Search results for: signal integrity
53 Thermoluminescence Investigations of Tl2Ga2Se3S Layered Single Crystals
Authors: Serdar Delice, Mehmet Isik, Nizami Hasanli, Kadir Goksen
Abstract:
Researchers have donated great interest to ternary and quaternary semiconductor compounds especially with the improvement of the optoelectronic technology. The quaternary compound Tl2Ga2Se3S which was grown by Bridgman method carries the properties of ternary thallium chalcogenides group of semiconductors with layered structure. This compound can be formed from TlGaSe2 crystals replacing the one quarter of selenium atom by sulfur atom. Although Tl2Ga2Se3S crystals are not intentionally doped, some unintended defect types such as point defects, dislocations and stacking faults can occur during growth processes of crystals. These defects can cause undesirable problems in semiconductor materials especially produced for optoelectronic technology. Defects of various types in the semiconductor devices like LEDs and field effect transistor may act as a non-radiative or scattering center in electron transport. Also, quick recombination of holes with electrons without any energy transfer between charge carriers can occur due to the existence of defects. Therefore, the characterization of defects may help the researchers working in this field to produce high quality devices. Thermoluminescence (TL) is an effective experimental method to determine the kinetic parameters of trap centers due to defects in crystals. In this method, the sample is illuminated at low temperature by a light whose energy is bigger than the band gap of studied sample. Thus, charge carriers in the valence band are excited to delocalized band. Then, the charge carriers excited into conduction band are trapped. The trapped charge carriers are released by heating the sample gradually and these carriers then recombine with the opposite carriers at the recombination center. By this way, some luminescence is emitted from the samples. The emitted luminescence is converted to pulses by using an experimental setup controlled by computer program and TL spectrum is obtained. Defect characterization of Tl2Ga2Se3S single crystals has been performed by TL measurements at low temperatures between 10 and 300 K with various heating rate ranging from 0.6 to 1.0 K/s. The TL signal due to the luminescence from trap centers revealed one glow peak having maximum temperature of 36 K. Curve fitting and various heating rate methods were used for the analysis of the glow curve. The activation energy of 13 meV was found by the application of curve fitting method. This practical method established also that the trap center exhibits the characteristics of mixed (general) kinetic order. In addition, various heating rate analysis gave a compatible result (13 meV) with curve fitting as the temperature lag effect was taken into consideration. Since the studied crystals were not intentionally doped, these centers are thought to originate from stacking faults, which are quite possible in Tl2Ga2Se3S due to the weakness of the van der Waals forces between the layers. Distribution of traps was also investigated using an experimental method. A quasi-continuous distribution was attributed to the determined trap centers.Keywords: chalcogenides, defects, thermoluminescence, trap centers
Procedia PDF Downloads 28252 Hardware Implementation for the Contact Force Reconstruction in Tactile Sensor Arrays
Authors: María-Luisa Pinto-Salamanca, Wilson-Javier Pérez-Holguín
Abstract:
Reconstruction of contact forces is a fundamental technique for analyzing the properties of a touched object and is essential for regulating the grip force in slip control loops. This is based on the processing of the distribution, intensity, and direction of the forces during the capture of the sensors. Currently, efficient hardware alternatives have been used more frequently in different fields of application, allowing the implementation of computationally complex algorithms, as is the case with tactile signal processing. The use of hardware for smart tactile sensing systems is a research area that promises to improve the processing time and portability requirements of applications such as artificial skin and robotics, among others. The literature review shows that hardware implementations are present today in almost all stages of smart tactile detection systems except in the force reconstruction process, a stage in which they have been less applied. This work presents a hardware implementation of a model-driven reported in the literature for the contact force reconstruction of flat and rigid tactile sensor arrays from normal stress data. From the analysis of a software implementation of such a model, this implementation proposes the parallelization of tasks that facilitate the execution of matrix operations and a two-dimensional optimization function to obtain a vector force by each taxel in the array. This work seeks to take advantage of the parallel hardware characteristics of Field Programmable Gate Arrays, FPGAs, and the possibility of applying appropriate techniques for algorithms parallelization using as a guide the rules of generalization, efficiency, and scalability in the tactile decoding process and considering the low latency, low power consumption, and real-time execution as the main parameters of design. The results show a maximum estimation error of 32% in the tangential forces and 22% in the normal forces with respect to the simulation by the Finite Element Modeling (FEM) technique of Hertzian and non-Hertzian contact events, over sensor arrays of 10×10 taxels of different sizes. The hardware implementation was carried out on an MPSoC XCZU9EG-2FFVB1156 platform of Xilinx® that allows the reconstruction of force vectors following a scalable approach, from the information captured by means of tactile sensor arrays composed of up to 48 × 48 taxels that use various transduction technologies. The proposed implementation demonstrates a reduction in estimation time of x / 180 compared to software implementations. Despite the relatively high values of the estimation errors, the information provided by this implementation on the tangential and normal tractions and the triaxial reconstruction of forces allows to adequately reconstruct the tactile properties of the touched object, which are similar to those obtained in the software implementation and in the two FEM simulations taken as reference. Although errors could be reduced, the proposed implementation is useful for decoding contact forces for portable tactile sensing systems, thus helping to expand electronic skin applications in robotic and biomedical contexts.Keywords: contact forces reconstruction, forces estimation, tactile sensor array, hardware implementation
