Search results for: forest soil
1199 Questioning the Sustainability in Development: The Resilience of Local Variety of Rice in the Changing Dayak Community of Central Kalimantan, Indonesia
Authors: Semiarto Aji Purwanto, Sutji Shinto
Abstract:
Over a quarter century, the idea of sustainable development has become a global discussion. In Indonesia, more than five decades since the development of the country took priority over any other matter, a discussion on the need of development is still an intriguing. Far from the enthusiasm of development programs run by the Indonesian government since 1967, the Dayak community in the interior of Kalimantan tropical forest was significantly abandoned from the changes. There were not many programs for the interior because the focus of development mostly was in Java island. Consequently, the Dayak live their life as shifting cultivator that has been practiced for centuries. Our ethnographic observation conducted in April-July 2016, found that today, they still maintain the knowledge and keeping the existence of local variety of rice. While in Java, these varieties have been replaced by more-productive-and-resistant-to-pest varieties, the Dayak still maintain more than 60s varieties. From the biodiversity’s perspective, it is a delightful news; while from the cultural perspective, the persistence of their custom regarding to the practice of traditional cultivation is fascinating as well. The local knowledge of agriculture is well conserved and practice daily. It is revealed that the resilience of those rice varieties is related to the local social structure since the distribution of each variety usually limited to the particular clans in the community. While experiencing the lack of programs for village development, the community has maintained the local leadership and its government structure at the village level. The paper will explore the effect of how a neglected area, which was disregarded by development program, sustains their culture and biodiversity. We would like to discuss the concept of sustainability whether it needed for the development programs, for the changes into a modern civilisation, or for the sake of the local to survive.Keywords: sustainable development, local knowledge, rice, resilience, Kalimantan, Indonesia
Procedia PDF Downloads 2861198 Anthropogenic Impact on Surface and Groundwaters Quality in the Western Part of the River Nile, Elsaff Village, Giza
Authors: Mohamed Elkashouty, Mohamed Yehia, Ahmed Tawfuk
Abstract:
The study area is located in the southern part of Giza Governorate at both side of the Nile Valley. A combination of major and trace elements have been used to classify surface- and ground-waters in El Kurimat village, Egypt. The main purpose of the project is to investigate the surface-and ground-waters quality and hydrochemical evaluation. The situation is further complicated by contamination with lithogenic and anthropogenic (agricultural and sewage wastewaters) sources and low groundwater management strategies. The Quaternary aquifer consists of sands and gravels of Pleistocene age intercalated with clay lenses and overlain by silty clay aquitard (Holocene). The semi-pervious silty clay aquitard of the Holocene Nile sediments cover the Quaternary aquifer in most areas. The groundwater flows generally from southwest to northeast. To achieve this target, thirty five and seventy three samples were collected from surface– and ground-waters within summer and winter seasons 2009-2010). Total dissolved solids (TDS), cations, anions, NO2, NO3, PO4 , Al, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn, As, F, Sb, Se, Sn, Sr and V) were determined in water samples. Grain size analysis was achieved to eight soil samples and measured the organic matter percent in different fractions. The TDS concentration is high in Arab El Ein canal by lithogenic and anthropogenic sources. The average concentrations of TDS in the River Nile are 245 (summer) and 254 ppm (winter). NO3 content ranges from 1.7 to 12 mg/l (summer), while in winter it ranges from 0.4 to 2.4. Most of the toxic metal concentrations are below the drinking and irrigation guidelines except Mn, V, Cr, Al, and Fe, which are higher than the guidelines in some canals and drains. The TDS concentration in groundwater increases toward northeastern and northwestern part of the study area (i.e. toward limestone plateau). It is due to hydrogeological interconnection between Quaternary and Eocene aquifer (saline water), wastewater dump and recharge from wadi El Atfihi wastewater. There is a good match between the hydrogeology and the hydrogeochemistry. Total dissolved solid in groundwater increases toward southwestern part, may be due to hydrogeological interconnection between Quaternary and Eocene aquifer and leakage from agricultural waste water of El Mohut drain. Fe, Mn, Cr, Al, PO4 and NO3 concentrations are high due to anthropogenic sources, therefore they are unsuitable for drinking. The average concentration of Cr, Cu, Fe, Mn &Zn are higher in winter than those in summer due to winter drought. The organic matter content in soil are increases in the northeastern and southwestern part, with different fractions, sue to agricultural wastewaters. Reused of contaminated surface- and ground-waters samples by mixing with fresh water (By AquaChem) was estimated to increase the income per capita.Keywords: surface water, groundwater, major ions, toxic metals
Procedia PDF Downloads 2961197 Liquefaction Phenomenon in the Kathmandu Valley during the 2015 Earthquake of Nepal
Authors: Kalpana Adhikari, Mandip Subedi, Keshab Sharma, Indra P. Acharya
Abstract:
The Gorkha Nepal earthquake of moment magnitude (Mw) 7.8 struck the central region of Nepal on April 25, 2015 with the epicenter about 77 km northwest of Kathmandu Valley . Peak ground acceleration observed during the earthquake was 0.18g. This motion induced several geotechnical effects such as landslides, foundation failures liquefaction, lateral spreading and settlement, and local amplification. An aftershock of moment magnitude (Mw) 7.3 hit northeast of Kathmandu on May 12 after 17 days of main shock caused additional damages. Kathmandu is the largest city in Nepal, have a population over four million. As the Kathmandu Valley deposits are composed mainly of sand, silt and clay layers with a shallow ground water table, liquefaction is highly anticipated. Extensive liquefaction was also observed in Kathmandu Valley during the 1934 Nepal-Bihar earthquake. Field investigations were carried out in Kathmandu Valley immediately after Mw 7.8, April 25 main shock and Mw 7.3, May 12 aftershock. Geotechnical investigation of both liquefied and non-liquefied sites were conducted after the earthquake. This paper presents observations