Search results for: knowledge discovery and data mining
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30260

Search results for: knowledge discovery and data mining

30020 Gold, Power, Protest, Examining How Digital Media and PGIS are Used to Protest the Mining Industry in Colombia

Authors: Doug Specht

Abstract:

This research project sought to explore the links between digital media, PGIS and social movement organisations in Tolima, Colombia. The primary aim of the research was to examine how knowledge is created and disseminated through digital media and GIS in the region, and whether there exists the infrastructure to allow for this. The second strand was to ascertain if this has had a significant impact on the way grassroots movements work and produce collective actions. The third element is a hypothesis about how digital media and PGIS could play a larger role in activist activities, particularly in reference to the extractive industries. Three theoretical strands have been brought together to provide a basis for this research, namely (a) the politics of knowledge, (b) spatial management and inclusion, and (c) digital media and political engagement. Quantitative data relating to digital media and mobile internet use was collated alongside qualitative data relating to the likelihood of using digital media in activist campaigns, with particular attention being given to grassroots movements working against extractive industries in the Tolima region of Colombia. Through interviews, surveys and GIS analysis it has been possible to build a picture of online activism and the role of PPGIS within protest movement in the region of Tolima, Colombia. Results show a gap between the desires of social movements to use digital media and the skills and finances required to implement programs that utilise it. Maps and GIS are generally reserved for legal cases rather than for informing the lay person. However, it became apparent that the combination of digital/social media and PPGIS could play a significant role in supporting the work of grassroots movements.

Keywords: PGIS, GIS, social media, digital media, mining, colombia, social movements, protest

Procedia PDF Downloads 426
30019 Application of Advanced Remote Sensing Data in Mineral Exploration in the Vicinity of Heavy Dense Forest Cover Area of Jharkhand and Odisha State Mining Area

Authors: Hemant Kumar, R. N. K. Sharma, A. P. Krishna

Abstract:

The study has been carried out on the Saranda in Jharkhand and a part of Odisha state. Geospatial data of Hyperion, a remote sensing satellite, have been used. This study has used a wide variety of patterns related to image processing to enhance and extract the mining class of Fe and Mn ores.Landsat-8, OLI sensor data have also been used to correctly explore related minerals. In this way, various processes have been applied to increase the mineralogy class and comparative evaluation with related frequency done. The Hyperion dataset for hyperspectral remote sensing has been specifically verified as an effective tool for mineral or rock information extraction within the band range of shortwave infrared used. The abundant spatial and spectral information contained in hyperspectral images enables the differentiation of different objects of any object into targeted applications for exploration such as exploration detection, mining.

Keywords: Hyperion, hyperspectral, sensor, Landsat-8

Procedia PDF Downloads 122
30018 A Suggested Study Plan for Mining Engineering Program in Northern Border University (NBU) to Match the Requirements of the Local Mining Industry

Authors: Mohammad Aljuhani, Yasamina Aljuhani

Abstract:

The Mining Engineering Department at College of Engineering in NBU is under establishment. It is essential to establish such department in NBU. This is because, it is the only university in the region. Moreover, the mining industry is very active in the northern borders region. However, there is no mining engineering department in KSA except one in King Abdulziz University, which is 1400 km from the mining industry in the northern borders. As a result, department graduates from KAU find difficulties to get suitable jobs in their specialization in spite of their few numbers graduated per year and the presence of many jobs vacancies at the local mining sector. Therefore, the objectives of this research are to identify, measure and analyze the above mentioned problem from educational point of view. One more objective is to add a contribution towards solving such vital, society affecting problem. For achieving the first task of the research, that is problem size identification and analyses, a questionnaire was designed. The questionnaire was directed towards experienced engineers, in the mining and related industries, including the ministry of petroleum and minerals, Saudi Geological Survey, and Ma’aden Company as being prospective employers for the mining sector. The questionnaire target was to evaluate the Saudi mining engineers from an industrial point of view and to detect the main reasons behind their failure to find jobs. In addition, the study focuses in the demand of mining engineers in the northern borders region. Moreover, the study plan of the suggested department is designed based on the requirements of the mining industry. The feedback received from the industry reflected major educational shortcomings. In order to overcome the revealed defects, the second objective of the research was achieved where a suggested study plan “curriculum” has been prepared to take into consideration all the points of weakness so as to improve the graduates’ quality to fit the local mining work market.

Keywords: mining engineering, labor market, qualifications, curriculum, mining industry, mining engineers

Procedia PDF Downloads 270
30017 Using Data Mining Techniques to Evaluate the Different Factors Affecting the Academic Performance of Students at the Faculty of Information Technology in Hashemite University in Jordan

Authors: Feras Hanandeh, Majdi Shannag

Abstract:

This research studies the different factors that could affect the Faculty of Information Technology in Hashemite University students’ accumulative average. The research paper verifies the student information, background, their academic records, and how this information will affect the student to get high grades. The student information used in the study is extracted from the student’s academic records. The data mining tools and techniques are used to decide which attribute(s) will affect the student’s accumulative average. The results show that the most important factor which affects the students’ accumulative average is the student Acceptance Type. And we built a decision tree model and rules to determine how the student can get high grades in their courses. The overall accuracy of the model is 44% which is accepted rate.