Procedia PDF Downloads 19551 Plasmonic Biosensor for Early Detection of Environmental DNA (eDNA) Combined with Enzyme Amplification
Authors: Monisha Elumalai, Joana Guerreiro, Joana Carvalho, Marta Prado
Abstract:
DNA biosensors popularity has been increasing over the past few years. Traditional analytical techniques tend to require complex steps and expensive equipment however DNA biosensors have the advantage of getting simple, fast and economic. Additionally, the combination of DNA biosensors with nanomaterials offers the opportunity to improve the selectivity, sensitivity and the overall performance of the devices. DNA biosensors are based on oligonucleotides as sensing elements. These oligonucleotides are highly specific to complementary DNA sequences resulting in the hybridization of the strands. DNA biosensors are not only an advantage in the clinical field but also applicable in numerous research areas such as food analysis or environmental control. Zebra Mussels (ZM), Dreissena polymorpha are invasive species responsible for enormous negative impacts on the environment and ecosystems. Generally, the detection of ZM is made when the observation of adult or macroscopic larvae's is made however at this stage is too late to avoid the harmful effects. Therefore, there is a need to develop an analytical tool for the early detection of ZM. Here, we present a portable plasmonic biosensor for the detection of environmental DNA (eDNA) released to the environment from this invasive species. The plasmonic DNA biosensor combines gold nanoparticles, as transducer elements, due to their great optical properties and high sensitivity. The detection strategy is based on the immobilization of a short base pair DNA sequence on the nanoparticles surface followed by specific hybridization in the presence of a complementary target DNA. The hybridization events are tracked by the optical response provided by the nanospheres and their surrounding environment. The identification of the DNA sequences (synthetic target and probes) to detect Zebra mussel were designed by using Geneious software in order to maximize the specificity. Moreover, to increase the optical response enzyme amplification of DNA might be used. The gold nanospheres were synthesized and characterized by UV-visible spectrophotometry and transmission electron microscopy (TEM). The obtained nanospheres present the maximum localized surface plasmon resonance (LSPR) peak position are found to be around 519 nm and a diameter of 17nm. The DNA probes modified with a sulfur group at one end of the sequence were then loaded on the gold nanospheres at different ionic strengths and DNA probe concentrations. The optimal DNA probe loading will be selected based on the stability of the optical signal followed by the hybridization study. Hybridization process leads to either nanoparticle dispersion or aggregation based on the presence or absence of the target DNA. Finally, this detection system will be integrated into an optical sensing platform. Considering that the developed device will be used in the field, it should fulfill the inexpensive and portability requirements. The sensing devices based on specific DNA detection holds great potential and can be exploited for sensing applications in-loco.Keywords: ZM DNA, DNA probes, nicking enzyme, gold nanoparticles
Procedia PDF Downloads 24550 The Effect of Online Analyzer Malfunction on the Performance of Sulfur Recovery Unit and Providing a Temporary Solution to Reduce the Emission Rate
Authors: Hamid Reza Mahdipoor, Mehdi Bahrami, Mohammad Bodaghi, Seyed Ali Akbar Mansoori
Abstract:
Nowadays, with stricter limitations to reduce emissions, considerable penalties are imposed if pollution limits are exceeded. Therefore, refineries, along with focusing on improving the quality of their products, are also focused on producing products with the least environmental impact. The duty of the sulfur recovery unit (SRU) is to convert H₂S gas coming from the upstream units to elemental sulfur and minimize the burning of sulfur compounds to SO₂. The Claus process is a common process for converting H₂S to sulfur, including a reaction furnace followed by catalytic reactors and sulfur condensers. In addition to a Claus section, SRUs usually consist of a tail gas treatment (TGT) section to decrease the concentration of SO₂ in the flue gas below the emission limits. To operate an SRU properly, the flow rate of combustion air to the reaction furnace must be adjusted so that the Claus reaction is performed according to stoichiometry. Accurate control of the air demand leads to an optimum recovery of sulfur during the flow and composition fluctuations in the acid gas feed. Therefore, the major control system in the SRU is the air demand control loop, which includes a feed-forward control system based on predetermined feed flow rates and a feed-back control system based on the signal from the tail gas online analyzer. The use of online analyzers requires compliance with the installation and operation instructions. Unfortunately, most of these analyzers in Iran are out of service for different reasons, like the low importance of environmental issues and a lack of access to after-sales services due to sanctions. In this paper, an SRU in Iran was simulated and calibrated using industrial experimental data. Afterward, the effect of the malfunction of the online analyzer on the performance of SRU was investigated using the calibrated simulation. The results showed that an increase in the SO₂ concentration in the tail gas led to an increase in the temperature of the reduction reactor in the TGT section. This increase in temperature caused the failure of TGT and increased the concentration of SO₂ from 750 ppm to 35,000 ppm. In addition, the lack of a control system for the adjustment of the combustion air caused further increases in SO₂ emissions. In some processes, the major variable cannot be controlled directly due to difficulty in measurement or a long delay in the sampling system. In these cases, a secondary variable, which can be measured more easily, is considered to be controlled. With the correct selection of this variable, the main variable is also controlled along with the secondary variable. This strategy for controlling a process system is referred to as inferential control" and is considered in this paper. Therefore, a sensitivity analysis was performed to investigate the sensitivity of other measurable parameters to input disturbances. The results revealed that the output temperature of the first Claus reactor could be used for inferential control of the combustion air. Applying this method to the operation led to maximizing the sulfur recovery in the Claus section.Keywords: sulfur recovery, online analyzer, inferential control, SO₂ emission
