Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 355

Search results for: fake news

355 Development of Fake News Model Using Machine Learning through Natural Language Processing

Authors: Sajjad Ahmed, Knut Hinkelmann, Flavio Corradini

Abstract:

Fake news detection research is still in the early stage as this is a relatively new phenomenon in the interest raised by society. Machine learning helps to solve complex problems and to build AI systems nowadays and especially in those cases where we have tacit knowledge or the knowledge that is not known. We used machine learning algorithms and for identification of fake news; we applied three classifiers; Passive Aggressive, Naïve Bayes, and Support Vector Machine. Simple classification is not completely correct in fake news detection because classification methods are not specialized for fake news. With the integration of machine learning and text-based processing, we can detect fake news and build classifiers that can classify the news data. Text classification mainly focuses on extracting various features of text and after that incorporating those features into classification. The big challenge in this area is the lack of an efficient way to differentiate between fake and non-fake due to the unavailability of corpora. We applied three different machine learning classifiers on two publicly available datasets. Experimental analysis based on the existing dataset indicates a very encouraging and improved performance.

Keywords: fake news detection, natural language processing, machine learning, classification techniques.

Procedia PDF Downloads 60
354 Fake News Detection for Korean News Using Machine Learning Techniques

Authors: Tae-Uk Yun, Pullip Chung, Kee-Young Kwahk, Hyunchul Ahn

Abstract:

Fake news is defined as the news articles that are intentionally and verifiably false, and could mislead readers. Spread of fake news may provoke anxiety, chaos, fear, or irrational decisions of the public. Thus, detecting fake news and preventing its spread has become very important issue in our society. However, due to the huge amount of fake news produced every day, it is almost impossible to identify it by a human. Under this context, researchers have tried to develop automated fake news detection using machine learning techniques over the past years. But, there have been no prior studies proposed an automated fake news detection method for Korean news to our best knowledge. In this study, we aim to detect Korean fake news using text mining and machine learning techniques. Our proposed method consists of two steps. In the first step, the news contents to be analyzed is convert to quantified values using various text mining techniques (topic modeling, TF-IDF, and so on). After that, in step 2, classifiers are trained using the values produced in step 1. As the classifiers, machine learning techniques such as logistic regression, backpropagation network, support vector machine, and deep neural network can be applied. To validate the effectiveness of the proposed method, we collected about 200 short Korean news from Seoul National University’s FactCheck. which provides with detailed analysis reports from 20 media outlets and links to source documents for each case. Using this dataset, we will identify which text features are important as well as which classifiers are effective in detecting Korean fake news.

Keywords: fake news detection, Korean news, machine learning, text mining

Procedia PDF Downloads 191
353 The Use of Surveys to Combat Fake News in Media Literacy Education

Authors: Jaejun Jong

Abstract:

Fake news has recently become a serious international problem. Therefore, researchers and policymakers worldwide have sought to understand fake news and develop strategies to combat it. This study consists of two primary parts: (1) a literature review of how surveys were used to understand fake news and identify problems caused by fake news and (2) a discussion of how surveys were used to fight back against fake news in educational settings. This second section specifically analyzes surveys used to evaluate a South Korean elementary school program designed to improve students’ metacognition and critical thinking. This section seeks to identify potential problems that may occur in the elementary school setting. The literature review shows that surveys can help people to understand fake news based on its traits rather than its definition, due to the lack of agreement on the definition of fake news. The literature review also shows that people are not good at identifying fake news or evaluating their own ability to identify fake news; indeed, they are more likely to share information that aligns with their previous beliefs. In addition, the elementary school survey data shows that there may be substantial errors in the program evaluation process, likely caused by processing errors or the survey procedure, though the exact cause is not specified. Such a significant error in evaluating the effects of the educational program prevents teachers from making proper decisions and accurately evaluating the program. Therefore, identifying the source of such errors would improve the overall quality of education, which would benefit both teachers and students.

Keywords: critical thinking, elementary education, program evaluation, survey

Procedia PDF Downloads 6
352 Questioning the Relationship Between Young People and Fake News Through Their Use of Social Media

Authors: Marion Billard

Abstract:

This paper will focus on the question of the real relationship between young people and fake news. Fake news is one of today’s main issues in the world of information and communication. Social media and its democratization helped to spread false information. According to traditional beliefs, young people are more inclined to believe what they read through social media. But, the individuals concerned, think that they are more inclined to make a distinction between real and fake news. This phenomenon is due to their use of the internet and social media from an early age. During the 2016 and 2017 French and American presidential campaigns, the term fake news was in the mouth of the entire world and became a real issue in the field of information. While young people were informing themselves with newspapers or television until the beginning of the ’90s, Gen Z (meaning people born between 1997 and 2010), has always been immersed in this world of fast communication. They know how to use social media from a young age and the internet has no secret for them. Today, despite the sporadic use of traditional media, young people tend to turn to their smartphones and social networks such as Instagram or Twitter to stay abreast of the latest news. The growth of social media information led to an “ambient journalism”, giving access to an endless quantity of information. Waking up in the morning, young people will see little posts with short texts supplying the essential of the news, without, for the most, many details. As a result, impressionable people are not able to do a distinction between real media, and “junk news” or Fake News. This massive use of social media is probably explained by the inability of the youngsters to find connections between the communication of the traditional media and what they are living. The question arises if this over-confidence of the young people in their ability to distinguish between accurate and fake news would not make it more difficult for them to examine critically the information. Their relationship with media and fake news is more complex than popular opinion. Today’s young people are not the master in the quest for information, nor inherently the most impressionable public on social media.