of liquefaction and liquefaction induced damage, and the liquefaction potential assessment based on Standard Penetration Tests (SPT) for liquefied and non-liquefied sites. SPT based semi-empirical approach has been used for evaluating liquefaction potential of the soil and Liquefaction Potential Index (LPI) has been used to determine liquefaction probability. Recorded ground motions from the event are presented. Geological aspect of Kathmandu Valley and local site effect on the occurrence of liquefaction is described briefly. Observed liquefaction case studies are described briefly. Typically, these are sand boils formed by freshly ejected sand forced out of over-pressurized sub-strata. At most site, sand was ejected to agricultural fields forming deposits that varied from millimetres to a few centimeters thick. Liquefaction-induced damage to structures in these areas was not significant except buildings on some places tilted slightly. Boiled soils at liquefied sites were collected and the particle size distributions of ejected soils were analyzed. SPT blow counts and the soil profiles at ten liquefied and non-liquefied sites were obtained. The factors of safety against liquefaction with depth and liquefaction potential index of the ten sites were estimated and compared with observed liquefaction after 2015 Gorkha earthquake. The liquefaction potential indices obtained from the analysis were found to be consistent with the field observation. The field observations along with results from liquefaction assessment were compared with the existing liquefaction hazard map. It was found that the existing hazard maps are unrepresentative and underestimate the liquefaction susceptibility in Kathmandu Valley. The lessons learned from the liquefaction during this earthquake are also summarized in this paper. Some recommendations are also made to the seismic liquefaction mitigation in the Kathmandu Valley.Keywords: factor of safety, geotechnical investigation, liquefaction, Nepal earthquake
Procedia PDF Downloads 3281196 Evaluation of Subsurface Drilling and Geo Mechanic Properties Based on Stratum Index Factor for Humanities Environment
Authors: Abdull Halim Abdul, Muhaimin Sulam
Abstract:
This paper is about a subsurface study of Taman Pudu Ulu, Cheras, Kuala Lumpur with emphasize of Geo mechanic properties based on stratum index factor in humanities environment. Subsurface drilling and seismic data were used to understand the subsurface condition of the study area such as the type and thickness of the strata. Borehole and soil samples were recovered Geo mechanic properties of the area by conducting number of experiments. Taman Pudu Ulu overlies the Kuala Lumpur Limestone formation that is known for its karstic features such as caves and cavities. Hence by knowing the Geo mechanic properties such as the normal strain and shear strain we can plan a safer and economics construction that is plan at the area in the future.Keywords: stratum, index factor, geo mechanic properties, humanities environment
Procedia PDF Downloads 4971195 A Dynamic Model for Circularity Assessment of Nutrient Recovery from Domestic Sewage
Authors: Anurag Bhambhani, Jan Peter Van Der Hoek, Zoran Kapelan
Abstract:
The food system depends on the availability of Phosphorus (P) and Nitrogen (N). Growing population, depleting Phosphorus reserves and energy-intensive industrial nitrogen fixation are threats to their future availability. Recovering P and N from domestic sewage water offers a solution. Recovered P and N can be applied to agricultural land, replacing virgin P and N. Thus, recovery from sewage water offers a solution befitting a circular economy. To ensure minimum waste and maximum resource efficiency a circularity assessment method is crucial to optimize nutrient flows and minimize losses. Material Circularity Indicator (MCI) is a useful method to quantify the circularity of materials. It was developed for materials that remain within the market and recently extended to include biotic materials that may be composted or used for energy recovery after end-of-use. However, MCI has not been used in the context of nutrient recovery. Besides, MCI is time-static, i.e., it cannot account for dynamic systems such as the terrestrial nutrient cycles. Nutrient application to agricultural land is a highly dynamic process wherein flows and stocks change with time. The rate of recycling of nutrients in nature can depend on numerous factors such as prevailing soil conditions, local hydrology, the presence of animals, etc. Therefore, a dynamic model of nutrient flows with indicators is needed for the circularity assessment. A simple substance flow model of P and N will be developed with the help of flow equations and transfer coefficients that incorporate the nutrient recovery step along with the agricultural application, the volatilization and leaching processes, plant uptake and subsequent animal and human uptake. The model is then used for calculating the proportions of linear and restorative flows (coming from reused/recycled sources). The model will simulate the adsorption process based on the quantity of adsorbent and nutrient concentration in the water. Thereafter, the application of the adsorbed nutrients to agricultural land will be simulated based on adsorbate release kinetics, local soil conditions, hydrology, vegetation, etc. Based on the model, the restorative nutrient flow (returning to the sewage plant following human consumption) will be calculated. The developed methodology will be applied to a case study of resource recovery from wastewater. In the aforementioned case study located in Italy, biochar or zeolite is to be used for recovery of P and N from domestic sewage through adsorption and thereafter, used as a slow-release fertilizer in agriculture. Using this model, information regarding the efficiency of nutrient recovery and application can be generated. This can help to optimize the recovery process and application of the nutrients. Consequently, this will help to optimize nutrient recovery and application and reduce the dependence of the food system on the virgin extraction of P and N.Keywords: circular economy, dynamic substance flow, nutrient cycles, resource recovery from water
Procedia PDF Downloads 2011194 Screening of Nickel-Tolerant Genotype of Mung Bean (Vigna radiata) Based on Photosynthesis and Antioxidant System
Authors: Mohammad Yusuf, Qazi Fariduddin
Abstract:
The main aim of this study was to explore the different cultivars of Vigna radiata on basis of photosynthesis, antioxidants and proline to assess Ni-sensitive and Ni-tolerant cultivar. Seeds of five different cultivars were sown in soil amended with different levels of Ni (0, 50, 100, or 150 mg kg 1). At 30 d stage, plants were harvested to assess the various parameters. The Ni treatment diminished growth, leaf water potential, chlorophyll content and net photosynthesis along with nitrate reductase and carbonic anhydrase activities in the concentration dependent manner whereas, it enhanced proline content and various antioxidant enzymes. The varieties T-44 found least affected, whereas PDM-139 experienced maximum damage at 150 mg kg-1 of Ni. Moreover, T-44 possessed maximum activity of antioxidant enzymes and proline content at all the levels of metal whereas PDM-139 possessed minimum values. Therefore, T-44 and PDM-139 were established as the most resistant and sensitive varieties, respectively.Keywords: Vigna radiata, antioxidants, nickel, photosynthesis, proline
Procedia PDF Downloads 2261193 Effective Microorganisms as a Sustainable Environment Product and Their Application: A Study in Pakistan
Authors: Jaffar Hussain, Farman Ali Shah
Abstract:
As we know that Pakistan is the developing country so it adopts new technologies for progress. In last three decays, some new technologies were introduced in the world in which Effective Microorganism was one of them. Microorganisms are one of the most power full living forces on earth. Originally, EM was developed as an odor control, farm, and animal health, human health many industrial treatments. Effective Microorganism is an organic fertilizer that contains a mixture of co-existing valuable microorganism composed from the environment. There are vast application of the EM in the world in which the researchers are explained in literature .In Pakistan work on EM technologies are under process, researcher are doing work to make them most valuable. At that time the application of EM are in agriculture, water treatment, to increase Cement strength, improving saline soil etc. Effective microorganisms are environmentally friendly , not-naturally organized, not chemically synthesized, not dangerous and not pathogenic.Keywords: developing country, technologies, effective microorganism, researchers, Pakistan, agriculture
Procedia PDF Downloads 4871192 Phytotoxicity of Lead on the Physiological Parameters of Two Varieties of Broad Bean (Vicia faba)
Authors: El H. Bouziani, H. A. Reguieg Yssaad
Abstract:
The phytotoxicity of heavy metals can be expressed on roots and visible part of plants and is characterized by molecular and metabolic answers at various levels of organization of the whole plant. The present study was undertaken on two varieties of broad bean Vicia faba (Sidi Aïch and Super Aguadulce). The device was mounted on a substrate prepared by mixing sand, soil and compost, the substrate was artificially contaminated with three doses of lead nitrate [Pb(NO3)2] 0, 500 and 1000 ppm. Our objective is to follow the behavior of plant opposite the stress by evaluating the physiological parameters. The results reveal a reduction in the parameters of the productivity (chlorophyll and proteins production) with an increase in the osmoregulators (soluble sugars and proline).These results show that the production of broad bean is strongly modified by the disturbance of its internal physiology under lead exposure.Keywords: broad bean, lead, stress, physiological parameters, phytotoxicity
Procedia PDF Downloads 3091191 A Comparison between Russian and Western Approach for Deep Foundation Design
Authors: Saeed Delara, Kendra MacKay
Abstract:
Varying methodologies are considered for pile design for both Russian and Western approaches. Although both approaches rely on toe and side frictional resistances, different calculation methods are proposed to estimate pile capacity. The Western approach relies on compactness (internal friction angle) of soil for cohesionless soils and undrained shear strength for cohesive soils. The Russian approach relies on grain size for cohesionless soils and liquidity index for cohesive soils. Though most recommended methods in the Western approaches are relatively simple methods to predict pile settlement, the Russian approach provides a detailed method to estimate single pile and pile group settlement. Details to calculate pile axial capacity and settlement using the Russian and Western approaches are discussed and compared against field test results.Keywords: pile capacity, pile settlement, Russian approach, western approach
Procedia PDF Downloads 1711190 Effect of Electric Arc Furnace Coarse Slag Aggregate And Ground Granulated Blast Furnace Slag on Mechanical and Durability Properties of Roller Compacted Concrete Pavement
Authors: Amiya Kumar Thakur, Dinesh Ganvir, Prem Pal Bansal
Abstract:
Industrial by product utilization has been encouraged due to environment and economic factors. Since electric arc furnace slag aggregate is a by-product of steel industry and its storage is a major concern hence it can be used as a replacement of natural aggregate as its physical and mechanical property are comparable or better than the natural aggregates. The present study investigates the effect of partial and full replacement of natural coarse aggregate with coarse EAF slag aggregate and partial replacement of cement with ground granulated blast furnace slag (GGBFS) on the mechanical and durability properties of roller compacted concrete pavement (RCCP).The replacement level of EAF slag aggregate were at five levels (i.e. 0% ,25% ,50%,75% & 100%) and of GGBFS was (0 % & 30%).The EAF slag aggregate was stabilized by exposing to outdoor condition for several years and the volumetric expansion test using steam exposure device was done to check volume stability. Soil compaction method was used for mix proportioning of RCCP. The fresh properties of RCCP investigated were fresh density and modified vebe test was done to measure the consistency of concrete. For investigating the mechanical properties various tests were done at 7 and 28 days (i.e. Compressive strength, split tensile strength, flexure strength modulus of elasticity) and also non-destructive testing was done at 28 days (i.e. Ultra pulse velocity test (UPV) & rebound hammer test). The durability test done at 28 days were water absorption, skid resistance & abrasion resistance. The results showed that with the increase in slag aggregate percentage there was an increase in the fresh density of concrete and also slight increase in the vebe time but with the 30 % GGBFS replacement the vebe time decreased and the fresh density was comparable to 0% GGBFS mix. The compressive strength, split tensile strength, flexure strength & modulus of elasticity increased with the increase in slag aggregate percentage in concrete when compared to control mix. But with the 30 % GGBFS replacement there was slight decrease in mechanical properties when compared to 100 % cement concrete. In UPV test and rebound hammer test all the mixes showed excellent quality of concrete. With the increase in slag aggregate percentage in concrete there was an increase in water absorption, skid resistance and abrasion resistance but with the 30 % GGBFS percentage the skid resistance, water absorption and abrasion resistance decreased when compared to 100 % cement concrete. From the study it was found that the mix containing 30 % GGBFS with different percentages of EAF slag aggregate were having comparable results for all the mechanical and durability property when compared to 100 % cement mixes. Hence 30 % GGBFS can be used as cement replacement with 100 % EAF slag aggregate as natural coarse aggregate replacement.Keywords: durability properties, electric arc furnace slag aggregate, GGBFS, mechanical properties, roller compacted concrete pavement, soil compaction method