Procedia PDF Downloads 7549 Evaluation of Natural Frequency of Single and Grouped Helical Piles
Authors: Maryam Shahbazi, Amy B. Cerato
Abstract:
The importance of a systems’ natural frequency (fn) emerges when the vibration force frequency is equivalent to foundation's fn which causes response amplitude (resonance) that may cause irreversible damage to the structure. Several factors such as pile geometry (e.g., length and diameter), soil density, load magnitude, pile condition, and physical structure affect the fn of a soil-pile system; some of these parameters are evaluated in this study. Although experimental and analytical studies have assessed the fn of a soil-pile system, few have included individual and grouped helical piles. Thus, the current study aims to provide quantitative data on dynamic characteristics of helical pile-soil systems from full-scale shake table tests that will allow engineers to predict more realistic dynamic response under motions with variable frequency ranges. To evaluate the fn of single and grouped helical piles in dry dense sand, full-scale shake table tests were conducted in a laminar box (6.7 m x 3.0 m with 4.6 m high). Two different diameters (8.8 cm and 14 cm) helical piles were embedded in the soil box with corresponding lengths of 3.66m (excluding one pile with length of 3.96) and 4.27m. Different configurations were implemented to evaluate conditions such as fixed and pinned connections. In the group configuration, all four piles with similar geometry were tied together. Simulated real earthquake motions, in addition to white noise, were applied to evaluate the wide range of soil-pile system behavior. The Fast Fourier Transform (FFT) of measured time history responses using installed strain gages and accelerometers were used to evaluate fn. Both time-history records using accelerometer or strain gages were found to be acceptable for calculating fn. In this study, the existence of a pile reduced the fn of the soil slightly. Greater fn occurred on single piles with larger l/d ratios (higher slenderness ratio). Also, regardless of the connection type, the more slender pile group which is obviously surrounded by more soil, yielded higher natural frequencies under white noise, which may be due to exhibiting more passive soil resistance around it. Relatively speaking, within both pile groups, a pinned connection led to a lower fn than a fixed connection (e.g., for the same pile group the fn’s are 5.23Hz and 4.65Hz for fixed and pinned connections, respectively). Generally speaking, a stronger motion causes nonlinear behavior and degrades stiffness which reduces a pile’s fn; even more, reduction occurs in soil with a lower density. Moreover, fn of dense sand under white noise signal was obtained 5.03 which is reduced by 44% when an earthquake with the acceleration of 0.5g was applied. By knowing the factors affecting fn, the designer can effectively match the properties of the soil to a type of pile and structure to attempt to avoid resonance. The quantitative results in this study assist engineers in predicting a probable range of fn for helical pile foundations under potential future earthquake, and machine loading applied forces.Keywords: helical pile, natural frequency, pile group, shake table, stiffness
Procedia PDF Downloads 13348 Ionophore-Based Materials for Selective Optical Sensing of Iron(III)
Authors: Natalia Lukasik, Ewa Wagner-Wysiecka
Abstract:
Development of selective, fast-responsive, and economical sensors for diverse ions detection and determination is one of the most extensively studied areas due to its importance in the field of clinical, environmental and industrial analysis. Among chemical sensors, vast popularity has gained ionophore-based optical sensors, where the generated analytical signal is a consequence of the molecular recognition of ion by the ionophore. Change of color occurring during host-guest interactions allows for quantitative analysis and for 'naked-eye' detection without the need of using sophisticated equipment. An example of application of such sensors is colorimetric detection of iron(III) cations. Iron as one of the most significant trace elements plays roles in many biochemical processes. For these reasons, the development of reliable, fast, and selective methods of iron ions determination is highly demanded. Taking all mentioned above into account a chromogenic amide derivative of 3,4-dihydroxybenzoic acid was synthesized, and its ability to iron(III) recognition was tested. To the best of authors knowledge (according to chemical abstracts) the obtained ligand has not been described in the literature so far. The catechol moiety was introduced to the ligand structure in order to mimic the action of naturally occurring siderophores-iron(III)-selective receptors. The ligand–ion interactions were studied using spectroscopic methods: UV-Vis spectrophotometry and infrared spectroscopy. The spectrophotometric measurements revealed that the amide exhibits affinity to iron(III) in dimethyl sulfoxide and fully aqueous solution, what is manifested by the change of color from yellow to green. Incorporation of the tested amide into a polymeric matrix (cellulose triacetate) ensured effective recognition of iron(III) at pH 3 with the detection limit 1.58×10⁻⁵ M. For the obtained sensor material parameters like linear response range, response time, selectivity, and possibility of regeneration were determined. In order to evaluate the effect of the size of the sensing material on iron(III) detection nanospheres (in the form of nanoemulsion) containing the tested amide were also prepared. According to DLS (dynamic light scattering) measurements, the size of the nanospheres is 308.02 ± 0.67 nm. Work parameters of the nanospheres were determined and compared with cellulose triacetate-based material. Additionally, for fast, qualitative experiments the test strips were prepared by adsorption of the amide solution on a glass microfiber material. Visual limit of detection of iron(III) at pH 3 by the test strips was estimated at the level 10⁻⁴ M. In conclusion, reported here amide derived from 3,4- dihydroxybenzoic acid proved to be an effective candidate for optical sensing of iron(III) in fully aqueous solutions. N. L. kindly acknowledges financial support from National Science Centre Poland the grant no. 2017/01/X/ST4/01680. Authors thank for financial support from Gdansk University of Technology grant no. 032406.Keywords: ion-selective optode, iron(III) recognition, nanospheres, optical sensor