Keywords: fake news, youngsters, social media, information, generation

Procedia PDF Downloads 68
351 Detecting Covid-19 Fake News Using Deep Learning Technique

Authors: AnjalI A. Prasad

Abstract:

Nowadays, social media played an important role in spreading misinformation or fake news. This study analyzes the fake news related to the COVID-19 pandemic spread in social media. This paper aims at evaluating and comparing different approaches that are used to mitigate this issue, including popular deep learning approaches, such as CNN, RNN, LSTM, and BERT algorithm for classification. To evaluate models’ performance, we used accuracy, precision, recall, and F1-score as the evaluation metrics. And finally, compare which algorithm shows better result among the four algorithms.

Keywords: BERT, CNN, LSTM, RNN

Procedia PDF Downloads 106
350 Fake News Domination and Threats on Democratic Systems

Authors: Laura Irimies, Cosmin Irimies

Abstract:

The public space all over the world is currently confronted with the aggressive assault of fake news that have lately impacted public agenda setting, collective decisions and social attitudes. Top leaders constantly call out most mainstream news as “fake news” and the public opinion get more confused. "Fake news" are generally defined as false, often sensational, information disseminated under the guise of news reporting and has been declared the word of the year 2017 by Collins Dictionary and it also has been one of the most debated socio-political topics of recent years. Websites which, deliberately or not, publish misleading information are often shared on social media where they essentially increase their reach and influence. According to international reports, the exposure to fake news is an undeniable reality all over the world as the exposure to completely invented information goes up to the 31 percent in the US, and it is even bigger in Eastern Europe countries, such as Hungary (42%) and Romania (38%) or in Mediterranean countries, such as Greece (44%) or Turkey (49%), and lower in Northern and Western Europe countries – Germany (9%), Denmark (9%) or Holland (10%). While the study of fake news (mechanism and effects) is still in its infancy, it has become truly relevant as the phenomenon seems to have a growing impact on democratic systems. Studies conducted by the European Commission show that 83% of respondents out of a total of 26,576 interviewees consider the existence of news that misrepresent reality as a threat for democracy. Studies recently conducted at Arizona State University show that people with higher education can more easily spot fake headlines, but over 30 percent of them can still be trapped by fake information. If we were to refer only to some of the most recent situations in Romania, fake news issues and hidden agenda suspicions related to the massive and extremely violent public demonstrations held on August 10th, 2018 with a strong participation of the Romanian diaspora have been massively reflected by the international media and generated serious debates within the European Commission. Considering the above framework, the study raises four main research questions: 1. Is fake news a problem or just a natural consequence of mainstream media decline and the abundance of sources of information? 2. What are the implications for democracy? 3. Can fake news be controlled without restricting fundamental human rights? 4. How could the public be properly educated to detect fake news? The research uses mostly qualitative but also quantitative methods, content analysis of studies, websites and media content, official reports and interviews. The study will prove the real threat fake news represent and also the need for proper media literacy education and will draw basic guidelines for developing a new and essential skill: that of detecting fake in news in a society overwhelmed by sources of information that constantly roll massive amounts of information increasing the risk of misinformation and leading to inadequate public decisions that could affect democratic stability.

Keywords: agenda setting democracy, fake news, journalism, media literacy

Procedia PDF Downloads 55
349 The Fake News Impact on the Public Policy Cycle: A Systemic Analysis through Documentary Survey

Authors: Aron Miranda Burgos, Ergon Cugler de Moraes Silva

Abstract:

In the present article, it is observed that the constant advancement of issues related to misinformation impacts the guarantee of the public policy cycle. Thus, it is found that the dissemination of false information has a direct influence on each of the component stages of this cycle. Therefore, in order to maintain scientific and theoretical credibility in the qualitative analysis process, it was necessary to logically interpose the concepts of firehosing of falsehood, fake news, public policy cycle, as well as using the epistemological and pragmatic mechanism at the intersection of such academic concepts, such as the scientific method. It was found, through the analysis of official documents and public notes, how the multiple theoretical perspectives evidence the commitment of the provision and elaboration of public policies, verifying the way in which the fake news impact each part of the process in this atmosphere.