Keywords: data mining, classification, extracting rules, decision tree

Procedia PDF Downloads 414
30016 Development and Management of Integrated Mineral Resource Policy for Environmental Sustainability: The Mindanao Experience, the Philippines

Authors: Davidson E. Egirani, Nanfe R. Poyi, Napoleon Wessey

Abstract:

This paper would report the environmental challenges faced by stakeholders in the development and management of mineral resources in Mindanao mining region of the Philippines. The paper would proffer solutions via the development and management of integrated mineral resource framework. This is by interfacing the views of government, operating mining companies and the mining host communities. The project methods involved the desktop review of existing local, regional, national environmental and mining legislation. This was followed up with visits to mining sites and discussions were held with stakeholders in the mineral sector. The findings from a 2-year investigation would reveal lack of information, education, and communication campaign by stakeholders on environmental, health, political, and social issues in the mining industry. Small-scale miners lack the professional muscles for a balance shift of emphasis to sustainable and responsible mining to avoid environmental degradation and human health effect. Therefore, there is a need to balance ecological requirements, sustainability of the environment and development of mineral resources. This paper would provide an environmentally friendly mineral resource development framework.

Keywords: ecological requirements, environmental degradation, human health, mining legislation, responsible mining

Procedia PDF Downloads 131
30015 The Effects of Giving on Knowledge about Epidemic Keratoconjunctivitis in Bangsaen Beach Venders, Chonburi, Thailand

Authors: Luksanaporn Krungkraipetch

Abstract:

Epidemic keratoconjunctivitis is an acute infection caused by the adenovirus symptoms of eye irritation, tearing an incubation period of 7-9 days from the respiratory tract into the eye and often cohesion in the community who work in the school's pool as well as a shopping mall. After infection can cause symptoms within 1-2 days chance to infect others up to two weeks. In some cases when red-eye better they had potential complications of the eye, inflammation occurs 7-10 days after conjunctivitis. It could be for several more months to recover. This study is a cross-sectional study with one hundred and eleven beach venders, and purpose of the research was to assess the knowledge, that knowledge has improved much. By comparing before and after the knowledge of the use of questionnaires and test your knowledge. The statistics used for data analysis percent, arithmetic mean and T-test. The statistics used to analyze data at the level of statistical p ≤ 0.05. Result of this study; mostly female (83.8%), most age 19-35 years (42.3%). Hometown is mostly in Chonburi 74.8%. 20.7% had epidemic keratoconjunctivitis within one year. Compared between before and after gave knowledge; after gave knowledge is better than before gave knowledge p=0.00.

Keywords: knowledge, epidemic keratoconjunctivitis, conjunctivitis, beach vender

Procedia PDF Downloads 275
30014 Ontology as Knowledge Capture Tool in Organizations: A Literature Review

Authors: Maria Margaretha, Dana Indra Sensuse, Lukman

Abstract:

Knowledge capture is a step in knowledge life cycle to get knowledge in the organization. Tacit and explicit knowledge are needed to organize in a path, so the organization will be easy to choose which knowledge will be use. There are many challenges to capture knowledge in the organization, such as researcher must know which knowledge has been validated by an expert, how to get tacit knowledge from experts and make it explicit knowledge, and so on. Besides that, the technology will be a reliable tool to help the researcher to capture knowledge. Some paper wrote how ontology in knowledge management can be used for proposed framework to capture and reuse knowledge. Organization has to manage their knowledge, process capture and share will decide their position in the business area. This paper will describe further from literature review about the tool of ontology that will help the organization to capture its knowledge.

Keywords: knowledge capture, ontology, technology, organization

Procedia PDF Downloads 604
30013 The Best Prediction Data Mining Model for Breast Cancer Probability in Women Residents in Kabul

Authors: Mina Jafari, Kobra Hamraee, Saied Hossein Hosseini

Abstract:

The prediction of breast cancer disease is one of the challenges in medicine. In this paper we collected 528 records of women’s information who live in Kabul including demographic, life style, diet and pregnancy data. There are many classification algorithm in breast cancer prediction and tried to find the best model with most accurate result and lowest error rate. We evaluated some other common supervised algorithms in data mining to find the best model in prediction of breast cancer disease among afghan women living in Kabul regarding to momography result as target variable. For evaluating these algorithms we used Cross Validation which is an assured method for measuring the performance of models. After comparing error rate and accuracy of three models: Decision Tree, Naive Bays and Rule Induction, Decision Tree with accuracy of 94.06% and error rate of %15 is found the best model to predicting breast cancer disease based on the health care records.

Keywords: decision tree, breast cancer, probability, data mining

Procedia PDF Downloads 136
30012 An Unsupervised Domain-Knowledge Discovery Framework for Fake News Detection

Authors: Yulan Wu

Abstract:

With the rapid development of social media, the issue of fake news has gained considerable prominence, drawing the attention of both the public and governments. The widespread dissemination of false information poses a tangible threat across multiple domains of society, including politics, economy, and health. However, much research has concentrated on supervised training models within specific domains, their effectiveness diminishes when applied to identify fake news across multiple domains. To solve this problem, some approaches based on domain labels have been proposed. By segmenting news to their specific area in advance, judges in the corresponding field may be more accurate on fake news. However, these approaches disregard the fact that news records can pertain to multiple domains, resulting in a significant loss of valuable information. In addition, the datasets used for training must all be domain-labeled, which creates unnecessary complexity. To solve these problems, an unsupervised domain knowledge discovery framework for fake news detection is proposed. Firstly, to effectively retain the multidomain knowledge of the text, a low-dimensional vector for each news text to capture domain embeddings is generated. Subsequently, a feature extraction module utilizing the unsupervisedly discovered domain embeddings is used to extract the comprehensive features of news. Finally, a classifier is employed to determine the authenticity of the news. To verify the proposed framework, a test is conducted on the existing widely used datasets, and the experimental results demonstrate that this method is able to improve the detection performance for fake news across multiple domains. Moreover, even in datasets that lack domain labels, this method can still effectively transfer domain knowledge, which can educe the time consumed by tagging without sacrificing the detection accuracy.