Procedia PDF Downloads 15447 Chiral Molecule Detection via Optical Rectification in Spin-Momentum Locking
Authors: Jessie Rapoza, Petr Moroshkin, Jimmy Xu
Abstract:
Chirality is omnipresent, in nature, in life, and in the field of physics. One intriguing example is the homochirality that has remained a great secret of life. Another is the pairs of mirror-image molecules – enantiomers. They are identical in atomic composition and therefore indistinguishable in the scalar physical properties. Yet, they can be either therapeutic or toxic, depending on their chirality. Recent studies suggest a potential link between abnormal levels of certain D-amino acids and some serious health impairments, including schizophrenia, amyotrophic lateral sclerosis, and potentially cancer. Although indistinguishable in their scalar properties, the chirality of a molecule reveals itself in interaction with the surrounding of a certain chirality, or more generally, a broken mirror-symmetry. In this work, we report on a system for chiral molecule detection, in which the mirror-symmetry is doubly broken, first by asymmetric structuring a nanopatterned plasmonic surface than by the incidence of circularly polarized light (CPL). In this system, the incident circularly-polarized light induces a surface plasmon polariton (SPP) wave, propagating along the asymmetric plasmonic surface. This SPP field itself is chiral, evanescently bound to a near-field zone on the surface (~10nm thick), but with an amplitude greatly intensified (by up to 104) over that of the incident light. It hence probes just the molecules on the surface instead of those in the volume. In coupling to molecules along its path on the surface, the chiral SPP wave favors one chirality over the other, allowing for chirality detection via the change in an optical rectification current measured at the edges of the sample. The asymmetrically structured surface converts the high-frequency electron plasmonic-oscillations in the SPP wave into a net DC drift current that can be measured at the edge of the sample via the mechanism of optical rectification. The measured results validate these design concepts and principles. The observed optical rectification current exhibits a clear differentiation between a pair of enantiomers. Experiments were performed by focusing a 1064nm CW laser light at the sample - a gold grating microchip submerged in an approximately 1.82M solution of either L-arabinose or D-arabinose and water. A measurement of the current output was then recorded under both rights and left circularly polarized lights. Measurements were recorded at various angles of incidence to optimize the coupling between the spin-momentums of the incident light and that of the SPP, that is, spin-momentum locking. In order to suppress the background, the values of the photocurrent for the right CPL are subtracted from those for the left CPL. Comparison between the two arabinose enantiomers reveals a preferential signal response of one enantiomer to left CPL and the other enantiomer to right CPL. In sum, this work reports on the first experimental evidence of the feasibility of chiral molecule detection via optical rectification in a metal meta-grating. This nanoscale interfaced electrical detection technology is advantageous over other detection methods due to its size, cost, ease of use, and integration ability with read-out electronic circuits for data processing and interpretation.Keywords: Chirality, detection, molecule, spin
Procedia PDF Downloads 9246 Impedimetric Phage-Based Sensor for the Rapid Detection of Staphylococcus aureus from Nasal Swab
Authors: Z. Yousefniayejahr, S. Bolognini, A. Bonini, C. Campobasso, N. Poma, F. Vivaldi, M. Di Luca, A. Tavanti, F. Di Francesco
Abstract:
Pathogenic bacteria represent a threat to healthcare systems and the food industry because their rapid detection remains challenging. Electrochemical biosensors are gaining prominence as a novel technology for the detection of pathogens due to intrinsic features such as low cost, rapid response time, and portability, which make them a valuable alternative to traditional methodologies. These sensors use biorecognition elements that are crucial for the identification of specific bacteria. In this context, bacteriophages are promising tools for their inherent high selectivity towards bacterial hosts, which is of fundamental importance when detecting bacterial pathogens in complex biological samples. In this study, we present the development of a low-cost and portable sensor based on the Zeno phage for the rapid detection of Staphylococcus aureus. Screen-printed gold electrodes functionalized with the Zeno phage were used, and electrochemical impedance spectroscopy was applied to evaluate the change of the charge transfer resistance (Rct) as a result of the interaction with S. aureus MRSA ATCC 43300. The phage-based biosensor showed a linear range from 101 to 104 CFU/mL with a 20-minute response time and a limit of detection (LOD) of 1.2 CFU/mL under physiological conditions. The biosensor’s ability to recognize various strains of staphylococci was also successfully demonstrated in the presence of clinical isolates collected from different geographic areas. Assays using S. epidermidis were also carried out to verify the species-specificity of the phage sensor. We only observed a remarkable change of the Rct in the presence of the target S. aureus bacteria, while no substantial binding to S. epidermidis occurred. This confirmed that the Zeno phage sensor only targets S. aureus species within the genus Staphylococcus. In addition, the biosensor's specificity with respect to other bacterial species, including gram-positive bacteria like Enterococcus faecium and the gram-negative bacterium Pseudomonas aeruginosa, was evaluated, and a non-significant impedimetric signal was observed. Notably, the biosensor successfully identified S. aureus bacterial cells in a complex matrix such as a nasal swab, opening the possibility of its use in a real-case scenario. We diluted different concentrations of S. aureus from 108 to 100 CFU/mL with a ratio of 1:10 in the nasal swap matrices collected from healthy donors. Three different sensors were applied to measure various concentrations of bacteria. Our sensor indicated high selectivity to detect S. aureus in biological matrices compared to time-consuming traditional methods, such as enzyme-linked immunosorbent assay (ELISA), polymerase chain reaction (PCR), and radioimmunoassay (RIA), etc. With the aim to study the possibility to use this biosensor to address the challenge associated to pathogen detection, ongoing research is focused on the assessment of the biosensor’s analytical performances in different biological samples and the discovery of new phage bioreceptors.Keywords: electrochemical impedance spectroscopy, bacteriophage, biosensor, Staphylococcus aureus
