Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9

Search results for: Éva Bódi

9 Role of Selenite and Selenate Uptake by Maize Plants in Chlorophyll A and B Content

Authors: F. Garousi, S. Veres, É. Bódi, S. Várallyay, B. Kovács

Abstract:

Extracting and determining chlorophyll pigments (chlorophyll a and b) in green leaves are the procedures based on the solvent extraction of pigments in samples using N,N-dimethylformamide as the extractant. In this study, two species of soluble inorganic selenium forms, selenite (Se( IV)) and selenate (Se( VI)) at different concentrations were investigated on maize plants that were growing in nutrient solutions during 2 weeks and at the end of the experiment, amounts of chlorophyll a and b for first and second leaves of maize were measured. In accordance with the results we observed that our regarded Se concentrations in both forms of Se( IV) and Se( VI) were not effective on maize plants’ chlorophyll a and b significantly although high level of 3 mg.kg-1 Se( IV) had negative affect on growth of the samples that had been treated by it but about Se( VI) samples we did not observe this state and our different considered Se( VI) concentrations were not toxic for maize plants.

Keywords: maize, sodium selenate, sodium selenite, chlorophyll a and b

Procedia PDF Downloads 319
8 Effect of Selenite and Selenate Uptake by Maize Plants on Specific Leaf Area

Authors: F. Garousi, Sz. Veres, É. Bódi, Sz. Várallyay, B. Kovács

Abstract:

Specific leaf area (SLA; cm2leaf g-1leaf) is a key ecophysiological parameter influencing leaf physiology, photosynthesis, and whole plant carbon gain and also can be used as a rapid and diagnostic tool. In this study, two species of soluble inorganic selenium forms, selenite (SeIV) and selenate (SeVI) at different concentrations were investigated on maize plants that were growing in nutrient solutions during 2 weeks and at the end of the experiment, amounts of SLA for first and second leaves of maize were measured. In accordance with the results we observed that our regarded Se concentrations in both forms of SeIV and SeVI were not effective on maize plants’ SLA significantly although high level of 3 mg.kg-1 SeIV had negative affect on growth of the samples that had been treated by it but about SeVI samples we did not observe this state and our different considered SeVI concentrations were not toxic for maize plants.

Keywords: maize, sodium selenate, sodium selenite, specific leaf area

Procedia PDF Downloads 310
7 Effect of Arsenic Treatment on Element Contents of Sunflower, Growing in Nutrient Solution

Authors: Szilvia Várallyay, Szilvia Veres, Éva Bódi, Farzaneh Garousi, Béla Kovács

Abstract:

The agricultural environment is contaminated with heavy metals and other toxic elements, which means more and more threats. One of the most important toxic element is the arsenic. Consequences of arsenic toxicity in the plant organism is decreases the weight of the roots, and causes discoloration and necrosis of leaves. The toxicity of arsenic depends on the quality and quantity of the arsenic specialization. The arsenic in the soil and in the plant presents as a most hazardous specialization. A dicotyledon plant were chosen for the experiment, namely sunflower. The sunflower plants were grown in nutrient solution in different As(III) levels. The content of As, P, Fe were measured from experimental plants, using by ICP-MS.Negative correlation was observed between the higher concentration of As(V) and As(III) in the nutrition solution and the content of P in the sunflower tissue. The amount of Fe was decreasing if we used a higher concentration of arsenic (30 mg kg-1). We can tell the conclusion that the arsenic had a negative effect on the sunflower tissue P and Fe content.

