keywords: lung deformation and mechanics; Tissue mechanics; Viscoelasticity; Fluid-structure interactions; ANSYS

Procedia PDF Downloads 321
3803 Radiological Analysis of Skeletal Metastases from Cervical Cancer

Authors: Jacklynn Walters, Amanda A. Alblas, Linda M. Greyling

Abstract:

Cervical carcinoma is the second most common cancer found in women. Diagnosis of skeletal metastases is uncommon in cervical cancer patients. The aim of this study was to determine the prevalence of skeletal metastases in in a Western Cape skeletal population. Skeletal samples (n=14) from the Kirsten Skeletal Collection at Stellenbosch University, diagnosed pre-mortem with cervical cancer, were examined. Macroscopic analysis was done using low magnification to examine each skeletal element for signs of disease. Skeletons were also x-rayed using the Lodox® Statscan® Imaging system and the scans evaluated by a musculoskeletal radiologist. Three (21%) of the skeletons showed metastases, with the os coxae and lower vertebral column affected in all three cases. Furthermore, metastases occurred in the scapulae and ribs in two of the cases and in one case the skull, mandible, and long bones were affected. Additionally, three skeletons without evidence of skeletal metastases presented with a periosteal reaction on the os coxae in response to the diseased adjacent soft tissue. Previous studies observed that skeletal metastases are more common than what is diagnosed pre-mortem with the vertebral spine most commonly affected. The findings of this study agree with previous reports and illustrate the effectiveness of the Lodox® scanner in diagnoses of metastases in skeletal material.

Keywords: cancer, cervix, radiology, skeletal metastases

Procedia PDF Downloads 365
3802 Association of Overweight and Obesity with Breast Cancer

Authors: Amir Ghasemlouei, Alireza Khalaj

Abstract:

In women, cancer of the breast is one of the most common incident cancer and cause of death from cancer .we reviewed the prevalence of obesity and its association with breast cancer. In this study, a total of 25 articles regarding the subject matter of the article have been presented in which 640 patients were examined that 320 patients with breast cancer and 320 were controls. The distribution of breast cancer patients and controls with respect to their anthropometric indices in patients with higher weight, which was statistically significant (60.2 ± 10.2 kg) compared with control group (56.1 ± 11.3 kg). The body mass index of patients was (26.06+/-3.42) and significantly higher than the control group (24.1+/-1.7). Obesity leads to increased levels of adipose tissue in the body that can be stored toxins and carcinogens to produce a continuous supply. Due to the high level of fat and the role of estrogen in a woman is endogenous estrogen of the tumor and regulate the activities of growth steroids, obesity is a risk factor for breast cancer is confirmed. Our study and other studies show that obesity is a risk factor for breast cancer. And with a weight loss intervention for breast cancer can be prevented in the future.

Keywords: breast cancer, review study, obesity, overweight

Procedia PDF Downloads 452
3801 Lung HRCT Pattern Classification for Cystic Fibrosis Using a Convolutional Neural Network

Authors: Parisa Mansour

Abstract:

Cystic fibrosis (CF) is one of the most common autosomal recessive diseases among whites. It mostly affects the lungs, causing infections and inflammation that account for 90% of deaths in CF patients. Because of this high variability in clinical presentation and organ involvement, investigating treatment responses and evaluating lung changes over time is critical to preventing CF progression. High-resolution computed tomography (HRCT) greatly facilitates the assessment of lung disease progression in CF patients. Recently, artificial intelligence was used to analyze chest CT scans of CF patients. In this paper, we propose a convolutional neural network (CNN) approach to classify CF lung patterns in HRCT images. The proposed network consists of two convolutional layers with 3 × 3 kernels and maximally connected in each layer, followed by two dense layers with 1024 and 10 neurons, respectively. The softmax layer prepares a predicted output probability distribution between classes. This layer has three exits corresponding to the categories of normal (healthy), bronchitis and inflammation. To train and evaluate the network, we constructed a patch-based dataset extracted from more than 1100 lung HRCT slices obtained from 45 CF patients. Comparative evaluation showed the effectiveness of the proposed CNN compared to its close peers. Classification accuracy, average sensitivity and specificity of 93.64%, 93.47% and 96.61% were achieved, indicating the potential of CNNs in analyzing lung CF patterns and monitoring lung health. In addition, the visual features extracted by our proposed method can be useful for automatic measurement and finally evaluation of the severity of CF patterns in lung HRCT images.

Keywords: HRCT, CF, cystic fibrosis, chest CT, artificial intelligence

Procedia PDF Downloads 65
3800 Forecasting Cancers Cases in Algeria Using Double Exponential Smoothing Method

Authors: Messis A., Adjebli A., Ayeche R., Talbi M., Tighilet K., Louardiane M.

Abstract:

Cancers are the second cause of death worldwide. Prevalence and incidence of cancers is getting increased by aging and population growth. This study aims to predict and modeling the evolution of breast, Colorectal, Lung, Bladder and Prostate cancers over the period of 2014-2019. In this study, data were analyzed using time series analysis with double exponential smoothing method to forecast the future pattern. To describe and fit the appropriate models, Minitab statistical software version 17 was used. Between 2014 and 2019, the overall trend in the raw number of new cancer cases registered has been increasing over time; the change in observations over time has been increasing. Our forecast model is validated since we have good prediction for the period 2020 and data not available for 2021 and 2022. Time series analysis showed that the double exponential smoothing is an efficient tool to model the future data on the raw number of new cancer cases.