Procedia PDF Downloads 6645 High-Resolution Facial Electromyography in Freely Behaving Humans
Authors: Lilah Inzelberg, David Rand, Stanislav Steinberg, Moshe David Pur, Yael Hanein
Abstract:
Human facial expressions carry important psychological and neurological information. Facial expressions involve the co-activation of diverse muscles. They depend strongly on personal affective interpretation and on social context and vary between spontaneous and voluntary activations. Smiling, as a special case, is among the most complex facial emotional expressions, involving no fewer than 7 different unilateral muscles. Despite their ubiquitous nature, smiles remain an elusive and debated topic. Smiles are associated with happiness and greeting on one hand and anger or disgust-masking on the other. Accordingly, while high-resolution recording of muscle activation patterns, in a non-interfering setting, offers exciting opportunities, it remains an unmet challenge, as contemporary surface facial electromyography (EMG) methodologies are cumbersome, restricted to the laboratory settings, and are limited in time and resolution. Here we present a wearable and non-invasive method for objective mapping of facial muscle activation and demonstrate its application in a natural setting. The technology is based on a recently developed dry and soft electrode array, specially designed for surface facial EMG technique. Eighteen healthy volunteers (31.58 ± 3.41 years, 13 females), participated in the study. Surface EMG arrays were adhered to participant left and right cheeks. Participants were instructed to imitate three facial expressions: closing the eyes, wrinkling the nose and smiling voluntary and to watch a funny video while their EMG signal is recorded. We focused on muscles associated with 'enjoyment', 'social' and 'masked' smiles; three categories with distinct social meanings. We developed a customized independent component analysis algorithm to construct the desired facial musculature mapping. First, identification of the Orbicularis oculi and the Levator labii superioris muscles was demonstrated from voluntary expressions. Second, recordings of voluntary and spontaneous smiles were used to locate the Zygomaticus major muscle activated in Duchenne and non-Duchenne smiles. Finally, recording with a wireless device in an unmodified natural work setting revealed expressions of neutral, positive and negative emotions in face-to-face interaction. The algorithm outlined here identifies the activation sources in a subject-specific manner, insensitive to electrode placement and anatomical diversity. Our high-resolution and cross-talk free mapping performances, along with excellent user convenience, open new opportunities for affective processing and objective evaluation of facial expressivity, objective psychological and neurological assessment as well as gaming, virtual reality, bio-feedback and brain-machine interface applications.Keywords: affective expressions, affective processing, facial EMG, high-resolution electromyography, independent component analysis, wireless electrodes
Procedia PDF Downloads 24644 Interferon-Induced Transmembrane Protein-3 rs12252-CC Associated with the Progress of Hepatocellular Carcinoma by Up-Regulating the Expression of Interferon-Induced Transmembrane Protein 3
Authors: Yuli Hou, Jianping Sun, Mengdan Gao, Hui Liu, Ling Qin, Ang Li, Dongfu Li, Yonghong Zhang, Yan Zhao
Abstract:
Background and Aims: Interferon-induced transmembrane protein 3 (IFITM3) is a component of ISG (Interferon-Stimulated Gene) family. IFITM3 has been recognized as a key signal molecule regulating cell growth in some tumors. However, the function of IFITM3 rs12252-CC genotype in the hepatocellular carcinoma (HCC) remains unknown to author’s best knowledge. A cohort study was employed to clarify the relationship between IFITM3 rs12252-CC genotype and HCC progression, and cellular experiments were used to investigate the correlation of function of IFITM3 and the progress of HCC. Methods: 336 candidates were enrolled in study, including 156 with HBV related HCC and 180 with chronic Hepatitis B infections or liver cirrhosis. Polymerase chain reaction (PCR) was employed to determine the gene polymorphism of IFITM3. The functions of IFITM3 were detected in PLC/PRF/5 cell with different treated:LV-IFITM3 transfected with lentivirus to knockdown the expression of IFITM3 and LV-NC transfected with empty lentivirus as negative control. The IFITM3 expression, proliferation and migration were detected by Quantitative reverse transcription polymerase chain reaction (qRT-PCR), QuantiGene Plex 2.0 assay, western blotting, immunohistochemistry, Cell Counting Kit(CCK)-8 and wound healing respectively. Six samples (three infected with empty lentiviral as control; three infected with LV-IFITM3 vector lentiviral as experimental group ) of PLC/PRF/5 were sequenced at BGI (Beijing Genomics Institute, Shenzhen,China) using RNA-seq technology to identify the IFITM3-related signaling pathways and chose PI3K/AKT pathway as related signaling to verify. Results: The patients with HCC had a significantly higher proportion of IFITM3 rs12252-CC compared with the patients with chronic HBV infection or liver cirrhosis. The distribution of CC genotype in HCC patients with low differentiation was significantly higher than that in those with high differentiation. Patients with CC genotype found with bigger tumor size, higher percentage of vascular thrombosis, higher distribution of low differentiation and higher 5-year relapse rate than those with CT/TT genotypes. The expression of IFITM3 was higher in HCC tissues than adjacent normal tissues, and the level of IFITM3 was higher in HCC tissues with low differentiation and metastatic than high/medium differentiation and without metastatic. Higher RNA level of IFITM3 was found in CC genotype than TT genotype. In PLC/PRF/5 cell with knockdown, the ability of cell proliferation and migration was inhibited. Analysis RNA sequencing and verification of RT-PCR found out the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/AKT/mTOR) pathway was associated with knockdown IFITM3.With the inhibition of IFITM3, the expression of PI3K/AKT/mTOR signaling pathway was blocked and the expression of vimentin was decreased. Conclusions: IFITM3 rs12252-CC with the higher expression plays a vital role in the progress of HCC by regulating HCC cell proliferation and migration. These effects are associated with PI3K/AKT/mTOR signaling pathway.Keywords: IFITM3, interferon-induced transmembrane protein 3, HCC, hepatocellular carcinoma, PI3K/ AKT/mTOR, phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin
Procedia PDF Downloads 12443 Deep Learning Based Text to Image Synthesis for Accurate Facial Composites in Criminal Investigations
Authors: Zhao Gao, Eran Edirisinghe
Abstract:
The production of an accurate sketch of a suspect based on a verbal description obtained from a witness is an essential task for most criminal investigations. The criminal investigation system employs specifically trained professional artists to manually draw a facial image of the suspect according to the descriptions of an eyewitness for subsequent identification. Within the advancement of Deep Learning, Recurrent Neural Networks (RNN) have shown great promise in Natural Language Processing (NLP) tasks. Additionally, Generative Adversarial Networks (GAN) have also proven to be very effective in image generation. In this study, a trained GAN conditioned on textual features such as keywords automatically encoded from a verbal description of a human face using an RNN is used to generate photo-realistic facial images for criminal investigations. The intention of the proposed system is to map corresponding features into text generated from verbal descriptions. With this, it becomes possible to generate many reasonably accurate alternatives to which the witness can use to hopefully identify a suspect from. This reduces subjectivity in decision making both by the eyewitness and the artist while giving an opportunity for the witness to evaluate and reconsider decisions. Furthermore, the proposed approach benefits law enforcement agencies by reducing the time taken to physically draw each potential sketch, thus increasing response times and mitigating potentially malicious human intervention. With publically available 'CelebFaces Attributes Dataset' (CelebA) and additionally providing verbal description as training data, the proposed architecture is able to effectively produce facial structures from given text. Word Embeddings are learnt by applying the RNN architecture in order to perform semantic parsing, the output of which is fed into the GAN for synthesizing photo-realistic images. Rather than the grid search method, a metaheuristic search based on genetic algorithms is applied to evolve the network with the intent of achieving optimal hyperparameters in a fraction the time of a typical brute force approach. With the exception of the ‘CelebA’ training database, further novel test cases are supplied to the network for evaluation. Witness reports detailing criminals from Interpol or other law enforcement agencies are sampled on the network. Using the descriptions provided, samples are generated and compared with the ground truth images of a criminal in order to calculate the similarities. Two factors are used for performance evaluation: The Structural Similarity Index (SSIM) and the Peak Signal-to-Noise Ratio (PSNR). A high percentile output from this performance matrix should attribute to demonstrating the accuracy, in hope of proving that the proposed approach can be an effective tool for law enforcement agencies. The proposed approach to criminal facial image generation has potential to increase the ratio of criminal cases that can be ultimately resolved using eyewitness information gathering.Keywords: RNN, GAN, NLP, facial composition, criminal investigation
Procedia PDF Downloads 16142 Wetting Characterization of High Aspect Ratio Nanostructures by Gigahertz Acoustic Reflectometry
Authors: C. Virgilio, J. Carlier, P. Campistron, M. Toubal, P. Garnier, L. Broussous, V. Thomy, B. Nongaillard
Abstract:
Wetting efficiency of microstructures or nanostructures patterned on Si wafers is a real challenge in integrated circuits manufacturing. In fact, bad or non-uniform wetting during wet processes limits chemical reactions and can lead to non-complete etching or cleaning inside the patterns and device defectivity. This issue is more and more important with the transistors size shrinkage and concerns mainly high aspect ratio structures. Deep Trench Isolation (DTI) structures enabling pixels’ isolation in imaging devices are subject to this phenomenon. While low-frequency acoustic reflectometry principle is a well-known method for Non Destructive Test applications, we have recently shown that it is also well suited for nanostructures wetting characterization in a higher frequency range. In this paper, we present a high-frequency acoustic reflectometry characterization of DTI wetting through a confrontation of both experimental and modeling results. The acoustic method proposed is based on the evaluation of the reflection of a longitudinal acoustic wave generated by a 100 µm diameter ZnO piezoelectric transducer sputtered on the silicon wafer backside using MEMS technologies. The transducers have been fabricated to work at 5 GHz corresponding to a wavelength of 1.7 µm in silicon. The DTI studied structures, manufactured on the wafer frontside, are crossing trenches of 200 nm wide and 4 µm deep (aspect ratio of 20) etched into a Si wafer frontside. In that case, the acoustic signal reflection occurs at the bottom and at the top of the DTI enabling its characterization by monitoring the electrical reflection coefficient of the transducer. A Finite Difference Time Domain (FDTD) model has been developed to predict the behavior of the emitted wave. The model shows that the separation of the reflected echoes (top and bottom of the DTI) from different acoustic modes is possible at 5 Ghz. A good correspondence between experimental and theoretical signals is observed. The model enables the identification of the different acoustic modes. The evaluation of DTI wetting is then performed by focusing on the first reflected echo obtained through the reflection at Si bottom interface, where