Keywords: arsenic, sunflower, ICP-MS, toxicity

Procedia PDF Downloads 539
6 Effects of Molybdenum Treatments on Maize and Sunflower Seedlings

Authors: Eva Bodi, Szilvia Veres, Farzaneh Garousi, Szilvia Varallay, Bela Kovacs

Abstract:

The aim of the present study was to examine whether increasing molybdenum (Mo) concentration affects on the growth and Mo concentration of maize and sunflower (Helianthus annuus L. cv Arena PR) seedlings within laboratory conditions. In this experiment calcareous chernozem soil was used and Mo was supplemented into the soil as ammonium molybdate [(NH4)6Mo7O24.4H2O] in four different concentrations as follow: 0 (control), 30, 90 and 270 mg/kg. In this study we found that molybdenum in small amount (30 mg/kg) affects positively on growth of maize and sunflower seedlings, however, higher concentration of Mo reduces the dry weights of shoots and roots. In the case of maize the highest Mo treatment (270 mg/kg) and in sunflower 90 mg/kg treatment caused significant reduction in plant growth. In addition, we observed that molybdenum contents in the roots and shoots were very low in case of control soil but were significantly elevated with increasing concentration of Mo treatment. Only in case of sunflower the highest 270 mg/kg Mo treatment caused decrease in Mo concentration.

Keywords: dry weight, maize, molybdenum, sunflower

Procedia PDF Downloads 326
5 Attribute Index and Classification Method of Earthquake Damage Photographs of Engineering Structure

Authors: Ming Lu, Xiaojun Li, Bodi Lu, Juehui Xing

Abstract:

Earthquake damage phenomenon of each large earthquake gives comprehensive and profound real test to the dynamic performance and failure mechanism of different engineering structures. Cognitive engineering structure characteristics through seismic damage phenomenon are often far superior to expensive shaking table experiments. After the earthquake, people will record a variety of different types of engineering damage photos. However, a large number of earthquake damage photographs lack sufficient information and reduce their using value. To improve the research value and the use efficiency of engineering seismic damage photographs, this paper objects to explore and show seismic damage background information, which includes the earthquake magnitude, earthquake intensity, and the damaged structure characteristics. From the research requirement in earthquake engineering field, the authors use the 2008 China Wenchuan M8.0 earthquake photographs, and provide four kinds of attribute indexes and classification, which are seismic information, structure types, earthquake damage parts and disaster causation factors. The final object is to set up an engineering structural seismic damage database based on these four attribute indicators and classification, and eventually build a website providing seismic damage photographs.

Keywords: attribute index, classification method, earthquake damage picture, engineering structure

Procedia PDF Downloads 297
4 Effect of Different Arsenic Treatments on Root Growth of Sunflower Seedlings in Rhizobox Experiment

Authors: Szilvia Várallyay, Béla Kovács, Éva Bódi, Farzeneh Garousi, Szilvia Veres

Abstract:

Arsenic (As) is a naturally occurring substance that can be present in soil, water and air. Vegetables, fruits, and other plants that grow in contaminated soils which are able to accumulate arsenic. Arsenic when presents in plant cells, has various negative physiological effects and when presents in soil will be inorgaic form, namely arsenite (As(III)) and arsenate (As(V)). These two forms of arsenic disrupt plant metabolism by inhibiting its growth and these arsenic species has negative effect on nutrient uptake. A rhizobox experiment was conducted to investigate the effect of arsenite and arsenate on root growth of sunflower seedlings. Sunflower plants were grown in climatic room under irradiance of 300 µmol m-2 s-1, 16-h day and 8-h night photoperiod, day/night temperature of 25/20°C and relative humidity of 65-75%. We applied arsenic in form of arsenite (NaAsO2) and arsenate (KH2AsO4), respectively. The applied arsenic treatments was 0, 10, 30, 90 mg.kg-1. After disinfection, seeds were germinated between moist filter papers. Seedlings with 2-3 cm coleoptils were placed into rhizoboxes. In the rhizoboxes the growing and daily growing rhythm of roots of sunflower can be followed up, moreover possible phytotoxic symptoms of roots resulting from increasing arsenic can be seen. Weights of rhizoboxes were measured daily and also evaporated water added each day. The lengths of roots were measured daily until seedlings roots get at the end of the rhizoboxes. Negative correlation was observed between the higher concentration of arsenic in the soil and the growth of sunflower seedlings roots. The effect of arsenic toxicity was more considerable in 90 mg.kg-1 arsenic treatment than lower concentration. The same arsenite concentration causes slower growth in case of sunflower plant than the same arsenate concentration produced.