Keywords: fake news, deep learning, natural language processing, multiple domains

Procedia PDF Downloads 96
30011 Knowledge, Attitudes, and Practices regarding Anthrax among Community Members, Health and Veterinary Workers in Maragua, Kenya

Authors: Isaiah Chacha, Samuel Arimi, Andrew Thaiya

Abstract:

Background: This study was conducted to assess knowledge, attitudes and practices regarding anthrax in Maragua, Kenya to provide baseline information to design interventions. Methods: A cross sectional survey was conducted among head of households, health and veterinary workers in Maragua Sub-county in August and September 2014. Administered questionnaires were used to collect data from household members and a key informant interview held with health and veterinary workers. Multi stage sampling was used to obtain participants’ knowledge, attitudes and practices. Questions were scored and descriptively analyzed using Excel spreadsheet then exported to GenStat Discovery Edition 4. Results: A total of 293 community members were recruited in this study. The overall level of knowledge was 77.9% of all community members regarding cause, transmission, symptoms and prevention of the disease in both humans and animals. Majority of the participants (96.3%) had heard about anthrax. A total of 99 (33.8%) correspondents had seen a person with anthrax and 75.1% think that anthrax is a very serious disease in the area. Of the interviewed correspondents, 14.3% of them have had their animals (mostly cattle) suffer from anthrax while 15.7% had either suffered from anthrax or have had their family member who suffered from anthrax. Conclusion: The study findings indicate above average knowledge on cause, symptoms, transmission and prevention of anthrax among community members in humans and animals. Practices in this study were still risk among community members. Veterinary and Medical health planners should design anthrax awareness interventions as a team targeting to reach these communities and the public through barazas, radio, CHW and other communication channel on a regular basis.

Keywords: anthrax, attitudes, Kenya, knowledge, Maragua, practices

Procedia PDF Downloads 316
30010 Discovering the Effects of Meteorological Variables on the Air Quality of Bogota, Colombia, by Data Mining Techniques

Authors: Fabiana Franceschi, Martha Cobo, Manuel Figueredo

Abstract:

Bogotá, the capital of Colombia, is its largest city and one of the most polluted in Latin America due to the fast economic growth over the last ten years. Bogotá has been affected by high pollution events which led to the high concentration of PM10 and NO2, exceeding the local 24-hour legal limits (100 and 150 g/m3 each). The most important pollutants in the city are PM10 and PM2.5 (which are associated with respiratory and cardiovascular problems) and it is known that their concentrations in the atmosphere depend on the local meteorological factors. Therefore, it is necessary to establish a relationship between the meteorological variables and the concentrations of the atmospheric pollutants such as PM10, PM2.5, CO, SO2, NO2 and O3. This study aims to determine the interrelations between meteorological variables and air pollutants in Bogotá, using data mining techniques. Data from 13 monitoring stations were collected from the Bogotá Air Quality Monitoring Network within the period 2010-2015. The Principal Component Analysis (PCA) algorithm was applied to obtain primary relations between all the parameters, and afterwards, the K-means clustering technique was implemented to corroborate those relations found previously and to find patterns in the data. PCA was also used on a per shift basis (morning, afternoon, night and early morning) to validate possible variation of the previous trends and a per year basis to verify that the identified trends have remained throughout the study time. Results demonstrated that wind speed, wind direction, temperature, and NO2 are the most influencing factors on PM10 concentrations. Furthermore, it was confirmed that high humidity episodes increased PM2,5 levels. It was also found that there are direct proportional relationships between O3 levels and wind speed and radiation, while there is an inverse relationship between O3 levels and humidity. Concentrations of SO2 increases with the presence of PM10 and decreases with the wind speed and wind direction. They proved as well that there is a decreasing trend of pollutant concentrations over the last five years. Also, in rainy periods (March-June and September-December) some trends regarding precipitations were stronger. Results obtained with K-means demonstrated that it was possible to find patterns on the data, and they also showed similar conditions and data distribution among Carvajal, Tunal and Puente Aranda stations, and also between Parque Simon Bolivar and las Ferias. It was verified that the aforementioned trends prevailed during the study period by applying the same technique per year. It was concluded that PCA algorithm is useful to establish preliminary relationships among variables, and K-means clustering to find patterns in the data and understanding its distribution. The discovery of patterns in the data allows using these clusters as an input to an Artificial Neural Network prediction model.