wetting efficiency is crucial. The reflection coefficient is measured with different water / ethanol mixtures (tunable surface tension) deposited on the wafer frontside. Two cases are studied: with and without PFTS hydrophobic treatment. In the untreated surface case, acoustic reflection coefficient values with water show that liquid imbibition is partial. In the treated surface case, the acoustic reflection is total with water (no liquid in DTI). The impalement of the liquid occurs for a specific surface tension but it is still partial for pure ethanol. DTI bottom shape and local pattern collapse of the trenches can explain these incomplete wetting phenomena. This high-frequency acoustic method sensitivity coupled with a FDTD propagative model thus enables the local determination of the wetting state of a liquid on real structures. Partial wetting states for non-hydrophobic surfaces or low surface tension liquids are then detectable with this method.Keywords: wetting, acoustic reflectometry, gigahertz, semiconductor
Procedia PDF Downloads 32741 Unravelling Glyphosates Disruptive Effects on the Photochemical Efficiency of Amaranthus cruentus
Authors: Jacques M. Berner, Lehlogonolo Maloma
Abstract:
Context: Glyphosate, a widely used herbicide, has raised concerns about its impact on various crops. Amaranthus cruentus, an important grain crop species, is particularly susceptible to glyphosate. Understanding the specific disruptions caused by glyphosate on the photosynthetic process in Amaranthus cruentus is crucial for assessing its effects on crop productivity and ecological sustainability. Research Aim: This study aimed to investigate the dose-dependent impact of glyphosate on the photochemical efficiency of Amaranthus cruentus using the OJIP transient analysis. The goal was to assess the specific disruptions caused by glyphosate on key parameters of photosystem II. Methodology: The experiment was conducted in a controlled greenhouse environment. Amaranthus cruentus plants were exposed to different concentrations of glyphosate, including half, recommended, and double the recommended application rates. The photochemical efficiency of the plants was evaluated using non-invasive chlorophyll a fluorescence measurements and subsequent analysis of OJIP transients. Measurements were taken on 1-hour dark-adapted leaves using a Hansatech Handy PEA+ chlorophyll fluorimeter. Findings: The study's results demonstrated a significant reduction in the photochemical efficiency of Amaranthus cruentus following glyphosate treatment. The OJIP transients showed distinct alterations in the glyphosate-treated plants compared to the control group. These changes included a decrease in maximal fluorescence (FP) and a delay in the rise of the fluorescence signal, indicating impairment in the energy conversion process within the photosystem II. Glyphosate exposure also led to a substantial decrease in the maximum quantum yield efficiency of photosystem II (FV/FM) and the total performance index (PItotal), which reflects the overall photochemical efficiency of photosystem II. These reductions in photochemical efficiency were observed even at half the recommended dose of glyphosate. Theoretical Importance: The study provides valuable insights into the specific disruptions caused by glyphosate on the photochemical efficiency of Amaranthus cruentus. Data Collection and Analysis Procedures: Data collection involved non-invasive chlorophyll a fluorescence measurements using a chlorophyll fluorimeter on dark-adapted leaves. The OJIP transients were then analyzed to assess specific disruptions in key parameters of photosystem II. Statistical analysis was conducted to determine the significance of the differences observed between glyphosate-treated plants and the control group. Question Addressed: The study aimed to address the question of how glyphosate exposure affects the photochemical efficiency of Amaranthus cruentus, specifically examining disruptions in the photosynthetic electron transport chain and overall photochemical efficiency. Conclusion: The study demonstrates that glyphosate severely impairs the photochemical efficiency of Amaranthus cruentus, as indicated by the alterations in OJIP transients. Even at half the recommended dose, glyphosate caused significant reductions in photochemical efficiency. These findings highlight the detrimental effects of glyphosate on crop productivity and emphasize the need for further research to evaluate its long-term consequences and ecological implications in agriculture. The authors gratefully acknowledge the support from North-West University for making this research possible.Keywords: glyphosate, amaranthus cruentus, ojip transient analysis, pitotal, photochemical efficiency, chlorophyll fluorescence, weeds
Procedia PDF Downloads 9140 Cystic Ganglionosis in Child: Rare Entity
Authors: Jatinder Pal Singh, Harpreet Singh, Gagandeep Singh Digra, Mandeep Kaur Sidhu, Pawan Kumar
Abstract:
Introduction: Ganglion cyst is a benign condition in which there is a cystic lesion in relation to a joint or a tendon sheath arising from myxoid degeneration of fibrous connective tissue. These can be unilocular or multilocular. In rare cases, there may be multiple ganglion cysts, known as cystic ganglionosis. They can occur at any age but are commonly seen in adults. Clinically they may be asymptomatic or present as swelling or mass effect in adjacent structures. These are common in extremities such as hands and feet. Case Presentation: 11-year-old female child presented with slowly progressive painless swelling of her right hand since the age of 4. Antenatal and perinatal history was unremarkable. Her family history was negative. She denies fever, malaise, morning stiffness, weight loss, fatigue, restriction of joint movements, or any sensory and motor deficit. Lab parameters were negative for inflammatory or infectious etiology. No other joint or extremity involvement was present. On physical examination, the swelling was present on the dorsum and palmer aspect of the right hand and wrist. They were non-tender on palpation without any motor or sensory deficit. MRI hand revealed multiple well-defined fluid signal intensity cystic appearing lesions in periarticular/intraarticular locations in relation to distal radio-ulnar, radio-carpal, intercarpal, carpometacarpal, metacarpophalangeal and interphalangeal joints as well as peritendinous location around flexor tendons more so in the region of wrist, palm, 1st and 5th digit and along extensor tendons in the region of wrist, largest one noted along flexor pollicis longus tendon in thenar region and along 1st digit measuring approx. 