Keywords: cancer, time series, prediction, double exponential smoothing

Procedia PDF Downloads 88
3799 Synthesis of Erlotinib Analogues, Conjugation of BSA to Erlotinib Alcohol and Their Anti-Cancer Activity against NSCLC

Authors: Ramalingam Boobalan, Chinpiao Chen, Jui-I. Chiao

Abstract:

A series of erlotinib analogues that have structural modification at 6,7-alkoxyl positions is efficiently synthesized. The key reactions that involved in synthesis are one-pot oxime formation-dehydration for the formation of nitrile, quinazoline ring formation reaction between aniline and o-cyanoaniline via formamidine intermediate, Fe/NH4Cl catalyzed reduction-hetereocyclization-reductive ring opening reaction for the formation of o-aminobenzamide, high yielding seal tube reactions for O-demethylation, sodium iodide substitution, ammonia substitution. The in vitro anti-tumor activity of synthesized compounds is studied in two non-small cell lung cancer (NSCLC) cell lines (A549 and H1975). Among the synthesized compounds, the iodo compound 6 (ETN-6) exhibits higher anti-cancer activity compared to erlotinib. An efficient method is developed for the conjugation of erlotinib analogue-4, alcohol compound, with protein, bovine serum albumin (BSA), via succinic acid linker. The in vitro anti-tumor activity of the protein attached erlotinib analogue, 8 (ETN-4-Suc-BSA), showed stronger inhibitory activity in both A549 and H1975 NSCLC cell lines.

Keywords: anti-cancer, BSA, EGFR, Erlotinib

Procedia PDF Downloads 330
3798 Biflavonoids from Selaginellaceae as Epidermal Growth Factor Receptor Inhibitors and Their Anticancer Properties

Authors: Adebisi Adunola Demehin, Wanlaya Thamnarak, Jaruwan Chatwichien, Chatchakorn Eurtivong, Kiattawee Choowongkomon, Somsak Ruchirawat, Nopporn Thasana

Abstract:

The epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein involved in cellular signalling processes and, its aberrant activity is crucial in the development of many cancers such as lung cancer. Selaginellaceae are fern allies that have long been used in Chinese traditional medicine to treat various cancer types, especially lung cancer. Biflavonoids, the major secondary metabolites in Selaginellaceae, have numerous pharmacological activities, including anti-cancer and anti-inflammatory. For instance, amentoflavone induces a cytotoxic effect in the human NSCLC cell line via the inhibition of PARP-1. However, to the best of our knowledge, there are no studies on biflavonoids as EGFR inhibitors. Thus, this study aims to investigate the EGFR inhibitory activities of biflavonoids isolated from Selaginella siamensis and Selaginella bryopteris. Amentoflavone, tetrahydroamentoflavone, sciadopitysin, robustaflavone, robustaflavone-4-methylether, delicaflavone, and chrysocauloflavone were isolated from the ethyl-acetate extract of the whole plants. The structures were determined using NMR spectroscopy and mass spectrometry. In vitro study was conducted to evaluate their cytotoxicity against A549, HEPG2, and T47D human cancer cell lines using the MTT assay. In addition, a target-based assay was performed to investigate their EGFR inhibitory activity using the kinase inhibition assay. Finally, a molecular docking study was conducted to predict the binding modes of the compounds. Robustaflavone-4-methylether and delicaflavone showed the best cytotoxic activity on all the cell lines with IC50 (µM) values of 18.9 ± 2.1 and 22.7 ± 3.3 on A549, respectively. Of these biflavonoids, delicaflavone showed the most potent EGFR inhibitory activity with an 84% relative inhibition at 0.02 nM using erlotinib as a positive control. Robustaflavone-4-methylether showed a 78% inhibition at 0.15 nM. The docking scores obtained from the molecular docking study correlated with the kinase inhibition assay. Robustaflavone-4-methylether and delicaflavone had a docking score of 72.0 and 86.5, respectively. The inhibitory activity of delicaflavone seemed to be linked with the C2”=C3” and 3-O-4”’ linkage pattern. Thus, this study suggests that the structural features of these compounds could serve as a basis for developing new EGFR-TK inhibitors.

Keywords: anticancer, biflavonoids, EGFR, molecular docking, Selaginellaceae

Procedia PDF Downloads 198
3797 Hexane Extract of Thymus serpyllum L.: GC-MS Profile, Antioxidant Potential and Anticancer Impact on HepG2 (Liver Carcinoma) Cell Line

Authors: Salma Baig, Bakrudeen Ali Ahmad, Ainnul Hamidah Syahadah Azizan, Hapipah Mohd Ali, Elham Rouhollahi, Mahmood Ameen Abdulla

Abstract:

Free radical damage induced by reactive oxygen species (ROS) contributes to etiology of many chronic diseases, cancer being one of them. Recent studies have been successful in ROS targeted therapies via antioxidants using mouse models in cancer therapeutics. The present study was designed to scrutinize anticancer activity, antioxidant activity of 5 different extracts of Thymus serpyllum in MDA-MB-231, MCF-7, HepG2, HCT-116, PC3, and A549. Identification of the phytochemicals present in the most active extract of Thymus serpyllum was conducted using gas chromatography coupled with mass spectrophotometry and antioxidant activity was measured by using DPPH radical scavenging and FRAP assay. Anticancer impact of the extract in terms of IC50 was evaluated using MTT cell viability assay. Results revealed that the hexane extract showed the best anticancer activity in HepG2 (Liver Carcinoma Cell Line) with an IC50 value of 23 ± 0.14 µg/ml followed by 25 µg/ml in HCT-116 (Colon Cancer Cell Line), 30 µm/ml in MCF-7 (Breast Cancer Cell Line), 35 µg/ml in MDA-MB-231 (Breast Cancer Cell Line), 57 µg/ml in PC3 (Prostate Cancer Cell Line) and 60 µg/ml in A549 (Lung Carcinoma Cell Line). GC-MS profile of the hexane extract showed the presence of 31 compounds with carvacrol, thymol and thymoquione being the major compounds. Phenolics such as Vitamin E, terpinen-4-ol, borneol and phytol were also identified. Hence, here we present the first report on cytotoxicity of hexane extract of Thymus serpyllum extract in HepG2 cell line with a robust anticancer activity with an IC50 of 23 ± 0.14 µg/ml.

Keywords: Thymus serpyllum L., hexane extract, GC-MS profile, antioxidant activity, anticancer activity, HepG2 cell line

Procedia PDF Downloads 517
3796 An Activatable Prodrug for the Treatment of Metastatic Tumors

Authors: Eun-Joong Kim, Sankarprasad Bhuniya, Hyunseung Lee, Hyun Min Kim, Chaejoon Cheong, Su-khendu Maiti, Kwan Soo Hong, Jong Seung Kim

Abstract:

Metastatic cancers have historically been difficult to treat. However, metastatic tumors have been found to have high levels of reactive oxygen species such as hydrogen peroxide (H2O2), supporting the hypothesis that a prodrug could be activated by intracellular H2O2 and lead to a potential anti-metastatic therapy. In this study, prodrug 7 was designed to be activated by H2O2-mediated boronate oxidation, resulting in activation of the fluorophore for detection and release of the therapeutic agent, SN-38. Drug release from prodrug 7 was investigated by monitoring fluorescence after addition of H2O2 to the cancer cells. Prodrug 7 activated by H2O2 selectively inhibited tumor cell growth. Furthermore, intratracheally administered prodrug 7 showed effective anti-tumor activity in a mouse model of metastatic lung disease. Thus, this H2O2-responsive prodrug has therapeutic potential as a novel treatment for metastatic cancer via cellular imaging with fluorescence as well as selective release of the anti-cancer drug, SN-38.

Keywords: hydrogen peroxide, prodrug, metastatic tumors, fluorescence

Procedia PDF Downloads 453
3795 Automated Prediction of HIV-associated Cervical Cancer Patients Using Data Mining Techniques for Survival Analysis

Authors: O. J. Akinsola, Yinan Zheng, Rose Anorlu, F. T. Ogunsola, Lifang Hou, Robert Leo-Murphy

Abstract:

Cervical Cancer (CC) is the 2nd most common cancer among women living in low and middle-income countries, with no associated symptoms during formative periods. With the advancement and innovative medical research, there are numerous preventive measures being utilized, but the incidence of cervical cancer cannot be truncated with the application of only screening tests. The mortality associated with this invasive cervical cancer can be nipped in the bud through the important role of early-stage detection. This study research selected an array of different top features selection techniques which was aimed at developing a model that could validly diagnose the risk factors of cervical cancer. A retrospective clinic-based cohort study was conducted on 178 HIV-associated cervical cancer patients in Lagos University teaching Hospital, Nigeria (U54 data repository) in April 2022. The outcome measure was the automated prediction of the HIV-associated cervical cancer cases, while the predictor variables include: demographic information, reproductive history, birth control, sexual history, cervical cancer screening history for invasive cervical cancer. The proposed technique was assessed with R and Python programming software to produce the model by utilizing the classification algorithms for the detection and diagnosis of cervical cancer disease. Four machine learning classification algorithms used are: the machine learning model was split into training and testing dataset into ratio 80:20. The numerical features were also standardized while hyperparameter tuning was carried out on the machine learning to train and test the data. Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), and K-Nearest Neighbor (KNN). Some fitting features were selected for the detection and diagnosis of cervical cancer diseases from selected characteristics in the dataset using the contribution of various selection methods for the classification cervical cancer into healthy or diseased status. The mean age of patients was 49.7±12.1 years, mean age at pregnancy was 23.3±5.5 years, mean age at first sexual experience was 19.4±3.2 years, while the mean BMI was 27.1±5.6 kg/m2. A larger percentage of the patients are Married (62.9%), while most of them have at least two sexual partners (72.5%). Age of patients (OR=1.065, p<0.001**), marital status (OR=0.375, p=0.011**), number of pregnancy live-births (OR=1.317, p=0.007**), and use of birth control pills (OR=0.291, p=0.015**) were found to be significantly associated with HIV-associated cervical cancer. On top ten 10 features (variables) considered in the analysis, RF claims the overall model performance, which include: accuracy of (72.0%), the precision of (84.6%), a recall of (84.6%) and F1-score of (74.0%) while LR has: an accuracy of (74.0%), precision of (70.0%), recall of (70.0%) and F1-score of (70.0%). The RF model identified 10 features predictive of developing cervical cancer. The age of patients was considered as the most important risk factor, followed by the number of pregnancy livebirths, marital status, and use of birth control pills, The study shows that data mining techniques could be used to identify women living with HIV at high risk of developing cervical cancer in Nigeria and other sub-Saharan African countries.