Keywords: air pollution, air quality modelling, data mining, particulate matter

Procedia PDF Downloads 258
30009 Analytical Study of Data Mining Techniques for Software Quality Assurance

Authors: Mariam Bibi, Rubab Mehboob, Mehreen Sirshar

Abstract:

Satisfying the customer requirements is the ultimate goal of producing or developing any product. The quality of the product is decided on the bases of the level of customer satisfaction. There are different techniques which have been reported during the survey which enhance the quality of the product through software defect prediction and by locating the missing software requirements. Some mining techniques were proposed to assess the individual performance indicators in collaborative environment to reduce errors at individual level. The basic intention is to produce a product with zero or few defects thereby producing a best product quality wise. In the analysis of survey the techniques like Genetic algorithm, artificial neural network, classification and clustering techniques and decision tree are studied. After analysis it has been discovered that these techniques contributed much to the improvement and enhancement of the quality of the product.

Keywords: data mining, defect prediction, missing requirements, software quality

Procedia PDF Downloads 463
30008 A Bayesian Classification System for Facilitating an Institutional Risk Profile Definition

Authors: Roman Graf, Sergiu Gordea, Heather M. Ryan

Abstract:

This paper presents an approach for easy creation and classification of institutional risk profiles supporting endangerment analysis of file formats. The main contribution of this work is the employment of data mining techniques to support set up of the most important risk factors. Subsequently, risk profiles employ risk factors classifier and associated configurations to support digital preservation experts with a semi-automatic estimation of endangerment group for file format risk profiles. Our goal is to make use of an expert knowledge base, accuired through a digital preservation survey in order to detect preservation risks for a particular institution. Another contribution is support for visualisation of risk factors for a requried dimension for analysis. Using the naive Bayes method, the decision support system recommends to an expert the matching risk profile group for the previously selected institutional risk profile. The proposed methods improve the visibility of risk factor values and the quality of a digital preservation process. The presented approach is designed to facilitate decision making for the preservation of digital content in libraries and archives using domain expert knowledge and values of file format risk profiles. To facilitate decision-making, the aggregated information about the risk factors is presented as a multidimensional vector. The goal is to visualise particular dimensions of this vector for analysis by an expert and to define its profile group. The sample risk profile calculation and the visualisation of some risk factor dimensions is presented in the evaluation section.

Keywords: linked open data, information integration, digital libraries, data mining

Procedia PDF Downloads 422
30007 Satellite Data to Understand Changes in Carbon Dioxide for Surface Mining and Green Zone

Authors: Carla Palencia-Aguilar

Abstract:

In order to attain the 2050’s zero emissions goal, it is necessary to know the carbon dioxide changes over time either from pollution to attenuations in the mining industry versus at green zones to establish real goals and redirect efforts to reduce greenhouse effects. Two methods were used to compute the amount of CO2 tons in specific mining zones in Colombia. The former by means of NPP with MODIS MOD17A3HGF from years 2000 to 2021. The latter by using MODIS MYD021KM bands 33 to 36 with maximum values of 644 data points distributed in 7 sites corresponding to surface mineral mining of: coal, nickel, iron and limestone. The green zones selected were located at the proximities of the studied sites, but further than 1 km to avoid information overlapping. Year 2012 was selected for method 2 to compare the results with data provided by the Colombian government to determine range of values. Some data was compared with 2022 MODIS energy values and converted to kton of CO2 by using the Greenhouse Gas Equivalencies Calculator by EPA. The results showed that Nickel mining was the least pollutant with 81 kton of CO2 e.q on average and maximum of 102 kton of CO2 e.q. per year, with green zones attenuating carbon dioxide in 103 kton of CO2 on average and 125 kton maximum per year in the last 22 years. Following Nickel, there was Coal with average kton of CO2 per year of 152 and maximum of 188, values very similar to the subjacent green zones with average and maximum kton of CO2 of 157 and 190 respectively. Iron had similar results with respect to 3 Limestone sites with average values of 287 kton of CO2 for mining and 310 kton for green zones, and maximum values of 310 kton for iron mining and 356 kton for green zones. One of the limestone sites exceeded the other sites with an average value of 441 kton per year and maximum of 490 kton per year, eventhough it had higher attenuation by green zones than a close Limestore site (3.5 Km apart): 371 kton versus 281 kton on average and maximum 416 kton versus 323 kton, such vegetation contribution is not enough, meaning that manufacturing process should be improved for the most pollutant site. By comparing bands 33 to 36 for years 2012 and 2022 from January to August, it can be seen that on average the kton of CO2 were similar for mining sites and green zones; showing an average yearly balance of carbon dioxide emissions and attenuation. However, efforts on improving manufacturing process are needed to overcome the carbon dioxide effects specially during emissions’ peaks because surrounding vegetation cannot fully attenuate it.

Keywords: carbon dioxide, MODIS, surface mining, vegetation

Procedia PDF Downloads 99
30006 Opinion Mining and Sentiment Analysis on DEFT

Authors: Najiba Ouled Omar, Azza Harbaoui, Henda Ben Ghezala

Abstract:

Current research practices sentiment analysis with a focus on social networks, DEfi Fouille de Texte (DEFT) (Text Mining Challenge) evaluation campaign focuses on opinion mining and sentiment analysis on social networks, especially social network Twitter. It aims to confront the systems produced by several teams from public and private research laboratories. DEFT offers participants the opportunity to work on regularly renewed themes and proposes to work on opinion mining in several editions. The purpose of this article is to scrutinize and analyze the works relating to opinions mining and sentiment analysis in the Twitter social network realized by DEFT. It examines the tasks proposed by the organizers of the challenge and the methods used by the participants.

