Search results for: data quality filtering
29399 Predictive Maintenance: Machine Condition Real-Time Monitoring and Failure Prediction
Authors: Yan Zhang
Abstract:
Predictive maintenance is a technique to predict when an in-service machine will fail so that maintenance can be planned in advance. Analytics-driven predictive maintenance is gaining increasing attention in many industries such as manufacturing, utilities, aerospace, etc., along with the emerging demand of Internet of Things (IoT) applications and the maturity of technologies that support Big Data storage and processing. This study aims to build an end-to-end analytics solution that includes both real-time machine condition monitoring and machine learning based predictive analytics capabilities. The goal is to showcase a general predictive maintenance solution architecture, which suggests how the data generated from field machines can be collected, transmitted, stored, and analyzed. We use a publicly available aircraft engine run-to-failure dataset to illustrate the streaming analytics component and the batch failure prediction component. We outline the contributions of this study from four aspects. First, we compare the predictive maintenance problems from the view of the traditional reliability centered maintenance field, and from the view of the IoT applications. When evolving to the IoT era, predictive maintenance has shifted its focus from ensuring reliable machine operations to improve production/maintenance efficiency via any maintenance related tasks. It covers a variety of topics, including but not limited to: failure prediction, fault forecasting, failure detection and diagnosis, and recommendation of maintenance actions after failure. Second, we review the state-of-art technologies that enable a machine/device to transmit data all the way through the Cloud for storage and advanced analytics. These technologies vary drastically mainly based on the power source and functionality of the devices. For example, a consumer machine such as an elevator uses completely different data transmission protocols comparing to the sensor units in an environmental sensor network. The former may transfer data into the Cloud via WiFi directly. The latter usually uses radio communication inherent the network, and the data is stored in a staging data node before it can be transmitted into the Cloud when necessary. Third, we illustrate show to formulate a machine learning problem to predict machine fault/failures. By showing a step-by-step process of data labeling, feature engineering, model construction and evaluation, we share following experiences: (1) what are the specific data quality issues that have crucial impact on predictive maintenance use cases; (2) how to train and evaluate a model when training data contains inter-dependent records. Four, we review the tools available to build such a data pipeline that digests the data and produce insights. We show the tools we use including data injection, streaming data processing, machine learning model training, and the tool that coordinates/schedules different jobs. In addition, we show the visualization tool that creates rich data visualizations for both real-time insights and prediction results. To conclude, there are two key takeaways from this study. (1) It summarizes the landscape and challenges of predictive maintenance applications. (2) It takes an example in aerospace with publicly available data to illustrate each component in the proposed data pipeline and showcases how the solution can be deployed as a live demo.Keywords: Internet of Things, machine learning, predictive maintenance, streaming data
Procedia PDF Downloads 39029398 Data Analysis for Taxonomy Prediction and Annotation of 16S rRNA Gene Sequences from Metagenome Data
Authors: Suchithra V., Shreedhanya, Kavya Menon, Vidya Niranjan
Abstract:
Skin metagenomics has a wide range of applications with direct relevance to the health of the organism. It gives us insight to the diverse community of microorganisms (the microbiome) harbored on the skin. In the recent years, it has become increasingly apparent that the interaction between skin microbiome and the human body plays a prominent role in immune system development, cancer development, disease pathology, and many other biological implications. Next Generation Sequencing has led to faster and better understanding of environmental organisms and their mutual interactions. This project is studying the human skin microbiome of different individuals having varied skin conditions. Bacterial 16S rRNA data of skin microbiome is downloaded from SRA toolkit provided by NCBI to perform metagenomics analysis. Twelve samples are selected with two controls, and 3 different categories, i.e., sex (male/female), skin type (moist/intermittently moist/sebaceous) and occlusion (occluded/intermittently occluded/exposed). Quality of the data is increased using Cutadapt, and its analysis is done using FastQC. USearch, a tool used to analyze an NGS data, provides a suitable platform to obtain taxonomy classification and abundance of bacteria from the metagenome data. The statistical tool used for analyzing the USearch result is METAGENassist. The results revealed that the top three abundant organisms found were: Prevotella, Corynebacterium, and Anaerococcus. Prevotella is known to be an infectious bacterium found on wound, tooth cavity, etc. Corynebacterium and Anaerococcus are opportunist bacteria responsible for skin odor. This result infers that Prevotella thrives easily in sebaceous skin conditions. Therefore it is better to undergo intermittently occluded treatment such as applying ointments, creams, etc. to treat wound for sebaceous skin type. Exposing the wound should be avoided as it leads to an increase in Prevotella abundance. Moist skin type individuals can opt for occluded or intermittently occluded treatment as they have shown to decrease the abundance of bacteria during treatment.Keywords: bacterial 16S rRNA , next generation sequencing, skin metagenomics, skin microbiome, taxonomy
Procedia PDF Downloads 17629397 Filtering Momentum Life Cycles, Price Acceleration Signals and Trend Reversals for Stocks, Credit Derivatives and Bonds
Authors: Periklis Brakatsoulas
Abstract:
Recent empirical research shows a growing interest in investment decision-making under market anomalies that contradict the rational paradigm. Momentum is undoubtedly one of the most robust anomalies in the empirical asset pricing research and remains surprisingly lucrative ever since first documented. Although predominantly phenomena identified across equities, momentum premia are now evident across various asset classes. Yet few many attempts are made so far to provide traders a diversified portfolio of strategies across different assets and markets. Moreover, literature focuses on patterns from past returns rather than mechanisms to signal future price directions prior to momentum runs. The aim of this paper is to develop a diversified portfolio approach to price distortion signals using daily position data on stocks, credit derivatives, and bonds. An algorithm allocates assets periodically, and new investment tactics take over upon price momentum signals and across different ranking groups. We focus on momentum life cycles, trend reversals, and price acceleration signals. The main effort here concentrates on the density, time span and maturity of momentum phenomena to identify consistent patterns over time and measure the predictive power of buy-sell signals generated by these anomalies. To tackle this, we propose a two-stage modelling process. First, we generate forecasts on core macroeconomic drivers. Secondly, satellite models generate market risk forecasts using the core driver projections generated at the first stage as input. Moreover, using a combination of the ARFIMA and FIGARCH models, we examine the dependence of consecutive observations across time and portfolio assets since long memory behavior in volatilities of one market appears to trigger persistent volatility patterns across other markets. We believe that this is the first work that employs evidence of volatility transmissions among derivatives, equities, and bonds to identify momentum life cycle patterns.Keywords: forecasting, long memory, momentum, returns