Keywords: associated cervical cancer, data mining, random forest, logistic regression

Procedia PDF Downloads 83
3794 Lived Experience of Breast Cancer for Arab Muslim Women

Authors: Nesreen M. Alqaissi

Abstract:

Little is known about the lived experiences of breast cancer among Arab Muslim women. The researcher used a qualitative interpretive phenomenological research design to explore the lived experiences of breast cancer as described by Jordanian Muslim women. A purposive sample of 20 women with breast cancer was recruited. Data were collected utilizing individual semi-structured interviews, and analyzed using Heideggerian Hermeneutical methodology. Results: Five related themes and one constitutive pattern: (a) breast cancer means death; (b) matriarchal family members as important source of support; (c) spirituality as a way to live and survive breast cancer; (d) concealing cancer experiences to protect self and families; (e) physicians as protectors and treatment decision makers; (f) the constitutive pattern: culture influencing Jordanian women experiences with breast cancer. In conclusion, researchers and healthcare providers should consider the influence of culture, spirituality, and families, when caring for women with breast cancer from Jordan.

Keywords: breast cancer, Arab Muslim, Jordan, lived experiences, spirituality, culture

Procedia PDF Downloads 514
3793 Nasopharyngeal Cancer in Children and Adolescents: Experience of Emir Abdelkader Cancer Center of Oran Algeria

Authors: Taleb L., Benarbia M., Brahmi M., Belmiloud H., Boukerche A.

Abstract:

Introduction and purpose of the study: Cavum cancer in children and adolescents is rare and represents 8% of all nasopharyngeal cancers treated in our department. Our objective is to study its epidemiological, clinical, therapeutic, and evolutionary particularities. Material and methods: Retrospective study of 39 patients under 20 years old, treated for undifferentiated non-metastatic carcinoma of the nasopharynx at the Emir Abdelkader Cancer Center between 2014 and 2020. Results and statistical analysis: Median age was 14 years [7-19 years], with a sex ratio of 2.9. The median time to diagnosis was 5.6 months [1 to 14 months], the circumstances of the discovery of which were dominated by lymph node syndrome in 43.6% of cases (n=17) followed by a rhinological syndrome in 30.8% of cases (n=13). The tumor stage was T1 for two patients (5.1%), T2 for 8 (20.5%), T3 for 9 (23.1%), T4 for 20 (51.3%), N0 for 2 (5 .1%) N1 for 4 (10.3%), N2 for 28 (71.8%) and N3 for 5 (12.8%). All patients received induction chemotherapy followed by concomitant radiotherapy with cisplatin. The dose of irradiation delivered to the cavum and adenopathies was 66 Gy with fractionation of 2 Gy per session in 69.2% of cases (n=27) and 1.8 Gy in 30.8% of cases (n=12). With a median follow-up of 51 months (15 to 97 months), the locoregional, metastatic, specific, and overall relapse-free survival rates at five years were 91.1%, 73.5%, 66.1%, and 68.4, respectively. Conclusion: Chemotherapy and radiotherapy treatment of cavum cancer in children and adolescents has allowed excellent locoregional control despite the advanced stage of the disease. However, the frequency of metastatic relapses could justify the possible use of systemic maintenance treatment.

Keywords: cancer, nasopharynx, radiotherapy, chemotherapy, survival

Procedia PDF Downloads 111
3792 Breast Cancer Early Recognition, New Methods of Screening, and Analysis

Authors: Sahar Heidary

Abstract:

Breast cancer is a main public common obstacle global. Additionally, it is the second top reason for tumor death across women. Considering breast cancer cure choices can aid private doctors in precaution for their patients through future cancer treatment. This article reviews usual management centered on stage, histology, and biomarkers. The growth of breast cancer is a multi-stage procedure including numerous cell kinds and its inhibition residues stimulating in the universe. Timely identification of breast cancer is one of the finest methods to stop this illness. Entirely chief therapeutic administrations mention screening mammography for women aged 40 years and older. Breast cancer metastasis interpretations for the mainstream of deaths from breast cancer. The discovery of breast cancer metastasis at the initial step is essential for managing and estimate of breast cancer development. Developing methods consuming the exploration of flowing cancer cells illustrate talented outcomes in forecasting and classifying the initial steps of breast cancer metastasis in patients. In public, mammography residues are the key screening implement though the efficiency of medical breast checks and self-checkup is less. Innovative screening methods are doubtful to exchange mammography in the close upcoming for screening the overall people.