Keywords: opinion mining, sentiment analysis, emotion, polarity, annotation, OSEE, figurative language, DEFT, Twitter, Tweet

Procedia PDF Downloads 137
30005 Framework for Integrating Big Data and Thick Data: Understanding Customers Better

Authors: Nikita Valluri, Vatcharaporn Esichaikul

Abstract:

With the popularity of data-driven decision making on the rise, this study focuses on providing an alternative outlook towards the process of decision-making. Combining quantitative and qualitative methods rooted in the social sciences, an integrated framework is presented with a focus on delivering a much more robust and efficient approach towards the concept of data-driven decision-making with respect to not only Big data but also 'Thick data', a new form of qualitative data. In support of this, an example from the retail sector has been illustrated where the framework is put into action to yield insights and leverage business intelligence. An interpretive approach to analyze findings from both kinds of quantitative and qualitative data has been used to glean insights. Using traditional Point-of-sale data as well as an understanding of customer psychographics and preferences, techniques of data mining along with qualitative methods (such as grounded theory, ethnomethodology, etc.) are applied. This study’s final goal is to establish the framework as a basis for providing a holistic solution encompassing both the Big and Thick aspects of any business need. The proposed framework is a modified enhancement in lieu of traditional data-driven decision-making approach, which is mainly dependent on quantitative data for decision-making.

Keywords: big data, customer behavior, customer experience, data mining, qualitative methods, quantitative methods, thick data

Procedia PDF Downloads 161
30004 Sensor Data Analysis for a Large Mining Major

Authors: Sudipto Shanker Dasgupta

Abstract:

One of the largest mining companies wanted to look at health analytics for their driverless trucks. These trucks were the key to their supply chain logistics. The automated trucks had multi-level sub-assemblies which would send out sensor information. The use case that was worked on was to capture the sensor signal from the truck subcomponents and analyze the health of the trucks from repair and replacement purview. Open source software was used to stream the data into a clustered Hadoop setup in Amazon Web Services cloud and Apache Spark SQL was used to analyze the data. All of this was achieved through a 10 node amazon 32 core, 64 GB RAM setup real-time analytics was achieved on ‘300 million records’. To check the scalability of the system, the cluster was increased to 100 node setup. This talk will highlight how Open Source software was used to achieve the above use case and the insights on the high data throughput on a cloud set up.

Keywords: streaming analytics, data science, big data, Hadoop, high throughput, sensor data

Procedia PDF Downloads 402
30003 Knowledge and Eating Behavior of Teenage Pregnancy

Authors: Udomporn Yingpaisuk, Premwadee Karuhadej

Abstract:

The purposed of this research was to study the eating habit of teenage pregnancy and its relationship to the knowledge of nutrition during pregnancy. The 100 samples were derived from simple random sampling technique of the teenage pregnancy in Bangkae District. The questionnaire was used to collect data with the reliability of 0.8. The data were analyzed by SPSS for Windows with multiple regression technique. Percentage, mean and the relationship of knowledge of eating and eating behavior were obtained. The research results revealed that their knowledge in nutrition was at the average of 4.07 and their eating habit that they mentioned most was to refrain from alcohol and caffeine at 82% and the knowledge in nutrition influenced their eating habits at 54% with the statistically significant level of 0.001.

Keywords: teenage pregnancy, knowledge of eating, eating behavior, alcohol, caffeine

Procedia PDF Downloads 355
30002 Exploration of RFID in Healthcare: A Data Mining Approach

Authors: Shilpa Balan

Abstract:

Radio Frequency Identification, also popularly known as RFID is used to automatically identify and track tags attached to items. This study focuses on the application of RFID in healthcare. The adoption of RFID in healthcare is a crucial technology to patient safety and inventory management. Data from RFID tags are used to identify the locations of patients and inventory in real time. Medical errors are thought to be a prominent cause of loss of life and injury. The major advantage of RFID application in healthcare industry is the reduction of medical errors. The healthcare industry has generated huge amounts of data. By discovering patterns and trends within the data, big data analytics can help improve patient care and lower healthcare costs. The number of increasing research publications leading to innovations in RFID applications shows the importance of this technology. This study explores the current state of research of RFID in healthcare using a text mining approach. No study has been performed yet on examining the current state of RFID research in healthcare using a data mining approach. In this study, related articles were collected on RFID from healthcare journal and news articles. Articles collected were from the year 2000 to 2015. Significant keywords on the topic of focus are identified and analyzed using open source data analytics software such as Rapid Miner. These analytical tools help extract pertinent information from massive volumes of data. It is seen that the main benefits of adopting RFID technology in healthcare include tracking medicines and equipment, upholding patient safety, and security improvement. The real-time tracking features of RFID allows for enhanced supply chain management. By productively using big data, healthcare organizations can gain significant benefits. Big data analytics in healthcare enables improved decisions by extracting insights from large volumes of data.