Procedia PDF Downloads 10629396 Combat Capability Improvement Using Sleep Analysis
Authors: Gabriela Kloudova, Miloslav Stehlik, Peter Sos
Abstract:
The quality of sleep can affect combat performance where the vigilance, accuracy and reaction time are a decisive factor. In the present study, airborne and special units are measured on duty using actigraphy fingerprint scoring algorithm and QEEG (quantitative EEG). Actigraphic variables of interest will be: mean nightly sleep duration, mean napping duration, mean 24-h sleep duration, mean sleep latency, mean sleep maintenance efficiency, mean sleep fragmentation index, mean sleep onset time, mean sleep offset time and mean midpoint time. In an attempt to determine the individual somnotype of each subject, the data like sleep pattern, chronotype (morning and evening lateness), biological need for sleep (daytime and anytime sleepability) and trototype (daytime and anytime wakeability) will be extracted. Subsequently, a series of recommendations will be included in the training plan based on daily routine, timing of the day and night activities, duration of sleep and the number of sleeping blocks in a defined time. The aim of these modifications in the training plan is to reduce day-time sleepiness, improve vigilance, attention, accuracy, speed of the conducted tasks and to optimize energy supplies. Regular improvement of the training supposed to have long-term neurobiological consequences including neuronal activity changes measured by QEEG. Subsequently, that should enhance cognitive functioning in subjects assessed by the digital cognitive test batteries and improve their overall performance.Keywords: sleep quality, combat performance, actigraph, somnotype
Procedia PDF Downloads 17529395 Risks beyond Cyber in IoT Infrastructure and Services
Authors: Mattias Bergstrom
Abstract:
Significance of the Study: This research will provide new insights into the risks with digital embedded infrastructure. Through this research, we will analyze each risk and its potential negation strategies, especially for AI and autonomous automation. Moreover, the analysis that is presented in this paper will convey valuable information for future research that can create more stable, secure, and efficient autonomous systems. To learn and understand the risks, a large IoT system was envisioned, and risks with hardware, tampering, and cyberattacks were collected, researched, and evaluated to create a comprehensive understanding of the potential risks. Potential solutions have then been evaluated on an open source IoT hardware setup. This list shows the identified passive and active risks evaluated in the research. Passive Risks: (1) Hardware failures- Critical Systems relying on high rate data and data quality are growing; SCADA systems for infrastructure are good examples of such systems. (2) Hardware delivers erroneous data- Sensors break, and when they do so, they don’t always go silent; they can keep going, just that the data they deliver is garbage, and if that data is not filtered out, it becomes disruptive noise in the system. (3) Bad Hardware injection- Erroneous generated sensor data can be pumped into a system by malicious actors with the intent to create disruptive noise in critical systems. (4) Data gravity- The weight of the data collected will affect Data-Mobility. (5) Cost inhibitors- Running services that need huge centralized computing is cost inhibiting. Large complex AI can be extremely expensive to run. Active Risks: Denial of Service- It is one of the most simple attacks, where an attacker just overloads the system with bogus requests so that valid requests disappear in the noise. Malware- Malware can be anything from simple viruses to complex botnets created with specific goals, where the creator is stealing computer power and bandwidth from you to attack someone else. Ransomware- It is a kind of malware, but it is so different in its implementation that it is worth its own mention. The goal with these pieces of software is to encrypt your system so that it can only be unlocked with a key that is held for ransom. DNS spoofing- By spoofing DNS calls, valid requests and data dumps can be sent to bad destinations, where the data can be extracted for extortion or to corrupt and re-inject into a running system creating a data echo noise loop. After testing multiple potential solutions. We found that the most prominent solution to these risks was to use a Peer 2 Peer consensus algorithm over a blockchain to validate the data and behavior of the devices (sensors, storage, and computing) in the system. By the devices autonomously policing themselves for deviant behavior, all risks listed above can be negated. In conclusion, an Internet middleware that provides these features would be an easy and secure solution to any future autonomous IoT deployments. As it provides separation from the open Internet, at the same time, it is accessible over the blockchain keys.Keywords: IoT, security, infrastructure, SCADA, blockchain, AI
Procedia PDF Downloads 11129394 Teacher Education and Curriculum Innovation in Nigeria: Issues and Perspectives
Authors: Kenneth Uzochukwu Ezugwu
Abstract:
The quest for adequate teacher education is a serious task for the educational system in Nigeria because teachers are the major translators of education programmes in the classroom. The production of well trained teachers will enhance quality of the products of the school system. It is in this respect that the national policy on education posited that no educational system can rise above the quality of teachers. It is in the light of the above that this paper discusses and brought to the fore certain issues as the re-introduction of teacher training colleges, competitive entry requirement into teacher education and continuous on-the-job training as areas of needed innovation.Keywords: curriculum innovation, issues, perspectives, teacher education
Procedia PDF Downloads 60829393 Adoption of Big Data by Global Chemical Industries
Authors: Ashiff Khan, A. Seetharaman, Abhijit Dasgupta
Abstract:
The new era of big data (BD) is influencing chemical industries tremendously, providing several opportunities to reshape the way they operate and help them shift towards intelligent manufacturing. Given the availability of free software and the large amount of real-time data generated and stored in process plants, chemical industries are still in the early stages of big data adoption. The industry is just starting to realize the importance of the large amount of data it owns to make the right decisions and support its strategies. This article explores the importance of professional competencies and data science that influence BD in chemical industries to help it move towards intelligent manufacturing fast and reliable. This article utilizes a literature review and identifies potential applications in the chemical industry to move from conventional methods to a data-driven approach. The scope of this document is limited to the adoption of BD in chemical industries and the variables identified in this article. To achieve this objective, government, academia, and industry must work together to overcome all present and future challenges.Keywords: chemical engineering, big data analytics, industrial revolution, professional competence, data science
Procedia PDF Downloads 8929392 Response of Briquettes Application with Different Coating Materials on Yield and Quality of Cucumber [Cucumis sativus (L.)]