Keywords: firehosing of falsehood, governance, misinformation, post-truth

Procedia PDF Downloads 60
348 Ethical Challenges for Journalists in Times of Fake News and Hate Speech: A Survey with German Journalists

Authors: Laura C. Solzbacher, Caja Thimm

Abstract:

Journalists worldwide have been confronted with a variety of ethical challenges over the last years. Because of massive changes in media technology and the public sphere, especially online journalism has trouble to uphold the fundamental values of journalism. In particular, the increasing amount of fake news and hate speech puts journalists under more and more pressure. In order to understand better how journalists judge this development and how they adapt in their daily work, a survey with journalists in Germany was carried out. 303 professional journalists participated in an online questionnaire. Results show that 65% underline that economic pressure grows and nearly the same number describe a change in the role of journalists in society. Furthermore, 61% agree that they put more time into research to secure their work against accusations of fabricating fake news. Interestingly, over 60% see a change in the role of journalists in society. The majority (85%) confirms that print journalism has to give way for online platforms and that the influence of social media for journalism grows (75%). Half of the surveyed advocate for more personalized public activism on part of journalists, such as appearance in talk shows and public talks. The results of the study will be discussed in light of the ongoing debate on ethical standards as a condition for a sustainable and trustworthy digital public sphere.

Keywords: ethics, fake news, journalism, public sphere

Procedia PDF Downloads 205
347 Improving Fake News Detection Using K-means and Support Vector Machine Approaches

Authors: Kasra Majbouri Yazdi, Adel Majbouri Yazdi, Saeid Khodayi, Jingyu Hou, Wanlei Zhou, Saeed Saedy

Abstract:

Fake news and false information are big challenges of all types of media, especially social media. There is a lot of false information, fake likes, views and duplicated accounts as big social networks such as Facebook and Twitter admitted. Most information appearing on social media is doubtful and in some cases misleading. They need to be detected as soon as possible to avoid a negative impact on society. The dimensions of the fake news datasets are growing rapidly, so to obtain a better result of detecting false information with less computation time and complexity, the dimensions need to be reduced. One of the best techniques of reducing data size is using feature selection method. The aim of this technique is to choose a feature subset from the original set to improve the classification performance. In this paper, a feature selection method is proposed with the integration of K-means clustering and Support Vector Machine (SVM) approaches which work in four steps. First, the similarities between all features are calculated. Then, features are divided into several clusters. Next, the final feature set is selected from all clusters, and finally, fake news is classified based on the final feature subset using the SVM method. The proposed method was evaluated by comparing its performance with other state-of-the-art methods on several specific benchmark datasets and the outcome showed a better classification of false information for our work. The detection performance was improved in two aspects. On the one hand, the detection runtime process decreased, and on the other hand, the classification accuracy increased because of the elimination of redundant features and the reduction of datasets dimensions.

Keywords: clustering, fake news detection, feature selection, machine learning, social media, support vector machine

Procedia PDF Downloads 68
346 The Issue of Online Fake News and Disinformation: Criminal and Criminological Aspects of Prevention

Authors: Fotios Spyropoulos, Evangelia Androulaki, Vasileios Karagiannopoulos, Aristotelis Kompothrekas, Nikolaos Karagiannis

Abstract:

The problem of 'fake news' and 'hoaxes' has dominated in recent years the field of news, politics, economy, safety, and security as dissemination of false information can intensively affect and mislead public discourse and public opinion. The widespread use of internet and social media platforms can substantially intensify these effects, which often include public fear and insecurity. Misinformation, malinformation, and disinformation have also been blamed for affecting election results in multiple countries, and since then, there have been efforts to tackle the phenomenon both on national and international level. The presentation will focus on methods of prevention of disseminating false information on social media and on the internet and will discuss relevant criminological views. The challenges that have arisen for criminal law will be covered, taking into account the potential need for a multi-national approach required in order to mitigate the extent and negative impact of the fake news phenomenon. Finally, the analysis will include a discussion on the potential usefulness of non-legal modalities of regulation and crime prevention, especially situational and social measures of prevention and the possibility of combining an array of methods to achieve better results on national and international level. This project has received funding from the Hellenic Foundation for Research and Innovation (HFRI) and the General Secretariat for Research and Technology (GSRT), under grant agreement No 80529.

Keywords: cybercrime, disinformation, fake news, prevention

Procedia PDF Downloads 63
345 Infodemic Detection on Social Media with a Multi-Dimensional Deep Learning Framework

Authors: Raymond Xu, Cindy Jingru Wang

Abstract:

Social media has become a globally connected and influencing platform. Social media data, such as tweets, can help predict the spread of pandemics and provide individuals and healthcare providers early warnings. Public psychological reactions and opinions can be efficiently monitored by AI models on the progression of dominant topics on Twitter. However, statistics show that as the coronavirus spreads, so does an infodemic of misinformation due to pandemic-related factors such as unemployment and lockdowns. Social media algorithms are often biased toward outrage by promoting content that people have an emotional reaction to and are likely to engage with. This can influence users’ attitudes and cause confusion. Therefore, social media is a double-edged sword. Combating fake news and biased content has become one of the essential tasks. This research analyzes the variety of methods used for fake news detection covering random forest, logistic regression, support vector machines, decision tree, naive Bayes, BoW, TF-IDF, LDA, CNN, RNN, LSTM, DeepFake, and hierarchical attention network. The performance of each method is analyzed. Based on these models’ achievements and limitations, a multi-dimensional AI framework is proposed to achieve higher accuracy in infodemic detection, especially pandemic-related news. The model is trained on contextual content, images, and news metadata.