Keywords: RFID, data mining, data analysis, healthcare

Procedia PDF Downloads 231
30001 The Impact of Gold Mining on Disability: Experiences from the Obuasi Municipal Area

Authors: Mavis Yaa Konadu Agyemang

Abstract:

Despite provisions to uphold and safeguard the rights of persons with disability in Ghana, there is evidence that they still encounter several challenges which limit their full and effective involvement in mainstream society, including the gold mining sector. The study sought to explore how persons with physical disability (PWPDs) experience gold mining in the Obuasi Municipal Area. A qualitative research design was used to discover and understand the experiences of PWPDs regarding mining. The purposive sampling technique was used to select five key informants for the study with the age range of (24-52 years) while snowball sampling aided the selection of 16 persons with various forms of physical disability with the age range of (24-60 years). In-depth interviews were used to gather data. The interviews lasted from forty-five minutes to an hour. In relation to the setting, the interviews of thirteen (13) of the participants with disability were done in their houses, two (2) were done on the phone, and one (1) was done in the office. Whereas the interviews of the five (5) key informants were all done in their offices. Data were analyzed using Creswell’s (2009) concept of thematic analysis. The findings suggest that even though land degradation affected everyone in the area, persons with mobility and visual impairment experienced many difficulties trekking the undulating land for long distances in search of arable land. Also, although mining activities are mostly labour-intensive, PWPDs were not employed even in areas where they could work. Further, the cost of items, in general, was high, affecting PWPDs more due to their economic immobility and paying for other sources of water due to land degradation and water pollution. The study also discovered that the peculiar conditions of PWPDs were not factored into compensation payments, and neither were females with physical disability engaged in compensation negotiations. Also, although some of the infrastructure provided by the gold mining companies in the area was physically accessible to some extent, it was not accessible in terms of information delivery. There is a need to educate the public on the effects of mining on PWPDs, their needs as well as disability issues in general. The Minerals and Mining Act (703) should be amended to include provisions that would consider the peculiar needs of PWPDs in compensation payment.

Keywords: mining, resettlement, compensation, environmental, social, disability

Procedia PDF Downloads 54
30000 Evaluating the Potential of Microwave Treatment as a Rock Pre-Conditioning Method in Achieving a More Sustainable Mining

Authors: Adel Ahmadi Hosseini, Fatemeh Tavanaei, Alessandro Navarra, Ferri Hassani

Abstract:

Mining engineering, as a part of geoscience, must address modern concerns. Traditional mining methods incorporate drill and blast technologies, which are followed by different issues, including excessive noise, vibration, air pollution, and safety hazards. Over the past two decades, mining engineers have sought alternative solutions to move from drill and blast to continuous methods to prevent such issues and improve sustainability in mining. Among the suggested methods, microwave treatment has shown promising results by creating micro/macro cracks in the rock structure prior to the operations. This research utilizes an energy-based analysis methodology to evaluate the efficiency of the microwave treatment in improving mining operations. The data analysis shows that increasing the input microwave energy dosage intensifies the rock damage. However, this approach can decrease the energy efficiency of the method by more than 50% in some cases. In this study, rock samples were treated with three power levels (3 kW, 7 kW, and 12 kW) and two energy dosages (20 kWh/t and 50 kWh/t), resulting in six conditions. To evaluate the impact of microwave treatment on the geomechanical behavior of the rocks, Unconfined Compressive Strength (UCS) tests were conducted on the microwave-treated samples, yielding stress-strain curves. Using the stress-strain curves, the effect of the different powers and energy dosages of microwaves are discussed. This research shows the potential of using microwave treatment to lead the industry to more sustainable mining.

Keywords: microwave treatment, microwave energy dosage, sustainable mining, rock fragmentation

Procedia PDF Downloads 39
29999 Emotion Classification Using Recurrent Neural Network and Scalable Pattern Mining

Authors: Jaishree Ranganathan, MuthuPriya Shanmugakani Velsamy, Shamika Kulkarni, Angelina Tzacheva

Abstract:

Emotions play an important role in everyday life. An-alyzing these emotions or feelings from social media platforms like Twitter, Facebook, blogs, and forums based on user comments and reviews plays an important role in various factors. Some of them include brand monitoring, marketing strategies, reputation, and competitor analysis. The opinions or sentiments mined from such data helps understand the current state of the user. It does not directly provide intuitive insights on what actions to be taken to benefit the end user or business. Actionable Pattern Mining method provides suggestions or actionable recommendations on what changes or actions need to be taken in order to benefit the end user. In this paper, we propose automatic classification of emotions in Twitter data using Recurrent Neural Network - Gated Recurrent Unit. We achieve training accuracy of 87.58% and validation accuracy of 86.16%. Also, we extract action rules with respect to the user emotion that helps to provide actionable suggestion.

Keywords: emotion mining, twitter, recurrent neural network, gated recurrent unit, actionable pattern mining

Procedia PDF Downloads 166
29998 Customer Preference in the Textile Market: Fabric-Based Analysis

Authors: Francisca Margarita Ocran

Abstract:

Underwear, and more particularly bras and panties, are defined as intimate clothing. Strictly speaking, they enhance the place of women in the public or private satchel. Therefore, women's lingerie is a complex garment with a high involvement profile, motivating consumers to buy it not only by its functional utility but also by the multisensory experience it provides them. Customer behavior models are generally based on customer data mining, and each model is designed to answer questions at a specific time. Predicting the customer experience is uncertain and difficult. Thus, knowledge of consumers' tastes in lingerie deserves to be treated as an experiential product, where the dimensions of the experience motivating consumers to buy a lingerie product and to remain faithful to it must be analyzed in detail by the manufacturers and retailers to engage and retain consumers, which is why this research aims to identify the variables that push consumers to choose their lingerie product, based on an in-depth analysis of the types of fabrics used to make lingerie. The data used in this study comes from online purchases. Machine learning approach with the use of Python programming language and Pycaret gives us a precision of 86.34%, 85.98%, and 84.55% for the three algorithms to use concerning the preference of a buyer in front of a range of lingerie. Gradient Boosting, random forest, and K Neighbors were used in this study; they are very promising and rich in the classification of preference in the textile industry.