Keywords: breast cancer, screening, metastasis, methods

Procedia PDF Downloads 167
3791 Enquiry into Psychological and Psychosocial Aspects in Cancer Care: Cancer Diseases Hospital, Zambia

Authors: Mubita Namuyamba

Abstract:

Despite an increase in the number of cancer programs and partnerships in cancer care provision, the burden of cancer in Zambia is increasingly having a significant impact on morbidity and mortality rates. The increase in cancer morbidity and mortality rates has given rise to psychological and psycho social implications (PPsI) in cancer care. Cancer patients, care givers and health care providers are faced with a multitude of PPsIs in cancer care that mainly impact negatively on the management of cancer patients. The study adopted a case study design and was purposively conducted at the Cancer Diseases Hospital in Lusaka (Zambia) after obtaining ethical clearance from the Ethics committee. The sample for this study included 70 cancer patients, 20 care givers and 5 hospital staff (4 nurses and 1 doctor). Data was collected using interviews guides, focus group discussion guides and questionnaires respectively. The qualitative data was analysed thematically. The various psychological and psychosocial challenges that conspire to deter the provision of effective cancer care nursing and improved methods of minimizing the psychological and psychosocial implications in cancer care are the products of this study.

Keywords: case study, enquiry, psychological and psycho social aspects, Zambia

Procedia PDF Downloads 337
3790 An Audit on the Role of Sentinel Node Biopsy in High-Risk Ductal Carcinoma in Situ and Intracystic Papillary Carcinoma

Authors: M. Sulieman, H. Arabiyat, H. Ali, K. Potiszil, I. Abbas, R. English, P. King, I. Brown, P. Drew

Abstract:

Introduction: The incidence of breast ductal Carcinoma in Situ (DCIS) has been increasing; it currently represents up 20-25% of all breast carcinomas. Some aspects of DCIS management are still controversial, mainly due to the heterogeneity of its clinical presentation and of its biological and pathological characteristics. In DCIS, histological diagnosis obtained preoperatively, carries the risk of sampling error if the presence of invasive cancer is subsequently diagnosed. The mammographic extent over than 4–5 cm and the presence of architectural distortion, focal asymmetric density or mass on mammography are proven important risk factors of preoperative histological under staging. Intracystic papillary cancer (IPC) is a rare form of breast carcinoma. Despite being previously compared to DCIS it has been shown to present histologically with invasion of the basement membrane and even metastasis. SLNB – Carries the risk of associated comorbidity that should be considered when planning surgery for DCIS and IPC. Objectives: The aim of this Audit was to better define a ‘high risk’ group of patients with pre-op diagnosis of non-invasive cancer undergoing breast conserving surgery, who would benefit from sentinel node biopsy. Method: Retrospective data collection of all patients with ductal carcinoma in situ over 5 years. 636 patients identified, and after exclusion criteria applied: 394 patients were included. High risk defined as: Extensive micro-calcification >40mm OR any mass forming DCIS. IPC: Winpath search from for the term ‘papillary carcinoma’ in any breast specimen for 5 years duration;.29 patients were included in this group. Results: DCIS: 188 deemed high risk due to >40mm calcification or a mass forming (radiological or palpable) 61% of those had a mastectomy and 32% BCS. Overall, in that high-risk group - the number with invasive disease was 38%. Of those high-risk DCIS pts 85% had a SLN - 80% at the time of surgery and 5% at a second operation. For the BCS patients - 42% had SLN at time of surgery and 13% (8 patients) at a second operation. 15 (7.9%) pts in the high-risk group had a positive SLNB, 11 having a mastectomy and 4 having BCS. IPC: The provisional diagnosis of encysted papillary carcinoma is upgraded to an invasive carcinoma on final histology in around a third of cases. This has may have implications when deciding whether to offer sentinel node removal at the time of therapeutic surgery. Conclusions: We have defined a ‘high risk’ group of pts with pre-op diagnosis of non-invasive cancer undergoing BCS, who would benefit from SLNB at the time of the surgery. In patients with high-risk features; the risk of invasive disease is up to 40% but the risk of nodal involvement is approximately 8%. The risk of morbidity from SLN is up to about 5% especially the risk of lymphedema.

Keywords: breast ductal carcinoma in Situ (DCIS), intracystic papillary carcinoma (IPC), sentinel node biopsy (SLNB), high-risk, non-invasive, cancer disease

Procedia PDF Downloads 111
3789 Targeted Nano Anti-Cancer Drugs for Curing Cancers

Authors: Imran Ali

Abstract:

General chemotherapy for cancer treatment has many side and toxic effects. A new approach of targeting nano anti-cancer drug is under development stage and only few drugs are available in the market today. The unique features of these drugs are targeted action on cancer cells only without any side effect. Sometimes, these are called magic drugs. The important molecules used for nano anti-cancer drugs are cisplatin, carboplatin, bleomycin, 5-fluorouracil, doxorubicin, dactinomycin, 6-mercaptopurine, paclitaxel, topotecan, vinblastin and etoposide etc. The most commonly used materials for preparing nano particles carriers are dendrimers, polymeric, liposomal, micelles inorganic, organic etc. The proposed lecture will comprise the-of-art of nano drugs in cancer chemo-therapy including preparation, types of drugs, mechanism, future perspectives etc.

Keywords: cancer, nano-anti-cancer drugs, chemo-therapy, mechanism of action, future perspectives

Procedia PDF Downloads 447
3788 An Insight into Early Stage Detection of Malignant Tumor by Microwave Imaging

Authors: Muhammad Hassan Khalil, Xu Jiadong

Abstract:

Detection of malignant tumor inside the breast of women is a challenging field for the researchers. MWI (Microwave imaging) for breast cancer diagnosis has been of interest for last two decades, newly it suggested for finding cancerous tissues of women breast. A simple and basic idea of the mathematical modeling is used throughout this paper for imaging of malignant tumor. In this paper, the authors explained inverse scattering method in the microwave imaging and also present some simulation results.