Keywords: artificial intelligence, fake news detection, infodemic detection, image recognition, sentiment analysis

Procedia PDF Downloads 73
344 The Use of Whatsapp Platform in Spreading Fake News among Mass Communication Students of Abdu Gusau Polytechnic, Talata Mafara

Authors: Aliyu Damri

Abstract:

In every educational institution, students of mass communication receive training to report events and issues accurately and objectively in accordance with official controls. However, the complex nature of society today made it possible to use WhatsApp platform that revolutionizes the means of sharing information, ideas, and experiences. This paper examined how students in the Department of Mass Communication, Abdu Gusau Polytechnic, Talata Mafara used WhatsApp platform in spreading fake news. It used in depth interview techniques and focus group discussion with students as well as the use of published materials to gather related and relevant data. Also, the paper used procedures involved to analyze long interview content. This procedure includes observation of a useful utterance, development of expanded observation, examination of interconnection of observed comments, collective scrutiny of observation for patterns and themes, and review and analysis of the themes across all interviews for development of thesis. The result indicated that inadequate and absent of official controls guiding the conduct of online information sharing, inaccuracies and poor source verification, lack of gate keeping procedures to ensure ethical and legal provisions, bringing users into the process, sharing all information, availability of misinformation, disinformation and rumor and problem of conversation strongly encouraged the emergence of fake news. Surprisingly, the idea of information as a commodity has increased, and transparency of a source as new ethics emerged.

Keywords: disinformation, fake news, group, mass communication, misinformation, WhatsApp

Procedia PDF Downloads 72
343 Investors’ Misreaction to Subsequent Bad News

Authors: Liang-Chien Lee, Chih-Hsiang Chang, Ying-Shu Tseng

Abstract:

Comparing with prior studies mainly focused on the effect of a certain event (it may be the initial announcement of bad news or the repeated announcements of identical bad news) on stock price, the aim of this study is to explore how investors react to subsequent bad news with identical content. Empirical results show that as a result of behavioral pitfalls, investors underreact to the initial announcement of the bad news (i.e., unknown bad news) and overreact to the repeated announcements of the identical bad news (i.e., known bad news).

Keywords: subsequent bad news, behavioral finance, Investors’ misreaction, behavioral pitfalls

Procedia PDF Downloads 218
342 Fake news and Conspiracy Narratives in the Covid-19 Crisis: An International Comparison

Authors: Caja Thimm

Abstract:

Already well before the Corona pandemic hit the world, ‘fake news‘ were no longer regarded as harmless twists of the truth but as intentionally composed disinformation, often with the goal of manipulative populist propaganda. During the Corona crisis, particularly conspiracy narratives have become a worldwide phenomenon with dangerous consequences (anti vaccination myths). The success of these manipulated news need s to be counteracted by trustworthy news, which in Europe particularly includes public broadcasting media and their social media channels. To understand better how the main public broadcasters in Germany, the UK, and France used Instagram strategically, a comparative study was carried out. The study – comparative analysis of Instagram during the Corona Crisis In our empirical study, we compared the activities by selected formats during the Corona crisis in order to see how the public broadcasters reached their audiences and how this might, in the longer run, affect journalistic strategies on social media platforms. First analysis showed that the increase in the use of social media overall was striking. Almost one in two adult online users (48 %) obtained information about the virus in social media, and in total, 38% of the younger age group (18-24) looked for Covid19 information on Instagram, so the platform can be regarded as one of the central digital spaces for Corona related information searches. Quantitative measures showed that 47% of recent posts by the broadcasters were related to Corona, and 7% treated conspiracy myths. For the more detailed content analysis, the following categories of analysis were applied: • Digital storytelling and instastories • Textuality and semantic keys • links to information • stickers • videochat • fact checking • news ticker • service • infografics and animated tables Additionally to these basic features, we particularly looked for new formats created during the crisis. Journalistic use of social media platforms opens up immediate and creative ways of applying the media logics of the respective platforms, and particularly the BBC and ARD formats proved to be interactive, responsive, and entertaining. Among them were new formats such as a space for user questions and personal uploads, interviews, music, comedy, etc. Particularly the fact checking channel got a lot of attention, as many user questions were focused on the conspiracy theories, which dominated the public discourse during many weeks in 2020. In the presentation, we will introduce eight particular strategies that show how public broadcasting journalism can adopt digital platforms and use them creatively and, hence help to counteract against conspiracy narratives and fake news.