Procedia PDF Downloads 1511189 The Effect of Magnetic Water on the Growth of Radish Cherry
Authors: Elisha Didam Markus, Thapelo Maqame
Abstract:
This paper focuses on studying the effects of magnetism on water and their impact to plant growth. Magnetic fields are known to induce higher rate of biochemical reaction and therefore can be used for growth related reactions in plants. For the purpose of this study, two 2 litres bottles were taken, one with two opposite poles magnets (500 mT) one on top and one at the bottom of the bottle. Another bottle was not altered in any way (used as control). Each bottle contained tap water stored up for 24 hours. Plants planted into different pots were watered using water from these bottles. Four pots with soil and manure equally mixed were used and equal volume of radish berry seeds were planted. Two pots were watered with magnetised water and the other two with normal tap water. The developments of plants were monitored in terms of their lengths for a period of 21 days. After 21 days, the lengths of plants watered with magnetised water were found to be 5.6% longer than those watered with tap water.Keywords: magnetised water, radish berry, growth percentage, magnetic fields
Procedia PDF Downloads 2521188 Effect of Arsenic Treatment on Element Contents of Sunflower, Growing in Nutrient Solution
Authors: Szilvia Várallyay, Szilvia Veres, Éva Bódi, Farzaneh Garousi, Béla Kovács
Abstract:
The agricultural environment is contaminated with heavy metals and other toxic elements, which means more and more threats. One of the most important toxic element is the arsenic. Consequences of arsenic toxicity in the plant organism is decreases the weight of the roots, and causes discoloration and necrosis of leaves. The toxicity of arsenic depends on the quality and quantity of the arsenic specialization. The arsenic in the soil and in the plant presents as a most hazardous specialization. A dicotyledon plant were chosen for the experiment, namely sunflower. The sunflower plants were grown in nutrient solution in different As(III) levels. The content of As, P, Fe were measured from experimental plants, using by ICP-MS.Negative correlation was observed between the higher concentration of As(V) and As(III) in the nutrition solution and the content of P in the sunflower tissue. The amount of Fe was decreasing if we used a higher concentration of arsenic (30 mg kg-1). We can tell the conclusion that the arsenic had a negative effect on the sunflower tissue P and Fe content.Keywords: arsenic, sunflower, ICP-MS, toxicity
Procedia PDF Downloads 6521187 GIS Application in Surface Runoff Estimation for Upper Klang River Basin, Malaysia
Authors: Suzana Ramli, Wardah Tahir
Abstract:
Estimation of surface runoff depth is a vital part in any rainfall-runoff modeling. It leads to stream flow calculation and later predicts flood occurrences. GIS (Geographic Information System) is an advanced and opposite tool used in simulating hydrological model due to its realistic application on topography. The paper discusses on calculation of surface runoff depth for two selected events by using GIS with Curve Number method for Upper Klang River basin. GIS enables maps intersection between soil type and land use that later produces curve number map. The results show good correlation between simulated and observed values with more than 0.7 of R2. Acceptable performance of statistical measurements namely mean error, absolute mean error, RMSE, and bias are also deduced in the paper.Keywords: surface runoff, geographic information system, curve number method, environment
Procedia PDF Downloads 2871186 Designing Agricultural Irrigation Systems Using Drone Technology and Geospatial Analysis
Authors: Yongqin Zhang, John Lett
Abstract:
Geospatial technologies have been increasingly used in agriculture for various applications and purposes in recent years. Unmanned aerial vehicles (drones) fit the needs of farmers in farming operations, from field spraying to grow cycles and crop health. In this research, we conducted a practical research project that used drone technology to design and map optimal locations and layouts of irrigation systems for agriculture farms. We flew a DJI Mavic 2 Pro drone to acquire aerial remote sensing images over two agriculture fields in Forest, Mississippi, in 2022. Flight plans were first designed to capture multiple high-resolution images via a 20-megapixel RGB camera mounted on the drone over the agriculture fields. The Drone Deploy web application was then utilized to develop flight plans and subsequent image processing and measurements. The images were orthorectified and processed to estimate the area of the area and measure the locations of the water line and sprinkle heads. Field measurements were conducted to measure the ground targets and validate the aerial measurements. Geospatial analysis and photogrammetric measurements were performed for the study area to determine optimal layout and quantitative estimates for irrigation systems. We created maps and tabular estimates to demonstrate the locations, spacing, amount, and layout of sprinkler heads and water lines to cover the agricultural fields. This research project provides scientific guidance to Mississippi farmers for a precision agricultural irrigation practice.Keywords: drone images, agriculture, irrigation, geospatial analysis, photogrammetric measurements
Procedia PDF Downloads 821185 Enhancing Disaster Resilience: Advanced Natural Hazard Assessment and Monitoring
Authors: Mariza Kaskara, Stella Girtsou, Maria Prodromou, Alexia Tsouni, Christodoulos Mettas, Stavroula Alatza, Kyriaki Fotiou, Marios Tzouvaras, Charalampos Kontoes, Diofantos Hadjimitsis
Abstract:
Natural hazard assessment and monitoring are crucial in managing the risks associated with fires, floods, and geohazards, particularly in regions prone to these natural disasters, such as Greece and Cyprus. Recent advancements in technology, developed by the BEYOND Center of Excellence of the National Observatory of Athens, have been successfully applied in Greece and are now set to be transferred to Cyprus. The implementation of these advanced technologies in Greece has significantly improved the country's ability to respond to these natural hazards. For wildfire risk assessment, a scalar wildfire occurrence risk index is created based on the predictions of machine learning models. Predicting fire danger is crucial for the sustainable management of forest fires as it provides essential information for designing effective prevention measures and facilitating response planning for potential fire incidents. A reliable forecast of fire danger is a key component of integrated forest fire management and is heavily influenced by various factors that affect fire ignition and spread. The fire risk model is validated by the sensitivity and specificity metric. For flood risk assessment, a multi-faceted approach is employed, including the application of remote sensing techniques, the collection and processing of data from the most recent population and building census, technical studies and field visits, as well as hydrological and hydraulic simulations. All input data are used to create precise flood hazard maps according to various flooding scenarios, detailed flood vulnerability and flood exposure maps, which will finally produce the flood risk map. Critical points are identified, and mitigation measures are proposed for the worst-case scenario, namely, refuge areas are defined, and escape routes are designed. Flood risk maps can assist in raising awareness and save lives. Validation is carried out through historical flood events using remote sensing data and records from the civil protection authorities. For geohazards monitoring (e.g., landslides, subsidence), Synthetic Aperture Radar (SAR) and optical satellite imagery are combined with geomorphological and meteorological data and other landslide/ground deformation contributing factors. To monitor critical infrastructures, including dams, advanced InSAR methodologies are used for identifying surface movements through time. Monitoring these hazards provides valuable information for understanding processes and could lead to early warning systems to protect people and infrastructure. Validation is carried out through both geotechnical expert evaluations and visual inspections. The success of these systems in Greece has paved the way for their transfer to Cyprus to enhance Cyprus's capabilities in natural hazard assessment and monitoring. This transfer is being made through capacity building activities, fostering continuous collaboration between Greek and Cypriot experts. Apart from the knowledge transfer, small demonstration actions are implemented to showcase the effectiveness of these technologies in real-world scenarios. In conclusion, the transfer of advanced natural hazard assessment technologies from Greece to Cyprus represents a significant step forward in enhancing the region's resilience to disasters. EXCELSIOR project funds knowledge exchange, demonstration actions and capacity-building activities and is committed to empower Cyprus with the tools and expertise to effectively manage and mitigate the risks associated with these natural hazards. Acknowledgement:Authors acknowledge the 'EXCELSIOR': ERATOSTHENES: Excellence Research Centre for Earth Surveillance and Space-Based Monitoring of the Environment H2020 Widespread Teaming project.Keywords: earth observation, monitoring, natural hazards, remote sensing
Procedia PDF Downloads 461184 The Effect of Land Cover on Movement of Vehicles in the Terrain
Authors: Krisstalova Dana, Mazal Jan
Abstract:
This article deals with geographical conditions in terrain and their effect on the movement of vehicles, their effect on speed and safety of movement of people and vehicles. Finding of the optimal routes outside the communication is studied in the army environment, but it occur in civilian as well, primarily in crisis situation, or by the provision of assistance when natural disasters such as floods, fires, storms etc., have happened. These movements require the optimization of routes when effects of geographical factors should be included. The most important factor is the surface of a terrain. It is based on several geographical factors as are slopes, soil conditions, micro-relief, a type of surface and meteorological conditions. Their mutual impact has been given by coefficient of deceleration. This coefficient can be used for the commander`s decision. New approaches and methods of terrain testing, mathematical computing, mathematical statistics or cartometric investigation are necessary parts of this evaluation.Keywords: movement in a terrain, geographical factors, surface of a field, mathematical evaluation, optimization and searching paths
Procedia PDF Downloads 4261183 Design of Residential Geothermal Cooling System in Kuwait
Authors: Tebah KH A AlFouzan, Meznah Dahlous Ali Alkreebani, Fatemah Salem Dekheel Alrasheedi, Hanadi Bandar Rughayan AlNomas, Muneerah Mohammad Sulaiman ALOjairi
Abstract:
Article spotlights the heat transfer process based beneath the earth’s surface. The process starts by exchanging the heat found in the building as fluid in the pipes absorbs it, then transports it down the soil consuming cool temperature exchange, recirculating, and rebounding to deliver cool air. This system is a renewable energy that is reliable and sustainable. The analysis showed the disposal of fossil fuels, energy preservation, 400% efficiency, long lifespan, and lower maintenance. Investigation displays the system’s types of design, whether open or closed loop and piping layout. Finally, the geothermal cooling study presents the challenges of creating a prototype in Kuwait, as constraints are applicable due to geography.Keywords: cooling system, engineering, geothermal cooling, natural ventilation, renewable energy
Procedia PDF Downloads 911182 Overview of the 2017 Fire Season in Amazon
Authors: Ana C. V. Freitas, Luciana B. M. Pires, Joao P. Martins
Abstract:
In recent years, fire dynamics in deforestation areas of tropical forests have received considerable attention because of their relationship to climate change. Climate models project great increases in the frequency and area of drought in the Amazon region, which may increase the occurrence of fires. This study analyzes the historical record number of fire outbreaks in 2017 using satellite-derived data sets of active fire detections, burned area, precipitation, and data of the Fire Program from the Center for Weather Forecasting and Climate Studies (CPTEC/INPE). A downward trend in the number of fire outbreaks occurred in the first half of 2017, in relation to the previous year. This decrease can be related to the fact that 2017 was not an El Niño year and, therefore, the observed rainfall and temperature in the Amazon region was close to normal conditions. Meanwhile, the worst period in history for fire outbreaks began with the subsequent arrival of the dry season. September of 2017 exceeded all monthly records for number of fire outbreaks per month in the entire series. This increase was mainly concentrated in Bolivia and in the states of Amazonas, northeastern Pará, northern Rondônia and Acre, regions with high densities of rural settlements, which strongly suggests that human action is the predominant factor, aggravated by the lack of precipitation during the dry season allowing the fires to spread and reach larger areas. Thus, deforestation in the Amazon is primarily a human-driven process: climate trends may be providing additional influences.Keywords: Amazon forest, climate change, deforestation, human-driven process, fire outbreaks
Procedia PDF Downloads 1331181 Enhanced Phytoremediation Using Endophytic Microbes
Authors: Raymond Oriebe Anyasi, Harrison Atagana
Abstract:
The use of a plant in the detoxification of several toxin is been known to be enhanced by various microbial endophytes which have been reported to be contained in plants growing in any contaminated soil. Plants in their natural state are mostly colonized by endophytes which in the process forms symbiotic associations with the host plants. These benefits that the endophytes offer to the plants include amongst others to: Enhance plants growth through the production of various phytohormones; increase in the resistance of environmental stresses; produce important bioactive metabolites; help in the fixing of nitrogen in the plants organelles; help in the metal translocation and accumulation in plants; assist in the production of enzymes involves the degradation of organic contaminants. Therefore recognizing these natural processes of the microbes will enable the understanding of the effective mechanism for enhanced phytoremediation. The aim of this study was to survey the progressiveness in the study involving endophyte-assisted phytoremediation of contaminants; highlighting various pollutants, the plants used, the endophytes studied as well as the type of interaction between the plants and the microbes so as to proffer a better future prospect for the technology.Keywords: phytoremediation, endophytes, microbes, pollution, environmental management, plants
Procedia PDF Downloads 3501180 Biodiesel Production and Heavy Metal Removal by Aspergillus fumigatus sp.
Authors: Ahmed M. Haddad, Hadeel S. El-Shaal, Gadallah M. Abu-Elreesh
Abstract:
Some of filamentous fungi can be used for biodiesel production as they are able to accumulate high amounts of intracellular lipids when grown at stress conditions. Aspergillus fumigatus sp. was isolated from Nile delta soil in Egypt. The fungus was primarily screened for its capacity to accumulate lipids using Nile red staining assay. The fungus could accumulate more than 20% of its biomass as lipids when grown at optimized minimal medium. After lipid extraction, we could use fungal cell debris to remove some heavy metals from contaminated waste water. The fungal cell debris could remove Cd, Cr, and Zn with absorption efficiency of 73%, 83.43%, and 69.39% respectively. In conclusion, the Aspergillus fumigatus isolate may be considered as a promising biodiesel producer, and its biomass waste can be further used for bioremediation of wastewater contaminated with heavy metals.Keywords: biodiesel, bioremediation, fungi, heavy metals, lipids, oleaginous
Procedia PDF Downloads 2321179 Exploring Selected Nigerian Fictional Work and Films as Sources of Peace Building and Conflict Resolution in the Natural Resource Extraction Regions of Nigeria: A Social Conflict Theoretical Perspective and Analysis
Authors: Joyce Onoromhenre Agofure
Abstract:
Research has shown how fictional work and films reflect the destruction of the environment due to the exploitation of oil, gas, gold, and forest products by multinational companies for profits but overlook discussions on conflict resolution and peacebuilding. However, this paper examines the manner art forms project peace and conflict resolution, thereby contributing to mediation and stability geared towards changing appalling situations in the resource extraction regions of Nigeria. This paper draws from selected Nigerian films- Blood and Oil (2019), directed by Curtis Graham, Black November (2012), directed by Jeta Amata, and a novel- Death of Eternity (2007), by Adamu Kyuka Usman. The study seeks to show that the disruptions caused in the natural resource regions of Nigeria have not only left adverse effects on the social well-being of the people but require resolutions through means of peacebuilding. By adopting the theoretical insights of Social Conflict, this paper focuses on artistic processes that enhance peacebuilding and conflict resolution in non-violent ways by using scenes, visual effects, themes, and images that can educate by shaping opinions, influencing attitudes, and changing ideas and behavioral patterns of individuals and communities. Put together; the research will open up critical perceptions brought about by the artists of study to shed light on the dire need to sustain peace and actively participate in conflict resolution in natural resource extraction spaces.Keywords: natural resource, extraction, conflict resolution, peace building
Procedia PDF Downloads 821178 The Effect of the Low Plastic Fines on the Shear Strength and Mechanical Behavior of Granular Classes of Sand-Silt Mixtures
Authors: El Metmati Abdelhaq
Abstract:
Shear strength of sandy soils has been considered as the important parameter to study the stability of different civil engineering structures when subjected to monotonic, cyclic and earthquake loading conditions. The objective of this laboratory investigation is to study the influence of the fraction of low plastic fines and gradation on the mechanical behavior of sand-silt mixtures reconstituted in the laboratory. For this purpose, a series of Casagrande shear box tests were carried out on different reconstituted samples of sand-silt mixtures with various gradations at two initial relative densities (Dr = 20 and 91 %) with different fines content ranging from 0 to 40 %. The soil samples were tested under different normal stresses (100, 200 and 300 kPa). The evaluation of the data indicates that the fines content and the gradation have significant influence on the friction angle and the cohesion.Keywords: mechanical behavior, silty sand, friction angle, cohesion, fines content
Procedia PDF Downloads 3761177 Effect of Organic Manure on Production of Potato (Solanum tuberosum L.)