Keywords: arsenic, rhizobox experiment, sunflower, root growth

Procedia PDF Downloads 343
3 The CDK Pho85 Inhibits Whi7 Repressor to Promote Cell Cycle Entry

Authors: Cristina Ros-Carrero, Mihai Spiridon-Bodi, Juan Carlos Igual, Mercè Gomar-Alba

Abstract:

Start (the G1/S transition) is the main decision point in the eukaryotic cell cycle at which cells irreversibly commit to a new round of cell division by activating the Start transcriptional program. In budding yeast, triggering Start involves the inactivation of the Start transcriptional repressors, Whi5 (Rb in mammals) and Whi7, which are inactivated by the CDK Cdc28 dependent phosphorylation. Pho85 is a CDK that regulates the cellular response to phosphate levels and diverse stresses. Pho85 is also linked to cell cycle control, and Start regulators have been proposed as Pho85 targets. Here we unravel a new mechanism by which Pho85 directly promotes Start. We saw that Pho85 specifically downregulates Whi7 but not Whi5 protein levels. We demonstrate that CDK Pho85-cyclins regulates Whi7 levels in two parallel ways: Pho85-Pho80 represses Whi7expression through the inactivation of the Pho4 transcription factor, and Pho85-Pcl1, Pcl2, Pcl9, Pho80 promotes its instability through the phosphorylation of Ser27 and Thr100 aminoacids. Strikingly, unlike in wild type cells, in the absence of Pho85, Whi7 is more potent than Whi5 repressing Start. First, only Whi7 causes G1 arrest in pho85 mutant cells when Whi5 or Whi7 are overexpressed to similar protein levels. Second, the G1 delay observed in pho85 mutant cells is restored by the deletion of Whi7, but not by Whi5 mutation. Furthermore, Pho85 inactivation causes an increased Whi7 association to G1/S promoters, which is dependent on the phosphorylation state of Ser27 and Thr100. Remarkably, Pho85 not only decreases Whi7 levels but also blocks Whi7 function as a Start repressor. Thus, this is a new mechanism that links the Pho85 pathway with the control of Start, unveiling a new role for the Whi7 transcriptional repressor under conditions of Pho85 inactivation.

Keywords: CDK Pho85, saccharomyces cerevisiae, start, whi7

Procedia PDF Downloads 96
2 What Are the Problems in the Case of Analysis of Selenium by Inductively Coupled Plasma Mass Spectrometry in Food and Food Raw Materials?

Authors: Béla Kovács, Éva Bódi, Farzaneh Garousi, Szilvia Várallyay, Dávid Andrási

Abstract:

For analysis of elements in different food, feed and food raw material samples generally a flame atomic absorption spectrometer (FAAS), a graphite furnace atomic absorption spectrometer (GF-AAS), an inductively coupled plasma optical emission spectrometer (ICP-OES) and an inductively coupled plasma mass spectrometer (ICP-MS) are applied. All the analytical instruments have different physical and chemical interfering effects analysing food and food raw material samples. The smaller the concentration of an analyte and the larger the concentration of the matrix the larger the interfering effects. Nowadays, it is very important to analyse growingly smaller concentrations of elements. From the above analytical instruments generally the inductively coupled plasma mass spectrometer is capable of analysing the smallest concentration of elements. The applied ICP-MS instrument has Collision Cell Technology (CCT) also. Using CCT mode certain elements have better detection limits with 1-3 magnitudes comparing to a normal ICP-MS analytical method. The CCT mode has better detection limits mainly for analysis of selenium (arsenic, germanium, vanadium, and chromium). To elaborate an analytical method for selenium with an inductively coupled plasma mass spectrometer the most important interfering effects (problems) were evaluated: 1) isobaric elemental, 2) isobaric molecular, and 3) physical interferences. Analysing food and food raw material samples an other (new) interfering effect emerged in ICP-MS, namely the effect of various matrixes having different evaporation and nebulization effectiveness, moreover having different quantity of carbon content of food, feed and food raw material samples. In our research work the effect of different water-soluble compounds furthermore the effect of various quantity of carbon content (as sample matrix) were examined on changes of intensity of selenium. So finally we could find “opportunities” to decrease the error of selenium analysis. To analyse selenium in food, feed and food raw material samples, the most appropriate inductively coupled plasma mass spectrometer is a quadrupole instrument applying a collision cell technique (CCT). The extent of interfering effect of carbon content depends on the type of compounds. The carbon content significantly affects the measured concentration (intensities) of Se, which can be corrected using internal standard (arsenic or tellurium).