Authors: H. B. Torane, M. C. Kasture, S. S. Prabhudesai, P. B. Sanap, V. N. Palsande, J. J. Palkar
Abstract:
The present investigation entitled “Response of briquettes application with different coating materials on yield and quality of Cucumber [Cucumis sativus (L.)]” was conducted at Central Experiment Center, Wakawali during kharif season 2013. The field experiment was laid out in Factorial Randomized Block Design with three replicate. The four coating materials viz., Co – Non coating, C1 – Wax coating, C2 – Jaggary coating, and C3 – Tar coating was applied to Konkan Annapurna Briquette along with three sub treatments of application time i.e B1 – ½ at sowing, B2 - ½ at sowing and ½ at 30 days after sowing and B3 - 1/3 at sowing, 1/3 at 30 days after sowing and 1/3 at 60 days after sowing. It was observed that the application of tar coated Konkan Annapurna Briquettes (KAB) in three times @1/3 quantity of briquettes at sowing time, 1/3 quantity of briquettes at 30 days after sowing and 1/3 quantity of briquettes at 60 days after sowing was found promising to enhancing the cucumber fruit yield, higher vine length, number of fruits vine-1, girth of fruit, length of fruit. It was also observed that the quality of the cucumber fruit increased in terms of ascorbic acid. UB-Godavari forms of briquettes .i.e. are promising source of N, P2O5 and K2O fertilizers as compared to straight fertilizers for enhancing green cucumber fruit yield of Sheetal variety of cucumber in lateritic soil. Amongst the three types of coated briquettes, the tar coated briquettes application was found to be superior for increasing cucumber fruit yield applied in three times @1/3 quantity of briquettes at sowing time, 1/3 quantity of briquettes at 30 days after sowing and 1/3 quantity of briquettes at 60 days after sowing @ 5 briquettes per plant at an interval of 30 days after sowing.Keywords: briquettes, coating, yield, tar, wax and quality
Procedia PDF Downloads 51929391 Synchrotron Based Techniques for the Characterization of Chemical Vapour Deposition Overgrowth Diamond Layers on High Pressure, High Temperature Substrates
Authors: T. N. Tran Thi, J. Morse, C. Detlefs, P. K. Cook, C. Yıldırım, A. C. Jakobsen, T. Zhou, J. Hartwig, V. Zurbig, D. Caliste, B. Fernandez, D. Eon, O. Loto, M. L. Hicks, A. Pakpour-Tabrizi, J. Baruchel
Abstract:
The ability to grow boron-doped diamond epilayers of high crystalline quality is a prerequisite for the fabrication of diamond power electronic devices, in particular high voltage diodes and metal-oxide-semiconductor (MOS) transistors. Boron and intrinsic diamond layers are homoepitaxially overgrown by microwave assisted chemical vapour deposition (MWCVD) on single crystal high pressure, high temperature (HPHT) grown bulk diamond substrates. Various epilayer thicknesses were grown, with dopant concentrations ranging from 1021 atom/cm³ at nanometer thickness in the case of 'delta doping', up 1016 atom/cm³ and 50µm thickness or high electric field drift regions. The crystalline quality of these overgrown layers as regards defects, strain, distortion… is critical for the device performance through its relation to the final electrical properties (Hall mobility, breakdown voltage...). In addition to the optimization of the epilayer growth conditions in the MWCVD reactor, other important questions related to the crystalline quality of the overgrown layer(s) are: 1) what is the dependence on the bulk quality and surface preparation methods of the HPHT diamond substrate? 2) how do defects already present in the substrate crystal propagate into the overgrown layer; 3) what types of new defects are created during overgrowth, what are their growth mechanisms, and how can these defects be avoided? 4) how can we relate in a quantitative manner parameters related to the measured crystalline quality of the boron doped layer to the electronic properties of final processed devices? We describe synchrotron-based techniques developed to address these questions. These techniques allow the visualization of local defects and crystal distortion which complements the data obtained by other well-established analysis methods such as AFM, SIMS, Hall conductivity…. We have used Grazing Incidence X-ray Diffraction (GIXRD) at the ID01 beamline of the ESRF to study lattice parameters and damage (strain, tilt and mosaic spread) both in diamond substrate near surface layers and in thick (10–50 µm) overgrown boron doped diamond epi-layers. Micro- and nano-section topography have been carried out at both the BM05 and ID06-ESRF) beamlines using rocking curve imaging techniques to study defects which have propagated from the substrate into the overgrown layer(s) and their influence on final electronic device performance. These studies were performed using various commercially sourced HPHT grown diamond substrates, with the MWCVD overgrowth carried out at the Fraunhofer IAF-Germany. The synchrotron results are in good agreement with low-temperature (5°K) cathodoluminescence spectroscopy carried out on the grown samples using an Inspect F5O FESEM fitted with an IHR spectrometer.Keywords: synchrotron X-ray diffaction, crystalline quality, defects, diamond overgrowth, rocking curve imaging
Procedia PDF Downloads 26629390 Near Infrared Spectrometry to Determine the Quality of Milk, Experimental Design Setup and Chemometrics: Review
Authors: Meghana Shankara, Priyadarshini Natarajan
Abstract:
Infrared (IR) spectroscopy has revolutionized the way we look at materials around us. Unraveling the pattern in the molecular spectra of materials to analyze the composition and properties of it has been one of the most interesting challenges in modern science. Applications of the IR spectrometry are numerous in the field’s pharmaceuticals, health, food and nutrition, oils, agriculture, construction, polymers, beverage, fabrics and much more limited only by the curiosity of the people. Near Infrared (NIR) spectrometry is applied robustly in analyzing the solids and liquid substances because of its non-destructive analysis method. In this paper, we have reviewed the application of NIR spectrometry in milk quality analysis and have presented the modes of measurement applied in NIRS measurement setup, Design of Experiment (DoE), classification/quantification algorithms used in the case of milk composition prediction like Fat%, Protein%, Lactose%, Solids Not Fat (SNF%) along with different approaches for adulterant identification. We have also discussed the important NIR ranges for the chosen milk parameters. The performance metrics used in the comparison of the various Chemometric approaches include Root Mean Square Error (RMSE), R^2, slope, offset, sensitivity, specificity and accuracyKeywords: chemometrics, design of experiment, milk quality analysis, NIRS measurement modes
Procedia PDF Downloads 27329389 Enhancing Halal Food Integrity Through Whistleblowing Practices: Implementing Halal And Toyyib Principles
Authors: Norazilawati Binti Md Dahlal, Nabiila Binti Mat Yusoff, Anis Najiha Binti Ahmad
Abstract:
With the increasing demand for halal products, there is a growing emphasis on ensuring their quality and adherence to halal standards. However, the vulnerability of halal goods to fraud and adulteration poses a significant challenge to the integrity of the halal industry. Whistleblowers play a pivotal role in safeguarding the safety and integrity of halal food by exposing wrongdoings, misconduct, and fraudulent practices. This study explores the implementation of whistleblowing practices aligned with halal and toyyib principles to effectively address halal food fraud issues. Whistleblowing is defined as the act of disclosing information about misconduct, immorality, or unlawful activities to relevant authorities or the public. Although whistleblowing is universally recognized as beneficial, it exposes whistleblowers to substantial risks, including career setbacks, reputation damage, and personal safety threats. Despite legal protections, whistleblowers often face retaliation and hesitancy to come forward. By integrating the principles of halal and toyyib, which encompass the physical and spiritual as well as material and supernatural elements, effective whistleblowing practices can be developed. These principles include the physical characteristic of the product in accordance with Shari’ah law (P1); products that are sourced ethically and responsibly (P2); Products that meet high standard of quality and safety (P3); functioning as servant and caliph of Allah in managing according to Allah's commands and prohibitions (P4); not excessively wasteful or extravagant (P5); positive moral and spiritual implications associated with the product (P6); and aimed at achieving prosperity in both this life and the Hereafter (P7). Employing a quantitative research approach, this study examines Islamic primary data sources and secondary data sources to investigate the prevalence and impact of whistleblowing in the halal industry. By analyzing the principles of halal and toyyib and exploring the importance of whistleblowing effective whistleblowing practices, this research aims to enhance our understanding of promoting accountability and justice within the halal industry from an Islamic perspective.Keywords: whistleblowing, halal and toyyib, food fraud, halal integrity, Islamic practices
Procedia PDF Downloads 14029388 Secure Multiparty Computations for Privacy Preserving Classifiers
Authors: M. Sumana, K. S. Hareesha
Abstract:
Secure computations are essential while performing privacy preserving data mining. Distributed privacy preserving data mining involve two to more sites that cannot pool in their data to a third party due to the violation of law regarding the individual. Hence in order to model the private data without compromising privacy and information loss, secure multiparty computations are used. Secure computations of product, mean, variance, dot product, sigmoid function using the additive and multiplicative homomorphic property is discussed. The computations are performed on vertically partitioned data with a single site holding the class value.Keywords: homomorphic property, secure product, secure mean and variance, secure dot product, vertically partitioned data
Procedia PDF Downloads 41529387 Enabling Self-Care and Shared Decision Making for People Living with Dementia
Authors: Jonathan Turner, Julie Doyle, Laura O’Philbin, Dympna O’Sullivan
Abstract:
People living with dementia should be at the centre of decision-making regarding goals for daily living. These goals include basic activities (dressing, hygiene, and mobility), advanced activities (finances, transportation, and shopping), and meaningful activities that promote well-being (pastimes and intellectual pursuits). However, there is limited involvement of people living with dementia in the design of technology to support their goals. A project is described that is co-designing intelligent computer-based support for, and with, people affected by dementia and their carers. The technology will support self-management, empower participation in shared decision-making with carers and help people living with dementia remain healthy and independent in their homes for longer. It includes information from the patient’s care plan, which documents medications, contacts, and the patient's wishes on end-of-life care. Importantly for this work, the plan can outline activities that should be maintained or worked towards, such as exercise or social contact. The authors discuss how to integrate care goal information from such a care plan with data collected from passive sensors in the patient’s home in order to deliver individualized planning and interventions for persons with dementia. A number of scientific challenges are addressed: First, to co-design with dementia patients and their carers computerized support for shared decision-making about their care while allowing the patient to share the care plan. Second, to develop a new and open monitoring framework with which to configure sensor technologies to collect data about whether goals and actions specified for a person in their care plan are being achieved. This is developed top-down by associating care quality types and metrics elicited from the co-design activities with types of data that can be collected within the home, from passive and active sensors, and from the patient’s feedback collected through a simple co-designed interface. These activities and data will be mapped to appropriate sensors and technological infrastructure with which to collect the data. Third, the application of machine learning models to analyze data collected via the sensing devices in order to investigate whether and to what extent activities outlined via the care plan are being achieved. The models will capture longitudinal data to track disease progression over time; as the disease progresses and captured data show that activities outlined in the care plan are not being achieved, the care plan may recommend alternative activities. Disease progression may also require care changes, and a data-driven approach can capture changes in a condition more quickly and allow care plans to evolve and be updated.Keywords: care goals, decision-making, dementia, self-care, sensors
Procedia PDF Downloads 17829386 A Review: Carotenoids a Biologically Important Bioactive Compound
Authors: Aarti Singh, Anees Ahmad
Abstract:
Carotenoids comprise a group of isoprenoid pigments. Carotenes, xanthophylls and their derivatives have been found to play an important role in all living beings through foods, neutraceuticals and pharmaceuticals. α-carotene, β-carotene and β-cryptoxanthin play a vital role in humans to provide vitamin A source for the growth, development and proper functioning of immune system and vision. They are very crucial for plants and humans as they protect from photooxidative damage and are excellent antioxidants quenching singlet molecular oxygen and peroxyl radicals. Diet including more intake of carotenoids results in reduced threat of various chronic diseases such as cancer (lung, breast, prostate, colorectal and ovarian cancers) and coronary heart diseases. The blue light filtering efficiency of the carotenoids in liposomes have been reported to be maximum in lutein followed by zeaxanthin, β-carotene and lycopene. Lycopene play a vital role for the protection from CVD. Lycopene in serum is directly related to reduced risk of osteoporosis in postmenopausal women. Carotenoids have the major role in the treatment of skin disorders. There is a need to identify and isolate novel carotenoids from diverse natural sources for human health benefits.Keywords: antioxidants, carotenoids, neutraceuticals, osteoporosis, pharmaceuticals