Keywords: breast cancer detection, microwave imaging, tomography, tumor

Procedia PDF Downloads 410
3787 Anti-Angiogenic and Anti-Metastatic Effect of Aqueous Fraction from Euchelus Asper Methanolic Extract

Authors: Sweta Agrawal, Sachin Chaugule, Gargi Rane, Shashank More, Madhavi Indap

Abstract:

Angiogenesis and metastasis are two of the most important hallmarks of cancer. Hence, most of the cancer therapies nowadays are multi-targeted so as to reduce resistance and have better efficacy. As synthetic molecules arise with a burden of their toxicities and side-effects, more and more research is being focussed on exploiting the vast natural resources of drugs, in the form of plants and animals. Although, the idea of using marine organisms as a source of pharmaceuticals is not new, the pace at which marine drugs are being discovered, has definitely up surged! In the present study, we have assessed the anti-angiogenic and in vitro anti-metastatic activity of aqueous fraction from the extract of marine gastropod Euchelus asper. The soft body of Euchelus Asper was extracted with methanol and named EAME. Partition chromatography of EAME gave three fractions EAME I, II and III. Biochemical analysis revealed the presence of proteins in EAME III. Preliminary analysis had revealed the anti-angiogenic activity was exhibited by EAME III out of the three fractions. Hereafter, EAME III (concentration 25µg/ml-400µg/ml) was tested on chick chorioallantoic membrane (CAM) model for the detailed analysis of its potential anti-angiogenic effect. In vitro testing of the fraction (concentration 0.25µg/ml - 1µg/ml), involved cytotoxicity by SRB assay, cell cycle analysis by flow cytometry and anti-proliferative effect by scratch wound healing assay on A549 lung carcinoma cells. Apart from this, a portion of treated CAM as well as conditioned medium from treated A549 were subjected to gelatin zymography for assessment of matrix metalloproteinases MMP-2 and MMP-9 levels. Our results revealed that EAME III exhibited significant anti-angiogenic activity on CAM which was also supported by histological observations. During histological studies of CAM, it was found that EAME III caused reduction in angiogenesis by altering the extracellular matrix of the CAM membrane. In vitro analysis disclosed that EAME III exhibited moderate cytotoxic effect on A549 cells and its effect was not dose-dependent. The results of flow cytometry confirmed that EAME III caused cell cycle arrest in A549 cell line as almost all of the treated cells were found in G1 phase. Further, the migration and proliferation of A549 was significantly reduced by EAME III as observed from the scratch wound assay. Moreover, Gelatin zymography analysis revealed that EAME III caused suppression of MMP-2 in CAM membrane and reduced MMP-9 and MMP-2 expression in A549 cells. This verified that the anti-angiogenic and anti-metastatic effects of EAME III were correlated with the suppression of MMP-2 and -9. To conclude, EAME III shows dual anti-tumour action by reducing angiogenesis and exerting anti-metastatic effect on lung cancer cells, thus it has the potential to be used as an anti-cancer agent against lung carcinoma.

Keywords: angiogenesis, anti-cancer, marine drugs, matrix metalloproteinases

Procedia PDF Downloads 231
3786 The Impact of Prior Cancer History on the Prognosis of Salivary Gland Cancer Patients: A Population-based Study from the Surveillance, Epidemiology, and End Results (SEER) Database

Authors: Junhong Li, Danni Cheng, Yaxin Luo, Xiaowei Yi, Ke Qiu, Wendu Pang, Minzi Mao, Yufang Rao, Yao Song, Jianjun Ren, Yu Zhao

Abstract:

Background: The number of multiple cancer patients was increasing, and the impact of prior cancer history on salivary gland cancer patients remains unclear. Methods: Clinical, demographic and pathological information on salivary gland cancer patients were retrospectively collected from the Surveillance, Epidemiology, and End Results (SEER) database from 2004 to 2017, and the characteristics and prognosis between patients with a prior cancer and those without prior caner were compared. Univariate and multivariate cox proportional regression models were used for the analysis of prognosis. A risk score model was established to exam the impact of treatment on patients with a prior cancer in different risk groups. Results: A total of 9098 salivary gland cancer patients were identified, and 1635 of them had a prior cancer history. Salivary gland cancer patients with prior cancer had worse survival compared with those without a prior cancer (p<0.001). Patients with a different type of first cancer had a distinct prognosis (p<0.001), and longer latent time was associated with better survival (p=0.006) in the univariate model, although both became nonsignificant in the multivariate model. Salivary gland cancer patients with a prior cancer were divided into low-risk (n= 321), intermediate-risk (n=223), and high-risk (n=62) groups and the results showed that patients at high risk could benefit from surgery, radiation therapy, and chemotherapy, and those at intermediate risk could benefit from surgery. Conclusion: Prior cancer history had an adverse impact on the survival of salivary gland cancer patients, and individualized treatment should be seriously considered for them.