Keywords: fake news, social media, digital journalism, digital methods

Procedia PDF Downloads 76
341 Building a Dynamic News Category Network for News Sources Recommendations

Authors: Swati Gupta, Shagun Sodhani, Dhaval Patel, Biplab Banerjee

Abstract:

It is generic that news sources publish news in different broad categories. These categories can either be generic such as Business, Sports, etc. or time-specific such as World Cup 2015 and Nepal Earthquake or both. It is up to the news agencies to build the categories. Extracting news categories automatically from numerous online news sources is expected to be helpful in many applications including news source recommendations and time specific news category extraction. To address this issue, existing systems like DMOZ directory and Yahoo directory are mostly considered though they are mostly human annotated and do not consider the time dynamism of categories of news websites. As a remedy, we propose an approach to automatically extract news category URLs from news websites in this paper. News category URL is a link which points to a category in news websites. We use the news category URL as a prior knowledge to develop a news source recommendation system which contains news sources listed in various categories in order of ranking. In addition, we also propose an approach to rank numerous news sources in different categories using various parameters like Traffic Based Website Importance, Social media Analysis and Category Wise Article Freshness. Experimental results on category URLs captured from GDELT project during April 2016 to December 2016 show the adequacy of the proposed method.

Keywords: news category, category network, news sources, ranking

Procedia PDF Downloads 314
340 Exposure and Satisfaction toward Online News of Undergraduate Students in Thailand

Authors: Ekapon Thienthaworn

Abstract:

This research aims to study the exposure and satisfaction toward online news of undergraduate students in Bangkok, Thailand. This research is the survey research which 400 questionnaires are used to collect data with the accidental sampling technique and the data collected are analyzed with descriptive statistics. The result can be divided into 2 sections as follow: (1) Undergraduate students in Bangkok consume online news via most of the Smartphone. In most cases, they use average more than 2 hours per day. Most times to consume news are 22.01- 02.00 pm. Primary source is Facebook and the most interested news genre is entertainment news and headline of the day. (2) Undergraduate students in Bangkok have positive attitude in online news is a fastness and easy-to-access. Negative attitude is piracy. Finally, average satisfaction in consuming online news is in high levels.

Keywords: exposure, satisfaction, online news, Bangkok

Procedia PDF Downloads 178
339 Impact of Social Media on Content of Saudi Television News Networks

Authors: Majed Alshaibani

Abstract:

Social media has emerged as a serious contender to TV news networks in Saudi Arabia. The growing usage of social media as a source of news and information has led to significant impact on the content presented by the news networks in Saudi Arabia. This study explored the various ways in which social media has influenced content aired on Saudi news networks. Data were collected by using semi structured interviews with 13 journalists and content editors working for four Saudi TV news networks and six senior academic experts on TV and media teaching in Saudi universities. The findings of the study revealed that social media has affected four aspects of the content on Saudi TV news networks. As a result the content aired on Saudi news networks is more neutral, real time, diverse in terms of sources and includes content on broader subjects and from different parts of the world. This research concludes that social media has contributed positively and significantly to improving the content on Saudi TV news networks.

Keywords: TV news networks, Saudi Arabia, social media, media content

Procedia PDF Downloads 86
338 The Hallmarks of War Propaganda: The Case of Russia-Ukraine Conflict

Authors: Veronika Solopova, Oana-Iuliana Popescu, Tim Landgraf, Christoph Benzmüller

Abstract:

Beginning in 2014, slowly building geopolitical tensions in Eastern Europe led to a full-blown conflict between the Russian Federation and Ukraine that generated an unprecedented amount of news articles and data from social media data, reflecting the opposing ideologies and narratives as a background and the essence of the ongoing war. These polarized informational campaigns have led to countless mutual accusations of misinformation and fake news, shaping an atmosphere of confusion and mistrust for many readers all over the world. In this study, we analyzed scraped news articles from Ukrainian, Russian, Romanian and English-speaking news outlets, on the eve of 24th of February 2022, compared to day five of the conflict (28th of February), to see how the media influenced and mirrored the changes in public opinion. We also contrast the sources opposing and supporting the stands of the Russian government in Ukrainian, Russian and Romanian media spaces. In a data-driven way, we describe how the narratives are spread throughout Eastern and Central Europe. We present predictive linguistic features surrounding war propaganda. Our results indicate that there are strong similarities in terms of rhetoric strategies in the pro-Kremlin media in both Ukraine and Russia, which, while being relatively neutral according to surface structure, use aggressive vocabulary. This suggests that automatic propaganda identification systems have to be tailored for each new case, as they have to rely on situationally specific words. Both Ukrainian and Russian outlets lean towards strongly opinionated news, pointing towards the use of war propaganda in order to achieve strategic goals.