Procedia PDF Downloads 36529385 Libido and Semen Quality Characteristics of Post-Pubertal Rabbit Bucks Fed Ginger Rhizome Meal Based Diets
Authors: I. P. Ogbuewu, I. F. Etuk, V. U. Odoemelam, I. C. Okoli, M. U. Iloeje
Abstract:
The effect of dietary ginger rhizome meal on libido and semen characteristics of post-pubertal rabbit bucks was investigated in an experiment that lasted for 12 weeks. Thirty-six post-pubertal bucks were randomly assigned to 4 dietary groups of 9 rabbits each in a completely randomized design. Four experimental diets were formulated to contain ginger rhizome meal at 0 g/kg feed (BT0), 5g/kg feed (BT5), 10 g/kg feed (BT10), and 15g/kg feed (BT15) were fed ad libitum to the experimental animals. Results revealed that semen colour changed from cream milky to milky. Data on semen pH and sperm concentration were similar (p>0.05) among the dietary groups. Semen volume for the bucks in BT0 (0.64 mL) and BT5 (0.60 mL) groups were significantly (p<0.05) higher than those in BT10 (0.44 mL) and BT15 (0.46 mL) groups. Total spermatozoa concentration value was significantly (p<0.05) higher in BT0 and BT5 groups than those in BT10 and BT15 groups. Sperm motility and percent live sperm declined (p<0.05) progressively among the treatment groups. Percent dead sperm were significantly (p<0.05) lower for bucks in BT0 group than in BT10 and BT15 groups. Reaction time had a dose-dependent increase; however, the observed difference was not significant (p>0.05). These results indicate that the inclusion of ginger rhizome meal at 5-15g per kg feed in ration for post-pubertal rabbit bucks could cause mild depressive effect on semen production and quality.Keywords: rabbits, semen, libido, ginger
Procedia PDF Downloads 57129384 Leukocyte Detection Using Image Stitching and Color Overlapping Windows
Authors: Lina, Arlends Chris, Bagus Mulyawan, Agus B. Dharmawan
Abstract:
Blood cell analysis plays a significant role in the diagnosis of human health. As an alternative to the traditional technique conducted by laboratory technicians, this paper presents an automatic white blood cell (leukocyte) detection system using Image Stitching and Color Overlapping Windows. The advantage of this method is to present a detection technique of white blood cells that are robust to imperfect shapes of blood cells with various image qualities. The input for this application is images from a microscope-slide translation video. The preprocessing stage is performed by stitching the input images. First, the overlapping parts of the images are determined, then stitching and blending processes of two input images are performed. Next, the Color Overlapping Windows is performed for white blood cell detection which consists of color filtering, window candidate checking, window marking, finds window overlaps, and window cropping processes. Experimental results show that this method could achieve an average of 82.12% detection accuracy of the leukocyte images.Keywords: color overlapping windows, image stitching, leukocyte detection, white blood cell detection
Procedia PDF Downloads 31429383 Consumer Behavior and Marketing Mixed Factor Effect on Consumer Decision Making for Independent Movies Presented in Lido Cinema
Authors: Pongsawee Supanonth
Abstract:
This study aims to investigate the consumer behavior and marketing mixed factor affect on consumer decision making for independent movies presented in Lido cinema. The research method will use quantitative research, data was collected by questionnaires distributed to the audience in the Lido cinema for 400 sample by accidental sampling technique. Data was analyzed by descriptive statistic including percentage, mean, standard deviation and inferential statistic including independent t-test for hypothesis testing. The results showed that marketing mixed factors affecting consumer decision-making for Independent movies presented in Lido cinema by gender as different as less than the 0.05 significance level, it was found that the kind of movie ,quality of theater ,price of ticket, facility of watching movies, staff services and promotion of Lido cinema respectively had a vital influence on their attention and response which makes the advertisement more attractive is in harmony with the research hypotheses also.Keywords: consumer behavior, marketing mixed factor, resonance, consumer decision making, Lido cinema
Procedia PDF Downloads 31529382 Enhance Indoor Environment in Buildings and Its Effect on Improving Occupant's Health
Authors: Imad M. Assali
Abstract:
Recently, the world main problem is a global warming and climate change affecting both outdoor and indoor environments, especially the air quality (AQ) as a result of vast migration of people from rural areas to urban areas. Therefore, cities became more crowded and denser from an irregular population increase, along with increasing urbanization caused many problems for the environment such as increasing the land prices, changes in life style, and the new buildings are not adapted to the climate producing uncomfortable and unhealthy indoor building conditions. As interior environments are the places that create the most intimate relationship with the user. Consequently, the indoor environment quality (IEQ) for buildings became uncomfortable and unhealthy for its occupants. The symptoms commonly associated with poor indoor environment such as itchy, headache, fatigue, and respiratory complaints such as cough and congestion, etc. The symptoms tend to improve over time or even disappear when people are away from the building. Therefore, designing a healthy indoor environment to fulfill human needs is the main concern for architects and interior designer. However, this research explores how occupant expectations and environmental attitudes may influence occupant health and satisfaction within the context of the indoor environment. In doing so, it reviews and contributes to the methods and tools used to evaluate only the indoor environment quality (IEQ) components of building performance. Its main aim is to review the literature on indoor human comfort. This is followed by a review of previous papers published related to human comfort. Finally, this paper will provide possible approaches in design level of healthy buildings.Keywords: sustainable building, indoor environment quality (IEQ), occupant's health, active system, sick building syndrome (SBS)
Procedia PDF Downloads 36929381 Development of pm2.5 Forecasting System in Seoul, South Korea Using Chemical Transport Modeling and ConvLSTM-DNN
Authors: Ji-Seok Koo, Hee‑Yong Kwon, Hui-Young Yun, Kyung-Hui Wang, Youn-Seo Koo
Abstract:
This paper presents a forecasting system for PM2.5 levels in Seoul, South Korea, leveraging a combination of chemical transport modeling and ConvLSTM-DNN machine learning technology. Exposure to PM2.5 has known detrimental impacts on public health, making its prediction crucial for establishing preventive measures. Existing forecasting models, like the Community Multiscale Air Quality (CMAQ) and Weather Research and Forecasting (WRF), are hindered by their reliance on uncertain input data, such as anthropogenic emissions and meteorological patterns, as well as certain intrinsic model limitations. The system we've developed specifically addresses these issues by integrating machine learning and using carefully selected input features that account for local and distant sources of PM2.5. In South Korea, the PM2.5 concentration is greatly influenced by both local emissions and long-range transport from China, and our model effectively captures these spatial and temporal dynamics. Our PM2.5 prediction system combines the strengths of advanced hybrid machine learning algorithms, convLSTM and DNN, to improve upon the limitations of the traditional CMAQ model. Data used in the system include forecasted information from CMAQ and WRF models, along with actual PM2.5 concentration and weather variable data from monitoring stations in China and South Korea. The system was implemented specifically for Seoul's PM2.5 forecasting.Keywords: PM2.5 forecast, machine learning, convLSTM, DNN
Procedia PDF Downloads 6029380 Research on Quality Assurance in African Higher Education: A Bibliometric Mapping from 1999 to 2019
Authors: Luís M. João, Patrício Langa
Abstract:
The article reviews the literature on quality assurance (QA) in African higher education studies (HES) conducted through a bibliometric mapping of published papers between 1999 and 2019. Specifically, the article highlights the nuances of knowledge production in four scientific databases: Scopus, Web of Science (WoS), African Journal Online (AJOL), and Google Scholar. The analysis included 531 papers, of which 127 are from Scopus, 30 are from Web of Science, 85 are from African Journal Online, and 259 are from Google Scholar. In essence, 284 authors wrote these papers from 231 institutions and 69 different countries (i.e., Africa=54 and outside Africa=15). Results indicate the existing knowledge. This analysis allows the readers to understand the growth and development of the field during the two-decade period, identify key contributors, and observe potential trends or gaps in the research. The paper employs bibliometric mapping as its primary analytical lens. By utilizing this method, the study quantitatively assesses the publications related to QA in African HES, helping to identify patterns, collaboration networks, and disparities in research output. The bibliometric approach allows for a systematic and objective analysis of large datasets, offering a comprehensive view of the knowledge production in the field. Furthermore, the study highlights the lack of shared resources available to enhance quality in higher education institutions (HEIs) in Africa. This finding underscores the importance of promoting collaborative research efforts, knowledge exchange, and capacity building within the region to improve the overall quality of higher education. The paper argues that despite the growing quantity of QA research in African higher education, there are challenges related to citation impact and access to high-impact publication avenues for African researchers. It emphasises the need to promote collaborative research and resource-sharing to enhance the quality of HEIs in Africa. The analytical lenses of bibliometric mapping and the examination of publication players' scenarios contribute to a comprehensive understanding of the field and its implications for African higher education.Keywords: Africa, bibliometric research, higher education studies, quality assurance, scientific database, systematic review
Procedia PDF Downloads 4829379 Harmonics and Flicker Levels at Substation
Authors: Ali Borhani Manesh, Sirus Mohammadi
Abstract:
Harmonic distortion is caused by nonlinear devices in the power system. A nonlinear device is one in which the current is not proportional to the applied voltage. Harmonic distortion is present to some degree on all power systems. Proactive monitoring of power quality disturbance levels by electricity utilities is vital to allow cost-effective mitigation when disturbances are perceived to be approaching planning levels and also to protect the security of customer installations. Ensuring that disturbance levels are within limits at the HV and EHV points of supply of the network is essential if satisfactory levels downstream are to be maintained. This paper presents discussion on a power quality monitoring campaign performed at the sub-transmission point of supply of a distribution network with the objective of benchmarking background disturbance levels prior to modifications to the substation and to ensure emissions from HV customers and the downstream MV networks are within acceptable levels. Some discussion on the difficulties involved in such a study is presented. This paper presents a survey of voltage and current harmonic distortion levels at transmission system in Kohgiloye and Boyrahmad. The effects of harmonics on capacitors and power transformers are discussed.Keywords: power quality, harmonics, flicker, measurement, substation
Procedia PDF Downloads 70029378 Analysis of Socio-Economics of Tuna Fisheries Management (Thunnus Albacares Marcellus Decapterus) in Makassar Waters Strait and Its Effect on Human Health and Policy Implications in Central Sulawesi-Indonesia
Authors: Siti Rahmawati
Abstract:
Indonesia has had long period of monetary economic crisis and it is followed by an upward trend in the price of fuel oil. This situation impacts all aspects of tuna fishermen community. For instance, the basic needs of fishing communities increase and the lower purchasing power then lead to economic and social instability as well as the health of fishermen household. To understand this AHP method is applied to acknowledge the model of tuna fisheries management priorities and cold chain marketing channel and the utilization levels that impact on human health. The study is designed as a development research with the number of 180 respondents. The data were analyzed by Analytical Hierarchy Process (AHP) method. The development of tuna fishery business can improve productivity of production with economic empowerment activities for coastal communities, improving the competitiveness of products, developing fish processing centers and provide internal capital for the development of optimal fishery business. From economic aspects, fishery business is more attracting because the benefit cost ratio of 2.86. This means that for 10 years, the economic life of this project can work well as B/C> 1 and therefore the rate of investment is economically viable. From the health aspects, tuna can reduce the risk of dying from heart disease by 50%, because tuna contain selenium in the human body. The consumption of 100 g of tuna meet 52.9% of the selenium in the body and activating the antioxidant enzyme glutathione peroxidaxe which can protect the body from free radicals and stimulate various cancers. The results of the analytic hierarchy process that the quality of tuna products is the top priority for export quality as well as quality control in order to compete in the global market. The implementation of the policy can increase the income of fishermen and reduce the poverty of fishermen households and have impact on the human health whose has high risk of disease.Keywords: management of tuna, social, economic, health
Procedia PDF Downloads 31929377 Development of a Multi-User Country Specific Food Composition Table for Malawi
Authors: Averalda van Graan, Joelaine Chetty, Malory Links, Agness Mwangwela, Sitilitha Masangwi, Dalitso Chimwala, Shiban Ghosh, Elizabeth Marino-Costello