Keywords: prior cancer history, prognosis, salivary gland cancer, SEER

Procedia PDF Downloads 146
3785 Biomarkers for Rectal Adenocarcinoma Identified by Lipidomic and Bioinformatic

Authors: Patricia O. Carvalho, Marcia C. F. Messias, Laura Credidio, Carlos A. R. Martinez

Abstract:

Lipidomic strategy can provide important information regarding cancer pathogenesis mechanisms and could reveal new biomarkers to enable early diagnosis of rectal adenocarcinoma (RAC). This study set out to evaluate lipoperoxidation biomarkers, and lipidomic signature by gas chromatography (GC) and electrospray ionization-qToF-mass spectrometry (ESI-qToF-MS) combined with multivariate data analysis in plasma from 23 RAC patients (early- or advanced-stages cancer) and 18 healthy controls. The most abundant ions identified in the RAC patients were those of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) while those of lisophosphatidylcholine (LPC), identified as LPC (16:1), LPC (18:1) and LPC (18:2), were down-regulated. LPC plasmalogen containing palmitoleic acid (LPC (P-16:1)), with highest VIP score, showed a low tendency in the cancer patients. Malondialdehyde plasma levels were higher in patients with advanced cancer (III/IV stages) than in the early stages groups and the healthy group (p<0.05). No differences in F2-isoprostane levels were observed between these groups. This study shows that the reduction in plasma levels of LPC plasmalogens associated to an increase in MDA levels may indicate increased oxidative stress in these patients and identify the metabolite LPC (P-16:1) as new biomarkers for RAC.

Keywords: biomarkers, lipidomic, plasmalogen, rectal adenocarcinoma

Procedia PDF Downloads 230
3784 Recognition of New Biomarkers in the Epigenetic Pathway of Breast Cancer

Authors: Fatemeh Zeinali Sehrig

Abstract:

This study aimed to evaluate the expression of miR-299-3p, DNMT1, DNMT3A, and DNMT3B in breast cancer samples and investigate their diagnostic significance. Using the GSE40525 and GSE45666, the miR-299-3p expression level was studied in breast cancer tissues. Also, the expression levels of DNMT1, DNMT3A, and DNMT3B were investigated by analyzing GSE61725, GSE86374, and GSE37751 datasets. The target genes were studied in terms of biological processes of molecular functions and cellular components. Consistent with the in silico results, miR-299-3p expression was substantially decreased in breast cancer tissues, and the expression levels of DNMT1, DNMT3A, and DNMT3B were considerably upregulated in breast cancer samples. It was found that the expression levels of miR-299-3p and DNMT1, DNMT3A, and DNMT3B could be valuable diagnostic tools for detecting breast cancer. Also, miR-299-3p downregulation may play a role in DNMT1, DNMT3A, and DNMT3B upregulation in breast cancer.

Keywords: breast cancer, miR-299-3p, DNMTs, GEO database

Procedia PDF Downloads 37
3783 Oral Microbiota as a Novel Predictive Biomarker of Response To Immune Checkpoint Inhibitors in Advanced Non-small Cell Lung Cancer Patients

Authors: Francesco Pantano, Marta Fogolari, Michele Iuliani, Sonia Simonetti, Silvia Cavaliere, Marco Russano, Fabrizio Citarella, Bruno Vincenzi, Silvia Angeletti, Giuseppe Tonini

Abstract:

Background: Although immune checkpoint inhibitors (ICIs) have changed the treatment paradigm of non–small cell lung cancer (NSCLC), these drugs fail to elicit durable responses in the majority of NSCLC patients. The gut microbiota, able to regulate immune responsiveness, is emerging as a promising, modifiable target to improve ICIs response rates. Since the oral microbiome has been demonstrated to be the primary source of bacterial microbiota in the lungs, we investigated its composition as a potential predictive biomarker to identify and select patients who could benefit from immunotherapy. Methods: Thirty-five patients with stage IV squamous and non-squamous cell NSCLC eligible for an anti-PD-1/PD-L1 as monotherapy were enrolled. Saliva samples were collected from patients prior to the start of treatment, bacterial DNA was extracted using the QIAamp® DNA Microbiome Kit (QIAGEN) and the 16S rRNA gene was sequenced on a MiSeq sequencing instrument (Illumina). Results: NSCLC patients were dichotomized as “Responders” (partial or complete response) and “Non-Responders” (progressive disease), after 12 weeks of treatment, based on RECIST criteria. A prevalence of the phylum Candidatus Saccharibacteria was found in the 10 responders compared to non-responders (abundance 5% vs 1% respectively; p-value = 1.46 x 10-7; False Discovery Rate (FDR) = 1.02 x 10-6). Moreover, a higher prevalence of Saccharibacteria Genera Incertae Sedis genus (belonging to the Candidatus Saccharibacteria phylum) was observed in "responders" (p-value = 6.01 x 10-7 and FDR = 2.46 x 10-5). Finally, the patients who benefit from immunotherapy showed a significant abundance of TM7 Phylum Sp Oral Clone FR058 strain, member of Saccharibacteria Genera Incertae Sedis genus (p-value = 6.13 x 10-7 and FDR=7.66 x 10-5). Conclusions: These preliminary results showed a significant association between oral microbiota and ICIs response in NSCLC patients. In particular, the higher prevalence of Candidatus Saccharibacteria phylum and TM7 Phylum Sp Oral Clone FR058 strain in responders suggests their potential immunomodulatory role. The study is still ongoing and updated data will be presented at the congress.