Keywords: consumer behavior, data mining, lingerie, machine learning, preference

Procedia PDF Downloads 88
29997 Decision Making System for Clinical Datasets

Authors: P. Bharathiraja

Abstract:

Computer Aided decision making system is used to enhance diagnosis and prognosis of diseases and also to assist clinicians and junior doctors in clinical decision making. Medical Data used for decision making should be definite and consistent. Data Mining and soft computing techniques are used for cleaning the data and for incorporating human reasoning in decision making systems. Fuzzy rule based inference technique can be used for classification in order to incorporate human reasoning in the decision making process. In this work, missing values are imputed using the mean or mode of the attribute. The data are normalized using min-ma normalization to improve the design and efficiency of the fuzzy inference system. The fuzzy inference system is used to handle the uncertainties that exist in the medical data. Equal-width-partitioning is used to partition the attribute values into appropriate fuzzy intervals. Fuzzy rules are generated using Class Based Associative rule mining algorithm. The system is trained and tested using heart disease data set from the University of California at Irvine (UCI) Machine Learning Repository. The data was split using a hold out approach into training and testing data. From the experimental results it can be inferred that classification using fuzzy inference system performs better than trivial IF-THEN rule based classification approaches. Furthermore it is observed that the use of fuzzy logic and fuzzy inference mechanism handles uncertainty and also resembles human decision making. The system can be used in the absence of a clinical expert to assist junior doctors and clinicians in clinical decision making.

Keywords: decision making, data mining, normalization, fuzzy rule, classification

Procedia PDF Downloads 517
29996 Assessment of Indigenous People Living Condition in Coal Mining Region: An Evidence from Dhanbad, India

Authors: Arun Kumar Yadav

Abstract:

Coal contributes a significant role in India’s developmental mission. But, ironically, on the other side it causes large scale population displacement and significant changes in indigenous people’s livelihood mechanism. Dhanbad which is regarded as one of the oldest and large mining area, as well as a “Coal Capital of India”. Here, mining exploration work started nearly a century ago. But with the passage of time, mining brings a lot of changes in the life of local people. In this context, study tries to do comparative situational analysis of the changes in the living condition of dwellers living in mines affected and non-mines affected villages based on livelihood approach. Since, this place has long history of mining so it is very difficult to conduct before and after comparison between mines and non-mines affected areas. Consequently, the present study is based on relative comparison approach to elucidate the actual scenario. By using primary survey data which was collected by the author during the month of September 2014 to March 2015 at Dhanbad, Jharkhand. The data were collected from eight villages, these were categorised broadly into mines and non-mines affected villages. Further at micro level, mines affected villages has been categorised into open cast and underground mines. This categorization will help us to capture the deeper understanding about the issues of mine affected villages group. Total of 400 household were surveyed. Result depicts that in every sphere mining affected villages are more vulnerable. Regarding financial capital, although mine affected villages are engaged in mining work and get higher mean income. But in contrast, non-mine affected villages are more occupationally diversified. They have an opportunity to earn money from diversified extents like agricultural land, working in mining area, selling coal informally as well as receiving remittances. Non-mines affected villages are in better physical capital which comprises of basic infrastructure to support livelihood. They have an access to secured shelter, adequate water supply & sanitation, and affordable information and transport. Mining affected villages are more prone to health risks. Regarding social capital, it shows that in comparison to last five years, law and order has been improved in mine affected villages.

Keywords: displacement, indigenous, livelihood, mining

Procedia PDF Downloads 311
29995 Water Management of Erdenet Mining Company

Authors: K. H. Oyuntungalag, Scott Kenner, O. Erdenetuya

Abstract:

The life cycle phases of mining projects are described in this guidance document, and includes initial phases (exploration, feasibility and planning), mine development (construction and operations), closure and reclamation. Initial phases relate to field programs and desktop studies intended to build the data and knowledge base, including the design of water management infrastructure and development during these initial phases. Such a model is essential to demonstrate that the water management plan (WMP) will provide adequate water for the mine operations and sufficient capacity for anticipated flows and volumes, and minimize environmental impacts on the receiving environment. The water and mass balance model must cover the whole mine life cycle, from the start of mine development to a date sufficiently far in the future where the reclaimed landscape is considered self- sustaining following complete closure of the mine (i.e., post- closure). The model simulates the movement of water within the components of the water management infrastructure and project operating areas, and calculates chemical loadings to each mine component. At Erdenet Mining company an initial water balance model reflecting the tailings dam, groundwater seepage and mine process water was developed in collaboration with Dr. Scott Kenner (visiting Fulbright scholar). From this preliminary study the following recommendations were made: 1. Develop a detailed groundwater model to simulate seepage from the tailings dam, 2. Establish an evaporation pan for improving evapotranspiration estimates, and 3. Measure changes in storage of water within the tailings dam and other water storage components within the mine processing.