Keywords: linguistic, news, propaganda, Russia, ukraine

Procedia PDF Downloads 41
337 Rethinking News Aggregation to Achieve Depolarization

Authors: Kushagra Khandelwal, Chinmay Anand, Sharmistha Banerjee

Abstract:

This paper presents an approach to news aggregation that is aimed at solving the issues centered on depolarization and manipulation of news information and stories. Largest democracies across the globe face numerous issues related to news democratization. With the advancements in technology and increasing outreach, web has become an important information source which is inclusive of news. Research was focused on the current millennial population consisting of modern day internet users. The study involved literature review, an online survey, an expert interview with a journalist and a focus group discussion with the user groups. The study was aimed at investigating problems associated with the current news system from both the consumer as well as distributor point of view. The research findings helped in producing five key potential opportunity areas which were explored for design intervention. Upon ideation, we identified five design features which include opinion aggregation. Categorized opinions, news tracking, online discussion and ability to take actions that support news democratization.

Keywords: citizen journalism, democratization, depolarized news, napsterization, news aggregation, opinions

Procedia PDF Downloads 137
336 Ideological Framing in Television News: The Case of “Settlement Process”

Authors: Mete Kazaz, Birol Gülnar

Abstract:

Television news has gained a new dimension in terms of ideological approaches as a result of such factors as globalization, cross monopolization, presence of international companies etc. and certain strategies have been developed at the production, presentation and distribution stages of news. In this study, television news about a process called “settlement process” was investigated. In this framework, news about the settlement process on TV channels of TRT 1, ATV, FOX TV, NTV, HABERTÜRK, TRT HABER and STV was investigated using the content analysis method in terms of the strategies the ideology construction, attitude towards the party in power, attitude towards parties in opposition and attitude towards BDP (Peace and Democracy Part) and Imrali (the island where Abdullah Ocalan, head of PKK, is kept). First, the aforementioned TV channels were selected randomly from 3 groups in order to be able to reveal the representational capacity of commercial, news and public channels. The study covers 557 news items broadcast in the main news bulletins between the dates of 15 March 2013 and 15 March 2013. While there was a positive attitude towards the government in a sizable portion of the news about the settlement process (63.6%), the attitude of 25.3% of the news was impartial towards the government and 11.3% had a negative attitude. On the other hand, there was a negative attitude towards the Opposition in a considerable portion of the news about the settlement process (56.1%). The attitude of 35.9% of the news towards the Opposition was impartial whereas 8.0% had a positive attitude. While 34.9% of the news about the settlement process used the legitimization strategy from among the ideology construction strategies, 22.8% used the unification strategy, 15.7% the reification strategy, 15.6% fractional and 11% concealment/mystification strategy.

Keywords: attitude, ideological framing, television news, social sciences

Procedia PDF Downloads 270
335 The Use of Smartphones as a News Resource by Female University Students in the UAE

Authors: Mahinaz Saad

Abstract:

Little empirical data exists regarding smartphone usage for news consumption in the UAE, and no previous research explored undergraduate female university students’ usage of smartphones. This represents a gap in the professional literature and makes it an important area to examine. Uses and Gratifications theory is used to study the motivations of consumers for adopting a particular type of communication tool. This theory is an audience-centred approach to understanding mass communication that assumes audiences are active consumers of media and explains why and how people seek out specific media to satisfy needs. This theory is particularly relevant given the rapid development of new communication technologies. Situated within this theoretical framework, this study utilised a quantitative research design to explore respondents’ (N=488) how and why respondents use their smartphones. Further, this study explored the relationship between mobile news use and the use of other mediums for news access and how different gratifications predict mobile hard news use and mobile soft news use. Results revealed that smartphones often replace traditional media as a news source and have become students’ primary source of news. Results also revealed that different gratifications can be used as a predictor of mobile hard news and soft news and that most students use their smartphones to access soft news. These results are fundamental in allowing us to predict possible future trends relating to news consumption in the UAE and the myriad ways in which the media landscape is changing.

Keywords: uses and gratifications, smartphones, university students, news consumption

Procedia PDF Downloads 52
334 Understanding the Impact of Ephemerality and Mobility on Social Media News: A Content Analysis of News on Snapchat

Authors: Chelsea Peterson-Salahuddin

Abstract:

Over the past decade, news outlets have increasingly used social media as a means to create and distribute news content to audiences. Ephemerality, the transitory nature of media, and mobility, media viewing on mobile technologies, are two increasingly salient attributes of social media content; yet little is known about how these features influence news selection practices of news outlets when distributing news via social media. To account for this gap, this study examines the influences of ephemerality and mobility on social media news content on the social media application Snapchat, in order to understand how these qualities of digital media influence and shape news content. Findings from this study suggest that understandings of ephemerality and mobility play a key role in influencing social media news. This paper suggests that as these factors become increasingly salient in our dominant news viewing environments, being able to understand how they manifest themselves in online news reporting practices is critical for both scholars and practitioners of news as they aim to understand what 'newsworthiness' means in the current, digital age. Findings from this study also enhance our current understandings of how the technological affordances of online and digital media platforms play a key role in shaping the kinds being produced and what information is being prioritized and highlighted in our contemporary news media environment. This is especially important in our current era where new mediums and technologies for news dissemination are continuously arising, and reorienting our understandings of what is considered ‘news'. As a key site of mass communication, discourse, and stories highlighted in the news do critical work in defining culture and ideology. Thus, better understanding the contours of news in our contemporary moment is critical in understanding cultural norms and meaning-making.