Keywords: selenium, ICP-MS, food, food raw material

Procedia PDF Downloads 429
1 Problems and Solutions in the Application of ICP-MS for Analysis of Trace Elements in Various Samples

Authors: Béla Kovács, Éva Bódi, Farzaneh Garousi, Szilvia Várallyay, Áron Soós, Xénia Vágó, Dávid Andrási

Abstract:

In agriculture for analysis of elements in different food and food raw materials, moreover environmental samples generally flame atomic absorption spectrometers (FAAS), graphite furnace atomic absorption spectrometers (GF-AAS), inductively coupled plasma optical emission spectrometers (ICP-OES) and inductively coupled plasma mass spectrometers (ICP-MS) are routinely applied. An inductively coupled plasma mass spectrometer (ICP-MS) is capable for analysis of 70-80 elements in multielemental mode, from 1-5 cm3 volume of a sample, moreover the detection limits of elements are in µg/kg-ng/kg (ppb-ppt) concentration range. All the analytical instruments have different physical and chemical interfering effects analysing the above types of samples. The smaller the concentration of an analyte and the larger the concentration of the matrix the larger the interfering effects. Nowadays there is very important to analyse growingly smaller concentrations of elements. From the above analytical instruments generally the inductively coupled plasma mass spectrometer is capable of analysing the smallest concentration of elements. The applied ICP-MS instrument has Collision Cell Technology (CCT) also. Using CCT mode certain elements have better (smaller) detection limits with 1-3 magnitudes comparing to a normal ICP-MS analytical method. The CCT mode has better detection limits mainly for analysis of selenium, arsenic, germanium, vanadium and chromium. To elaborate an analytical method for trace elements with an inductively coupled plasma mass spectrometer the most important interfering effects (problems) were evaluated: 1) Physical interferences; 2) Spectral interferences (elemental and molecular isobaric); 3) Effect of easily ionisable elements; 4) Memory interferences. Analysing food and food raw materials, moreover environmental samples an other (new) interfering effect emerged in ICP-MS, namely the effect of various matrixes having different evaporation and nebulization effectiveness, moreover having different quantity of carbon content of food and food raw materials, moreover environmental samples. In our research work the effect of different water-soluble compounds furthermore the effect of various quantity of carbon content (as sample matrix) were examined on changes of intensity of the applied elements. So finally we could find “opportunities” to decrease or eliminate the error of the analyses of applied elements (Cr, Co, Ni, Cu, Zn, Ge, As, Se, Mo, Cd, Sn, Sb, Te, Hg, Pb, Bi). To analyse these elements in the above samples, the most appropriate inductively coupled plasma mass spectrometer is a quadrupole instrument applying a collision cell technique (CCT). The extent of interfering effect of carbon content depends on the type of compounds. The carbon content significantly affects the measured concentration (intensities) of the above elements, which can be corrected using different internal standards.

Keywords: elements, environmental and food samples, ICP-MS, interference effects

Procedia PDF Downloads 395