Keywords: evapotranspiration , monitoring program, Erdenet mining, tailings dam

Procedia PDF Downloads 476
29994 Performance Comparison of Outlier Detection Techniques Based Classification in Wireless Sensor Networks

Authors: Ayadi Aya, Ghorbel Oussama, M. Obeid Abdulfattah, Abid Mohamed

Abstract:

Nowadays, many wireless sensor networks have been distributed in the real world to collect valuable raw sensed data. The challenge is to extract high-level knowledge from this huge amount of data. However, the identification of outliers can lead to the discovery of useful and meaningful knowledge. In the field of wireless sensor networks, an outlier is defined as a measurement that deviates from the normal behavior of sensed data. Many detection techniques of outliers in WSNs have been extensively studied in the past decade and have focused on classic based algorithms. These techniques identify outlier in the real transaction dataset. This survey aims at providing a structured and comprehensive overview of the existing researches on classification based outlier detection techniques as applicable to WSNs. Thus, we have identified key hypotheses, which are used by these approaches to differentiate between normal and outlier behavior. In addition, this paper tries to provide an easier and a succinct understanding of the classification based techniques. Furthermore, we identified the advantages and disadvantages of different classification based techniques and we presented a comparative guide with useful paradigms for promoting outliers detection research in various WSN applications and suggested further opportunities for future research.

Keywords: bayesian networks, classification-based approaches, KPCA, neural networks, one-class SVM, outlier detection, wireless sensor networks

Procedia PDF Downloads 496
29993 Case Study Analysis for Driver's Company in the Transport Sector with the Help of Data Mining

Authors: Diana Katherine Gonzalez Galindo, David Rolando Suarez Mora

Abstract:

With this study, we used data mining as a new alternative of the solution to evaluate the comments of the customers in order to find a pattern that helps us to determine some behaviors to reduce the deactivation of the partners of the LEVEL app. In one of the greatest business created in the last times, the partners are being affected due to an internal process that compensates the customer for a bad experience, but these comments could be false towards the driver, that’s why we made an investigation to collect information to restructure this process, many partners have been disassociated due to this internal process and many of them refuse the comments given by the customer. The main methodology used in this case study is the observation, we recollect information in real time what gave us the opportunity to see the most common issues to get the most accurate solution. With this new process helped by data mining, we could get a prediction based on the behaviors of the customer and some basic data recollected such as the age, the gender, and others; this could help us in future to improve another process. This investigation gives more opportunities to the partner to keep his account active even if the customer writes a message through the app. The term is trying to avoid a recession of drivers in the future offering improving in the processes, at the same time we are in search of stablishing a strategy which benefits both the app’s managers and the associated driver.

Keywords: agent, driver, deactivation, rider

Procedia PDF Downloads 278
29992 Mitigating Acid Mine Drainage Pollution: A Case Study In the Witwatersrand Area of South Africa

Authors: Elkington Sibusiso Mnguni

Abstract:

In South Africa, mining has been a key economic sector since the discovery of gold in 1886 in the Witwatersrand region, where the city of Johannesburg is located. However, some mines have since been decommissioned, and the continuous pumping of acid mine drainage (AMD) also stopped causing the AMD to rise towards the ground surface. This posed a serious environmental risk to the groundwater resources and river systems in the region. This paper documents the development and extent of the environmental damage as well as the measures implemented by the government to alleviate such damage. The study will add to the body of knowledge on the subject of AMD treatment to prevent environmental degradation. The method used to gather and collate relevant data and information was the desktop study. The key findings include the social and environmental impact of the AMD, which include the pollution of water sources for domestic use leading to skin and other health problems and the loss of biodiversity in some areas. It was also found that the technical intervention of constructing a plant to pump and treat the AMD using the high-density sludge technology was the most effective short-term solution available while a long-term solution was being explored. Some successes and challenges experienced during the implementation of the project are also highlighted. The study will be a useful record of the current status of the AMD treatment interventions in the region.

Keywords: acid mine drainage, groundwater resources, pollution, river systems, technical intervention, high density sludge

Procedia PDF Downloads 184
29991 Real-Time Mine Safety System with the Internet of Things

Authors: Şakir Bingöl, Bayram İslamoğlu, Ebubekir Furkan Tepeli, Fatih Mehmet Karakule, Fatih Küçük, Merve Sena Arpacık, Mustafa Taha Kabar, Muhammet Metin Molak, Osman Emre Turan, Ömer Faruk Yesir, Sıla İnanır

Abstract:

This study introduces an IoT-based real-time safety system for mining, addressing global safety challenges. The wearable device, seamlessly integrated into miners' jackets, employs LoRa technology for communication and offers real-time monitoring of vital health and environmental data. Unique features include an LCD panel for immediate information display and sound-based location tracking for emergency response. The methodology involves sensor integration, data transmission, and ethical testing. Validation confirms the system's effectiveness in diverse mining scenarios. The study calls for ongoing research to adapt the system to different mining contexts, emphasizing its potential to significantly enhance safety standards in the industry.

Keywords: mining safety, internet of things, wearable technology, LoRa, RFID tracking, real-time safety system, safety alerts, safety measures

Procedia PDF Downloads 62