Keywords: content analysis, ephemerality, mobile communication, social media news

Procedia PDF Downloads 51
333 Blue Eyes and Blonde Hair in Mass Media: A News Discourse Analysis of Western Media on the News Coverage of Ukraine

Authors: Zahra Mehrabbeygi

Abstract:

This research is opted to analyze and survey discourse variety and news image-making in western media regarding the news coverage of the Russian army intrusion into Ukraine. This research will be done on the news coverage of Ukraine in a period from February 2022 to May 2022 in five western media, "BBC, CBS, NBC, Al Jazeera, and Telegraph." This research attempts to discover some facts about the news policies of the five western news agencies during the circumstances of the Ukraine-Russia war. Critical theories in the news, such as Framing, Media Imperialism of News, Image Making, Discourse, and Ideology, were applied to achieve this goal. The research methodology uses Van Dijk's discourse exploration method based on discourse analysis. The research's statistical population is related to all the news about racial discrimination during the mentioned period. After a statistical population survey with Targeted Sampling, the researcher randomly selected ten news cases for exploration. The research findings show that the western media have similarities in their texts via lexical items, polarization, citations, persons, and institutions. The research findings also imply pre-suppositions, connotations, and components of consensus agreement and underlying predicates in the outset, middle, and end events. The reaction of some western media not only shows their bewilderment but also exposes their prejudices rooted in racism.

Keywords: news discourse analysis, western media, racial discrimination, Ukraine-Russia war

Procedia PDF Downloads 21
332 Manifestation of Behavioral and Emotional Disturbances in News Reporters Covering Traumatic Events

Authors: Misbah Shahzadi

Abstract:

The present study was conducted to identify the emotional and behavioral disturbances among the News Reporters covering Traumatic events. In the present study, a sample of 50 News Reporters belonging to the national and the local news agencies were selected from Rawalpindi and Islamabad who had covered any traumatic event in the past one year. Rotter’s Incomplete Sentence Blank (RISB) and Impact of Event Scale interpretations were used to assess a variety of emotional and behavioral patterns of News Reporters. Results showed that some of the frequent emotional and behavioral reactions exhibited by individuals like withdrawal, anxiety\depression, aggression, hyperarousal and avoidance behavior whereas gender-based comparisons indicated that there is no significant gender difference in the News Reporters in manifestations of behavioral and emotional disturbances. It is concluded that significant negative emotional and behavioral reactions are exhibited by the News Reporters who cover traumatic events. The study identifies the negative emotional and behavioral reactions/disturbances after trauma, which can be helpful for identifying problematic areas for counseling and therapeutic interventions for these News Reporters.

Keywords: behavioural disturbance, emotional disturbance, news reporters, traumatic events

Procedia PDF Downloads 340
331 Detecting Manipulated Media Using Deep Capsule Network

Authors: Joseph Uzuazomaro Oju

Abstract:

The ease at which manipulated media can be created, and the increasing difficulty in identifying fake media makes it a great threat. Most of the applications used for the creation of these high-quality fake videos and images are built with deep learning. Hence, the use of deep learning in creating a detection mechanism cannot be overemphasized. Any successful fake media that is being detected before it reached the populace will save people from the self-doubt of either a content is genuine or fake and will ensure the credibility of videos and images. The methodology introduced in this paper approaches the manipulated media detection challenge using a combo of VGG-19 and a deep capsule network. In the case of videos, they are converted into frames, which, in turn, are resized and cropped to the face region. These preprocessed images/videos are fed to the VGG-19 network to extract the latent features. The extracted latent features are inputted into a deep capsule network enhanced with a 3D -convolution dynamic routing agreement. The 3D –convolution dynamic routing agreement algorithm helps to reduce the linkages between capsules networks. Thereby limiting the poor learning shortcoming of multiple capsule network layers. The resultant output from the deep capsule network will indicate a media to be either genuine or fake.