Keywords: oral microbiota, immune checkpoint inhibitors, non-small cell lung cancer, predictive biomarker

Procedia PDF Downloads 97
3782 A Longitudinal Examination of the Impact of Treatment Modality on Relationship Satisfaction and Mental Health Quality of Life Outcomes among Prostate Cancer Survivors

Authors: Gabriela Ilie, Robert D. H. Rutledge

Abstract:

A review of the literature reveals a need for longitudinal studies to properly understand the quality of life of prostate cancer survivors during their prostate cancer journey in order to identify opportunities for patient support and care during prostate cancer survivorship. In this study, mental health and relationship satisfaction were assessed longitudinally and by treatment modality among a population-based sample of Canadian adult men with a history of prostate cancer diagnosis. A total of 98 men, aged 51 or older with a history of prostate cancer completed an on-line 15-minute survey between May 2017 and February 2018, assessing mental health (Kessler Psychological Distress Scale) and relationship satisfaction (Dyadic Adjustment Scale) at baseline and at three months post-treatment with either active or nonactive prostate cancer treatment. Almost 1 in 6 men in this sample screened positive for mental health issues (17.34%, n=17) irrespective of treatment modality and most (n=11) were not currently on medication for depression, anxiety or both. Mental health outcomes were poorer for men with multimorbidity. For every instance of screening positive for mental health issues, 2.021 (95% CI:1.1 to 3.8) times more comorbidities were recorded. Relationship satisfaction and dyadic cohesion were statistically significantly lower from first assessment to 3 months for men who underwent multiple treatment modalities (surgery and radiation with hormonal therapy). Relationship satisfaction was also lower at 3 months for men who underwent radiation therapy. Almost 1 in 2 men in this sample (74%) indicated they did not attend a prostate cancer support group. Results suggest that treatment for mental health is underutilized in men with prostate cancer. Men who undergo multiple forms of active treatment appear more vulnerable to relationship dissatisfaction and feeling disconnected from their partner. Data points to important opportunities for patient education and care support during survivorship.

Keywords: prostate cancer survivorship, mental health, quality of life, relationship satisfaction

Procedia PDF Downloads 116
3781 Breast Cancer Diagnosing Based on Online Sequential Extreme Learning Machine Approach

Authors: Musatafa Abbas Abbood Albadr, Masri Ayob, Sabrina Tiun, Fahad Taha Al-Dhief, Mohammad Kamrul Hasan

Abstract:

Breast Cancer (BC) is considered one of the most frequent reasons of cancer death in women between 40 to 55 ages. The BC is diagnosed by using digital images of the FNA (Fine Needle Aspirate) for both benign and malignant tumors of the breast mass. Therefore, this work proposes the Online Sequential Extreme Learning Machine (OSELM) algorithm for diagnosing BC by using the tumor features of the breast mass. The current work has used the Wisconsin Diagnosis Breast Cancer (WDBC) dataset, which contains 569 samples (i.e., 357 samples for benign class and 212 samples for malignant class). Further, numerous measurements of assessment were used in order to evaluate the proposed OSELM algorithm, such as specificity, precision, F-measure, accuracy, G-mean, MCC, and recall. According to the outcomes of the experiment, the highest performance of the proposed OSELM was accomplished with 97.66% accuracy, 98.39% recall, 95.31% precision, 97.25% specificity, 96.83% F-measure, 95.00% MCC, and 96.84% G-Mean. The proposed OSELM algorithm demonstrates promising results in diagnosing BC. Besides, the performance of the proposed OSELM algorithm was superior to all its comparatives with respect to the rate of classification.

Keywords: breast cancer, machine learning, online sequential extreme learning machine, artificial intelligence

Procedia PDF Downloads 111
3780 Principle Component Analysis on Colon Cancer Detection

Authors: N. K. Caecar Pratiwi, Yunendah Nur Fuadah, Rita Magdalena, R. D. Atmaja, Sofia Saidah, Ocky Tiaramukti

Abstract:

Colon cancer or colorectal cancer is a type of cancer that attacks the last part of the human digestive system. Lymphoma and carcinoma are types of cancer that attack human’s colon. Colon cancer causes deaths about half a million people every year. In Indonesia, colon cancer is the third largest cancer case for women and second in men. Unhealthy lifestyles such as minimum consumption of fiber, rarely exercising and lack of awareness for early detection are factors that cause high cases of colon cancer. The aim of this project is to produce a system that can detect and classify images into type of colon cancer lymphoma, carcinoma, or normal. The designed system used 198 data colon cancer tissue pathology, consist of 66 images for Lymphoma cancer, 66 images for carcinoma cancer and 66 for normal / healthy colon condition. This system will classify colon cancer starting from image preprocessing, feature extraction using Principal Component Analysis (PCA) and classification using K-Nearest Neighbor (K-NN) method. Several stages in preprocessing are resize, convert RGB image to grayscale, edge detection and last, histogram equalization. Tests will be done by trying some K-NN input parameter setting. The result of this project is an image processing system that can detect and classify the type of colon cancer with high accuracy and low computation time.

Keywords: carcinoma, colorectal cancer, k-nearest neighbor, lymphoma, principle component analysis

Procedia PDF Downloads 205