Authors: R. Behrooz, D. Jahanfar, D. Reza
Abstract:
Organic farming is a fundamental principle in sustainable agriculture. Preventing excessive contamination of water and soil with pesticides and chemical fertilizers is important in order to produce healthy food. For this purpose, two potato cultivars (Sante and Marfona) and seven levels of fertilizer (non-fertilizer, chemical fertilizer, granulated chicken manure, common manure, compost, vermicompost and tea compost) were evaluated by factorial experiment based on randomized complete block design (RCBD) with three replications. According to the results, the effect of different manure was significant on number of tubers per plant, tuber weight per plant and tuber yield. The highest value of these traits was obtained by using of chicken manure which was significantly superior to other treatments. However, there was no significant difference between the two varieties. According to the results, the use of chicken manure has produced the highest potato yield even in comparison with the use of chemical fertilizer.Keywords: organic farming, organic manure, potato, tuber yield
Procedia PDF Downloads 1591176 An Approach to Spatial Planning for Water Conservation: The Case of Kovada Sub-Watershed (Turkey)
Authors: Aybike Ayfer Karadağ
Abstract:
Today, the amount of water available is decreasing day by day due to global warming, environmental problems and population increase. To protect water resources, it is necessary to take a lot of measures from the global scale to the local scale. Some of these measures are related to spatial planning studies. In this study, the impact of water process analysis was assessed in the development of spatial planning for water conservation. The study was conducted in the Kovada sub-watershed (Isparta, Turkey). By means of water process analysis, the way to reach underground water of surface water in the study area is mapped. In this context, plant cover, soil and rock permeability were evaluated holistically with geographic information systems technologies. Then, on the map, water permeability is classified and this is spatially expressed. The findings show that the permeability of the water is different in the study case. As a result, the water permeability map needs to be included in the planning for water conservation planning.Keywords: water, conservation, spatial planning, water process analysis
Procedia PDF Downloads 2221175 Regenerative Agriculture Standing at the Intersection of Design, Mycology, and Soil Fertility
Authors: Andrew Gennett
Abstract:
Designing for fungal development means embracing the symbiotic relationship between the living system and built environment. The potential of mycelium post-colonization is explored for the fabrication of advanced pure mycelium products, going beyond the conventional methods of aggregating materials. Fruiting induction imparts desired material properties such as enhanced environmental resistance. Production approach allows for simultaneous generation of multiple products while scaling up raw materials supply suitable for architectural applications. The following work explores the integration of fungal environmental perception with computational design of built fruiting chambers. Polyporales, are classified by their porous reproductive tissues supported by a wood-like context tissue covered by a hard waterproofing coat of hydrobpobins. Persisting for years in the wild, these species represent material properties that would be highly desired in moving beyond flat sheets of arial mycelium as with leather or bacon applications. Understanding the inherent environmental perception of fungi has become the basis for working with and inducing desired hyphal differentiation. Working within the native signal interpretation of a mycelium mass during fruiting induction provides the means to apply textures and color to the final finishing coat. A delicate interplay between meeting human-centered goals while designing around natural processes of living systems represents a blend of art and science. Architecturally, physical simulations inform model design for simple modular fruiting chambers that change as fungal growth progresses, while biological life science principles describe the internal computations occurring within the fungal hyphae. First, a form filling phase of growth is controlled by growth chamber environment. Second, an initiation phase of growth forms the final exterior finishing texture. Hyphal densification induces cellular cascades, in turn producing the classical hardened cuticle, UV protective molecule production, as well, as waterproofing finish. Upon fruiting process completion, the fully colonized spent substrate holds considerable value and is not considered waste. Instead, it becomes a valuable resource in the next cycle of production scale-up. However, the acquisition of new substrate resources poses a critical question, particularly as these resources become increasingly scarce. Pursuing a regenerative design paradigm from the environmental perspective, the usage of “agricultural waste” for architectural materials would prove a continuation of the destructive practices established by the previous industrial regime. For these residues from fields and forests serve a vital ecological role protecting the soil surface in combating erosion while reducing evaporation and fostering a biologically diverse food web. Instead, urban centers have been identified as abundant sources of new substrate material. Diverting the waste from secondary locations such as food processing centers, papers mills, and recycling facilities not only reduces landfill burden but leverages the latent value of these waste steams as precious resources for mycelium cultivation. In conclusion, working with living systems through innovative built environments for fungal development, provides the needed gain of function and resilience of mycelium products. The next generation of sustainable fungal products will go beyond the current binding process, with a focus upon reducing landfill burden from urban centers. In final considerations, biophilic material builds to an ecologically regenerative recycling production cycle.Keywords: regenerative agriculture, mycelium fabrication, growth chamber design, sustainable resource acquisition, fungal morphogenesis, soil fertility
Procedia PDF Downloads 671174 Variable Refrigerant Flow (VRF) Zonal Load Prediction Using a Transfer Learning-Based Framework
Authors: Junyu Chen, Peng Xu
Abstract:
In the context of global efforts to enhance building energy efficiency, accurate thermal load forecasting is crucial for both device sizing and predictive control. Variable Refrigerant Flow (VRF) systems are widely used in buildings around the world, yet VRF zonal load prediction has received limited attention. Due to differences between VRF zones in building-level prediction methods, zone-level load forecasting could significantly enhance accuracy. Given that modern VRF systems generate high-quality data, this paper introduces transfer learning to leverage this data and further improve prediction performance. This framework also addresses the challenge of predicting load for building zones with no historical data, offering greater accuracy and usability compared to pure white-box models. The study first establishes an initial variable set of VRF zonal building loads and generates a foundational white-box database using EnergyPlus. Key variables for VRF zonal loads are identified using methods including SRRC, PRCC, and Random Forest. XGBoost and LSTM are employed to generate pre-trained black-box models based on the white-box database. Finally, real-world data is incorporated into the pre-trained model using transfer learning to enhance its performance in operational buildings. In this paper, zone-level load prediction was integrated with transfer learning, and a framework was proposed to improve the accuracy and applicability of VRF zonal load prediction.Keywords: zonal load prediction, variable refrigerant flow (VRF) system, transfer learning, energyplus
Procedia PDF Downloads 331173 Application Use of Slaughterhouse Waste to Improve Nutrient Level in Apium glaviolens
Authors: Hasan Basri Jumin
Abstract:
Using the slaughterhouse waste combined to suitable dose of nitrogen fertilizer to Apium glaviolen gives the significant effect to mean relative growth rate. The same pattern also showed significantly in net assimilation rate. The net assimilation rate increased significantly during 42 days old plants. Combination of treatment of 100 ml/l animal slaughterhouse waste and 0.1 g/kg nitrogen fertilizer/kg soil increased the vegetative growth of Apium glaviolens. The biomass of plant and mean relative growth rate of Apium glaviolens were rapidly increased in 4 weeks after planting and gradually decreased after 35 days at the harvest time. Combination of 100 ml/l slaughterhouse waste and applied 0.1 g/kg nitrogen fertilizer has increased all parameters. The highest vegetative growth, biomass, mean relative growth rate and net assimilation rate were received from 0.56 mg-l.m-2.days-1.Keywords: Apium glaviolent, nitrogen, pollutant, slaughterhouse, waste
Procedia PDF Downloads 3681172 Using the GIS Technology for Erosion Risk Mapping of BEN EL WIDAN Dam Watershed in Beni Mallal, Marroco
Authors: Azzouzi Fadoua
Abstract:
This study focuses on the diagnosis of the dynamics of natural resources in a semi-arid mountainous weakened by natural vulnerability and anthropogenic action. This is evident in the forms of hydraulic erosion and degradation of agricultural land. The rate of this damaged land is 53%, with a strong presence of concentrated erosion; this shows that balanced and semi-balanced environments are less apparent to the Watershed, representing 47%. The results revealed the crucial role of the slopes and the density of the hydraulic networks to facilitate the transport of fine elements, at the level of the slopes with low vegetation intensity, to the lake of the dam. Something that endangers the siltation of the latter. After the study of natural and anthropogenic elements, it turned out that natural vulnerability is an integral part of the current dynamic, especially when it coincides with the overexploitation of natural resources, in this case, the exploitation of steep slopes for the cultivation of cereals and overgrazing. This causes the soil to pile up and increase the rate of runoff.Keywords: watershed, erosion, natural vulnerability, anthropogenic
Procedia PDF Downloads 1571171 Smart Irrigation System
Authors: Levent Seyfi, Ertan Akman, Tuğrul C. Topak
Abstract:
In this study, irrigation automation with electronic sensors and its control with smartphones were aimed. In this context, temperature and soil humidity measurements of the area irrigated were obtained by temperature and humidity sensors. A micro controller (Arduino) was utilized for accessing values of these parameters and controlling the proposed irrigation system. The irrigation system could automatically be worked according to obtained measurement values. Besides, a GSM module used together with Arduino provided that the irrigation system was in connection to smartphones. Thus, the irrigation system can be remotely controlled. Not only can we observe whether the irrigation system is working or not via developed special android application but also we can see temperature and humidity measurement values. In addition to this, if desired, the irrigation system can be remotely and manually started or stopped regardless of measured sensor vales thanks to the developed android application. In addition to smartphones, the irrigation system can be alternatively controlled via the designed website (www.sulamadenetim.com).Keywords: smartphone, Android Operating System, sensors, irrigation System, arduino
Procedia PDF Downloads 6181170 Probabilistic Crash Prediction and Prevention of Vehicle Crash
Authors: Lavanya Annadi, Fahimeh Jafari
Abstract:
Transportation brings immense benefits to society, but it also has its costs. Costs include such as the cost of infrastructure, personnel and equipment, but also the loss of life and property in traffic accidents on the road, delays in travel due to traffic congestion and various indirect costs in terms of air transport. More research has been done to identify the various factors that affect road accidents, such as road infrastructure, traffic, sociodemographic characteristics, land use, and the environment. The aim of this research is to predict the probabilistic crash prediction of vehicles using machine learning due to natural and structural reasons by excluding spontaneous reasons like overspeeding etc., in the United States. These factors range from weather factors, like weather conditions, precipitation, visibility, wind speed, wind direction, temperature, pressure, and humidity to human made structures like road structure factors like bump, roundabout, no exit, turning loop, give away, etc. Probabilities are dissected into ten different classes. All the predictions are based on multiclass classification techniques, which are supervised learning. This study considers all crashes that happened in all states collected by the US government. To calculate the probability, multinomial expected value was used and assigned a classification label as the crash probability. We applied three different classification models, including multiclass Logistic Regression, Random Forest and XGBoost. The numerical results show that XGBoost achieved a 75.2% accuracy rate which indicates the part that is being played by natural and structural reasons for the crash. The paper has provided in-deep insights through exploratory data analysis.Keywords: road safety, crash prediction, exploratory analysis, machine learning
Procedia PDF Downloads 116