Keywords: deep capsule network, dynamic routing, fake media detection, manipulated media

Procedia PDF Downloads 40
330 The Impact of Financial News and Press Freedom on Abnormal Returns around Earnings Announcements in Greater China

Authors: Yu-Chen Wei, Yang-Cheng Lu, I-Chi Lin

Abstract:

This study examines the impacts of news sentiment and press freedom on abnormal returns during the earnings announcement in greater China including the Shanghai, Shenzhen and Taiwan stock markets. The news sentiment ratio is calculated by using the content analysis of semantic orientation. The empirical results show that news released prior to the event date may decrease the cumulative abnormal returns prior to the earnings announcement regardless of whether it is released in China or Taiwan. By contrast, companies with optimistic financial news may increase the cumulative abnormal returns during the announcement date. Furthermore, the difference in terms of press freedom is considered in greater China to compare the impact of press freedom on abnormal returns. The findings show that, the freer the press is, the more negatively significant will be the impact of news on the abnormal returns, which means that the press freedom may decrease the ability of the news to impact the abnormal returns. The intuition is that investors may receive alternative news related to each company in the market with greater press freedom, which proves the efficiency of the market and reduces the possible excess returns.

Keywords: news, press freedom, Greater China, earnings announcement, abnormal returns

Procedia PDF Downloads 321
329 Constriction of Economic News over Business and Financial News: Analysis of the Change in Indian Business-Papers over the Past Three Decades

Authors: Disha Batra

Abstract:

With the advent of economic reforms in India in 1992, economic journalism in India has undergone a sea change along with the rise in the Indian economy. Squeezing out of economic news stories (economy-in-general) over business (individual corporate stories) and financial (financial and equity markets) news stories have been done and are still underway. The objective of the study is to explore how economic journalism – news stories about macroeconomic issues or economy-in-general has changed over the past three decades with the emergence of LPG (Liberalisation, Privatisation, and Globalisation) policies in India. The purpose of the study is to examine to what extent business and financial news are constricting economic news which is done by analysing news stories and content of business papers. The study is based on the content analyses of the top three Indian business dailies as per IRS (Indian Readership Survey) 2017. The parametric analysis of the different parameters (source of information, sub-topic, a dominant source in economic news, layout and framing, etc.) has been done in order to come across with the distinct adaptations and modifications by these dailies. The paper significantly dwells upon the thematic analysis of these newspapers in order to explore and find out the coverage given to various sub-themes of EBF (economic, business, and financial) journalism. The study revealed that stories concerning broader issues about the economy which are likely to be of public concern had been dropped. The paper further indicates an upward trend for the stories concerning individual corporate, equity, and financial markets. Findings of the study raise concern over the indicated disparity between economic and business news stories which may further limit the information that people need in order to make well-versed decisions.

Keywords: business-papers, business news, economic news, financial news

Procedia PDF Downloads 51
328 TMIF: Transformer-Based Multi-Modal Interactive Fusion for Rumor Detection

Authors: Jiandong Lv, Xingang Wang, Cuiling Shao

Abstract:

The rapid development of social media platforms has made it one of the important news sources. While it provides people with convenient real-time communication channels, fake news and rumors are also spread rapidly through social media platforms, misleading the public and even causing bad social impact in view of the slow speed and poor consistency of artificial rumor detection. We propose an end-to-end rumor detection model-TIMF, which captures the dependencies between multimodal data based on the interactive attention mechanism, uses a transformer for cross-modal feature sequence mapping and combines hybrid fusion strategies to obtain decision results. This paper verifies two multi-modal rumor detection datasets and proves the superior performance and early detection performance of the proposed model.

Keywords: hybrid fusion, multimodal fusion, rumor detection, social media, transformer

Procedia PDF Downloads 76
327 The Factors Predicting Credibility of News in Social Media in Thailand

Authors: Ekapon Thienthaworn

Abstract:

This research aims to study the reliability of the forecasting factor in social media by using survey research methods with questionnaires. The sampling is the group of undergraduate students in Bangkok. A multiple-step random number of 400 persons, data analysis are descriptive statistics with multivariate regression analysis. The research found the average of the overall trust at the intermediate level for reading the news in social media and the results of the multivariate regression analysis to find out the factors that forecast credibility of the media found the only content that has the power to forecast reliability of undergraduate students in Bangkok to reading the news on social media at the significance level.at 0.05.These can be factors with forecasts reliability of news in social media by a variable that has the highest influence factor of the media content and the speed is also important for reliability of the news.

Keywords: credibility of news, behaviors and attitudes, social media, web board

Procedia PDF Downloads 403
326 Impact of New Media Technologies to News, Social Interactions, and Traditional Media

Authors: Ademola Bamgbose

Abstract:

The new media revolution, which encompasses a wide variety of new media technologies like blogs, social networking, visual worlds, wikis, have had a great influence on communications, traditional media and across other disciplines. This paper gives a review of the impact of new media technologies on the news, social interactions and traditional media in developing and developed countries. The study points to the fact that there is a significant impact of new media technologies on the news, social interactions and the traditional media in developing and developed countries, albeit both positively and negatively. Social interactions have been significantly affected, as well as in news production and reporting. It is reiterated that despite the pervasiveness of new media technologies, it would not bring to a total decline of traditional media. This paper contributes to the theoretical framework on the new media and will help to assess the extent of the impact of the new media in different locations.

Keywords: communication, media, news, new media technologies, social interactions, traditional media

Procedia PDF Downloads 173