Abstract:
Food composition data is becoming increasingly important as dealing with food insecurity and malnutrition in its persistent form of under-nutrition is now coupled with increasing over-nutrition and its related ailments in the developing world, of which Malawi is not spared. In the absence of a food composition database (FCDB) inherent to our dietary patterns, efforts were made to develop a country-specific FCDB for nutrition practice, research, and programming. The main objective was to develop a multi-user, country-specific food composition database, and table from existing published and unpublished scientific literature. A multi-phased approach guided by the project framework was employed. Phase 1 comprised a scoping mission to assess the nutrition landscape for compilation activities. Phase 2 involved training of a compiler and data collection from various sources, primarily; institutional libraries, online databases, and food industry nutrient data. Phase 3 subsumed evaluation and compilation of data using FAO and IN FOODS standards and guidelines. Phase 4 concluded the process with quality assurance. 316 Malawian food items categorized into eight food groups for 42 components were captured. The majority were from the baby food group (27%), followed by a staple (22%) and animal (22%) food group. Fats and oils consisted the least number of food items (2%), followed by fruits (6%). Proximate values are well represented; however, the percent missing data is huge for some components, including Se 68%, I 75%, Vitamin A 42%, and lipid profile; saturated fat 53%, mono-saturated fat 59%, poly-saturated fat 59% and cholesterol 56%. A multi-phased approach following the project framework led to the development of the first Malawian FCDB and table. The table reflects inherent Malawian dietary patterns and nutritional concerns. The FCDB can be used by various professionals in nutrition and health. Rising over-nutrition, NCD, and changing diets challenge us for nutrient profiles of processed foods and complete lipid profiles.Keywords: analytical data, dietary pattern, food composition data, multi-phased approach
Procedia PDF Downloads 9829376 Association of Maternal Diet Quality Indices and Dietary Patterns during Lactation and the Growth of Exclusive Breastfed Infant
Authors: Leila Azadbakht, Maedeh Moradi, Mohammad Reza Merasi, Farzaneh Jahangir
Abstract:
Maternal dietary intake during lactation might affect the growth rate of an exclusive breastfed infant. The present study was conducted to evaluate the effect of maternal dietary patterns and quality during lactation on the growth of the exclusive breastfed infant. Methods: 484 healthy lactating mothers with their infant were enrolled in this study. Only exclusive breastfed infants were included in this study which was conducted in Iran. Dietary intake of lactating mothers was assessed using a validated and reliable semi-quantitative food frequency questionnaire. Diet quality indices such as alternative Healthy eating index (HEI), Dietary energy density (DED), and adherence to Mediterranean dietary pattern score, Nordic and dietary approaches to stop hypertension (DASH) eating pattern were created. Anthropometric features of infant (weight, height, and head circumference) were recorded at birth, two and four months. Results: Weight, length, weight for height and head circumference of infants at two months and four months age were mostly in the normal range among those that mothers adhered more to the HEI in lactation period (normal weight: 61%; normal height: 59%). The prevalence of stunting at four months of age among those whose mothers adhered more to the HEI was 31% lower than those with the least adherence to HEI. Mothers in the top tertiles of HEI score had the lowest frequency of having underweight infants (18% vs. 33%; P=0.03). Odds ratio of being overweight or obese at four months age was the lowest among those infants whose mothers adhered more to the HEI (OR: 0.67 vs 0.91; Ptrend=0.03). However, there was not any significant association between adherence of mothers to Mediterranean diet as well as DASH diet and Nordic eating pattern and the growth of infants (none of weight, height or head circumference). Infant weight, length, weight for height and head circumference at two months and four months did not show significant differences among different tertile categories of mothers’ DED. Conclusions: Higher diet quality indices and more adherence of lactating mother to HEI (as an indicator of diet quality) may be associated with better growth indices of the breastfed infant. However, it seems that DED of the lactating mother does not affect the growth of the breastfed infant. Adherence to the different dietary patterns such as Mediterranean, DASH or Nordic among mothers had no different effect on the growth indices of the infants. However, higher diet quality indices and more adherence of lactating mother to HEI may be associated with better growth indices of the breastfed infant. Breastfeeding is a complete way that is not affected much by the dietary patterns of the mother. However, better diet quality might be associated with better growth.Keywords: breastfeeding, growth, infant, maternal diet
Procedia PDF Downloads 21329375 An Exploration of the Quality of Primary Caregiving Relationships between Adolescents Orphaned through Acquired Immune Deficiency Syndrome and Grandmothers, Based on the Narratives of Stakeholders
Authors: Mmapula Petunia Tsweleng
Abstract:
This qualitative study presents an exploration and findings thereof the quality of primary caregiving relationships between adolescents orphaned through Acquired Immune Deficiency Syndrome (AIDS) and their grandmothers. This exploration was based on in-depth narratives of 6 stakeholders who provided community-based psychosocial support services to children and families affected by AIDS. The narratives show that grandmothers provided high-quality parental care and support to the orphans. Furthermore, stakeholders categorised grandmother caregiving as genuine. Findings also show that the orphans thrived emotionally, socially, and cognitively and performed well academically. However, it was also identified that grandmothers’ caregiving had elements of overprotectiveness as well as susceptibility to manipulation -which appeared to be a threat to the positive development of the orphans. Relevant interventions, with a special focus on strengthening grandmother caregiving, are needed. Special attention should be on equipping grandmothers with a better understanding of adolescent behaviours and abilities to provide appropriate monitoring and supervision.Keywords: adolescent orphans, AIDS, caregiving relationships, grandmothers
Procedia PDF Downloads 7429374 Hybrid Wavelet-Adaptive Neuro-Fuzzy Inference System Model for a Greenhouse Energy Demand Prediction
Authors: Azzedine Hamza, Chouaib Chakour, Messaoud Ramdani
Abstract:
Energy demand prediction plays a crucial role in achieving next-generation power systems for agricultural greenhouses. As a result, high prediction quality is required for efficient smart grid management and therefore low-cost energy consumption. The aim of this paper is to investigate the effectiveness of a hybrid data-driven model in day-ahead energy demand prediction. The proposed model consists of Discrete Wavelet Transform (DWT), and Adaptive Neuro-Fuzzy Inference System (ANFIS). The DWT is employed to decompose the original signal in a set of subseries and then an ANFIS is used to generate the forecast for each subseries. The proposed hybrid method (DWT-ANFIS) was evaluated using a greenhouse energy demand data for a week and compared with ANFIS. The performances of the different models were evaluated by comparing the corresponding values of Mean Absolute Percentage Error (MAPE). It was demonstrated that discret wavelet transform can improve agricultural greenhouse energy demand modeling.Keywords: wavelet transform, ANFIS, energy consumption prediction, greenhouse
Procedia PDF Downloads 9329373 Application of Nonlinear Model to Optimize the Coagulant Dose in Drinking Water Treatment
Authors: M. Derraz, M.Farhaoui
Abstract:
In the water treatment processes, the determination of the optimal dose of the coagulant is an issue of particular concern. Coagulant dosing is correlated to raw water quality which depends on some parameters (turbidity, ph, temperature, conductivity…). The objective of this study is to provide water treatment operators with a tool that enables to predict and replace, sometimes, the manual method (jar testing) used in this plant to predict the optimum coagulant dose. The model is constructed using actual process data for a water treatment plant located in the middle of Morocco (Meknes).Keywords: coagulation process, aluminum sulfate, model, coagulant dose
Procedia PDF Downloads 28129372 Primary Health Care Vital Signs Profile in Malaysia: Challenges and Opportunities
Authors: Rachel Koshy, Nazrila Hairizan Bt. Nasir, Samsiah Bt. Awang, Kamaliah Bt. Mohamad Noh
Abstract:
Malaysia collaborated as a ‘trailblazer’ country with PHCPI (Primary Health Care Performance Initiative) to populate the Primary Health Care (PHC) Vital Signs Profile (VSP) for the country. The PHC VSP provides an innovative snapshot of the primary health care system's performance. Four domains were assessed: system financing, system capacity, system performance, and system equity, and completed in 2019. There were two phases using a mixed method study design. The first phase involved a quantitative study, utilising existing secondary data from national and international sources. In the case of unavailability of data for any indicators, comparable alternative indicators were used. The second phase was a mixed quantitative-qualitative approach to measure the functional capacity based on governance and leadership, population health needs, inputs, population health management, and facility organisation and management. PHC spending constituted 35% of overall health spending in Malaysia, with a per capita PHC spending of $152. The capacity domain was strong in the three subdomains of governance and leadership, information system, and funds management. The two subdomains of drugs & supplies and facility organisation & management had low scores, but the lowest score was in empanelment of the population under the population health management. The PHC system performed with an access index of 98%, quality index of 84%, and service coverage of 62%. In the equity domain, there was little fluctuation in the coverage of reproductive, maternal, newborn, and child health services by mother’s level of education and under-five child mortality between urban and rural areas. The public sector was stronger in the capacity domain as compared to the private sector. This is due to the different financing, organisational structures, and service delivery mechanism. The VSP has identified areas for improvement in the effort to provide high-quality PHC for the population. The gaps in PHC can be addressed through the system approach and the positioning of public and private primary health care delivery systems.Keywords: primary health care, health system, system domains, vital signs profile
Procedia PDF Downloads 13629371 Identification of Superior Cowpea Mutant Genotypes, Their Adaptability, and Stability Under South African Conditions
Authors: M. Ntswane, N. Mbuma, M. Labuschagne, A. Mofokeng, M. Rantso
Abstract:
Cowpea is an essential legume for the nutrition and health of millions of people in different regions. The production and productivity of the crop are very limited in South Africa due to a lack of adapted and stable genotypes. The improvement of nutritional quality is made possible by manipulating the genes of diverse cowpea genotypes available around the world. Assessing the adaptability and stability of the cowpea mutant genotypes for yield and nutritional quality requires examining them in different environments. The objective of the study was to determine the adaptability and stability of cowpea mutant genotypes under South African conditions and to identify the superior genotypes that combine grain yield components, antioxidants, and nutritional quality. Thirty-one cowpea genotypes were obtained from the Agricultural Research Council grain crops (ARC-GC) and were planted in Glen, Mafikeng, Polokwane, Potchefstroom, Taung, and Vaalharts during the 2021/22 summer cropping season. Significant genotype by location interactions indicated the possibility of genetic improvement of these traits. The genotype plus genotype by environment indicated broad adaptability and stability of mutant genotypes. The principal component analysis identified the association of the genotypes with the traits. Phenotypic correlation analysis showed that Zn and protein content were significant and positively correlated and suggested the possibility of indirect selection of these traits. Results from this study could be used to help plant breeders in making informed decisions and developing nutritionally improved cowpea genotypes with the aim of addressing the challenges of poor nutritional quality.Keywords: cowpea seeds, adaptability, stability, mineral elements, protein content
Procedia PDF Downloads 11929370 Real-Time Spatial Mapping of Metal Contamination in Environmental Waters for Sustainable Ecological Monitoring Using a Portable X-Ray Fluorescence Device
Authors: Mikhail Sandzhiev
Abstract:
The monitoring of metal pollution in environmental waters is crucial for the protection of ecosystems, human health and agricultural activities. Traditional laboratory-based metal analysis methods are time-consuming and expensive, which often leads to delays in the availability of information. This study presents an approach to real-time water quality monitoring using portable X-ray fluorescence (p-XRF) technology coupled with geographic information systems (GIS). Using a custom Python script, p-XRF data is processed and formatted into a GIS-compatible format, facilitating spatial visualization of metal concentrations in ǪGIS. Field-usable filters, especially bisphosphonate-functionalized thermally carbonized porous silicon (BP-TCPSi), preformed metals such as Mn, Ni, Cu, Zn, and Pb allow direct detection in the field by using p-XRF. Key objectives include robust data collection, spatial visualization and validation processes to ensure accuracy and efficiency. This provides quick and efficient insights into metal contamination trends and allows proactive decision-making.Keywords: metal concentrations, predictive mapping, environmental monitoring, environmental waters
Procedia PDF Downloads 13