4.6 x 1.2 x 1.2 centimeter. Pressure erosions and bone remodelling were noted in the bases of the 2nd to 5th metacarpals, capitate, trapezoid, the distal shaft of 1st metacarpal, and proximal phalanx of 1st digit. Marrow edema was noted in the base and proximal shaft of the 4th metacarpal and proximal shaft of the 3rd metacarpal – likely stress or pressure related. The patient was advised of aspiration, but the family refused the procedure. Therefore the patient was kept on conservative treatment. Conclusion: Cystic ganglionosis is a rare condition with very few cases reported in the medical literature. Its prevalence and association are not known because of the rarity of this condition. It should be considered as an important differential in patients presenting with soft tissue swelling in extremities. Treatment option includes conservative management, aspiration, and surgery. Aspiration has a high recurrence rate. Although surgery has a low recurrence rate, it carries a high rate of complications. Imaging with MRI is essential for confirmation of the cystic nature of lesions and their relation with the joint capsules or tendons. This helps in differentiating from other soft tissue lesions and presurgical planning.Keywords: radiology, rare, cystic ganglionosis, child
Procedia PDF Downloads 7739 A Semi-supervised Classification Approach for Trend Following Investment Strategy
Authors: Rodrigo Arnaldo Scarpel
Abstract:
Trend following is a widely accepted investment strategy that adopts a rule-based trading mechanism that rather than striving to predict market direction or on information gathering to decide when to buy and when to sell a stock. Thus, in trend following one must respond to market’s movements that has recently happen and what is currently happening, rather than on what will happen. Optimally, in trend following strategy, is to catch a bull market at its early stage, ride the trend, and liquidate the position at the first evidence of the subsequent bear market. For applying the trend following strategy one needs to find the trend and identify trade signals. In order to avoid false signals, i.e., identify fluctuations of short, mid and long terms and to separate noise from real changes in the trend, most academic works rely on moving averages and other technical analysis indicators, such as the moving average convergence divergence (MACD) and the relative strength index (RSI) to uncover intelligible stock trading rules following trend following strategy philosophy. Recently, some works has applied machine learning techniques for trade rules discovery. In those works, the process of rule construction is based on evolutionary learning which aims to adapt the rules to the current environment and searches for the global optimum rules in the search space. In this work, instead of focusing on the usage of machine learning techniques for creating trading rules, a time series trend classification employing a semi-supervised approach was used to early identify both the beginning and the end of upward and downward trends. Such classification model can be employed to identify trade signals and the decision-making procedure is that if an up-trend (down-trend) is identified, a buy (sell) signal is generated. Semi-supervised learning is used for model training when only part of the data is labeled and Semi-supervised classification aims to train a classifier from both the labeled and unlabeled data, such that it is better than the supervised classifier trained only on the labeled data. For illustrating the proposed approach, it was employed daily trade information, including the open, high, low and closing values and volume from January 1, 2000 to December 31, 2022, of the São Paulo Exchange Composite index (IBOVESPA). Through this time period it was visually identified consistent changes in price, upwards or downwards, for assigning labels and leaving the rest of the days (when there is not a consistent change in price) unlabeled. For training the classification model, a pseudo-label semi-supervised learning strategy was used employing different technical analysis indicators. In this learning strategy, the core is to use unlabeled data to generate a pseudo-label for supervised training. For evaluating the achieved results, it was considered the annualized return and excess return, the Sortino and the Sharpe indicators. Through the evaluated time period, the obtained results were very consistent and can be considered promising for generating the intended trading signals.Keywords: evolutionary learning, semi-supervised classification, time series data, trading signals generation
Procedia PDF Downloads 8938 An Aptasensor Based on Magnetic Relaxation Switch and Controlled Magnetic Separation for the Sensitive Detection of Pseudomonas aeruginosa
Authors: Fei Jia, Xingjian Bai, Xiaowei Zhang, Wenjie Yan, Ruitong Dai, Xingmin Li, Jozef Kokini
Abstract:
Pseudomonas aeruginosa is a Gram-negative, aerobic, opportunistic human pathogen that is present in the soil, water, and food. This microbe has been recognized as a representative food-borne spoilage bacterium that can lead to many types of infections. Considering the casualties and property loss caused by P. aeruginosa, the development of a rapid and reliable technique for the detection of P. aeruginosa is crucial. The whole-cell aptasensor, an emerging biosensor using aptamer as a capture probe to bind to the whole cell, for food-borne pathogens detection has attracted much attention due to its convenience and high sensitivity. Here, a low-field magnetic resonance imaging (LF-MRI) aptasensor for the rapid detection of P. aeruginosa was developed. The basic detection principle of the magnetic relaxation switch (MRSw) nanosensor lies on the ‘T₂-shortening’ effect of magnetic nanoparticles in NMR measurements. Briefly speaking, the transverse relaxation time (T₂) of neighboring water protons get shortened when magnetic nanoparticles are clustered due to the cross-linking upon the recognition and binding of biological targets, or simply when the concentration of the magnetic nanoparticles increased. Such shortening is related to both the state change (aggregation or dissociation) and the concentration change of magnetic nanoparticles and can be detected using NMR relaxometry or MRI scanners. In this work, two different sizes of magnetic nanoparticles, which are 10 nm (MN₁₀) and 400 nm (MN₄₀₀) in diameter, were first immobilized with anti- P. aeruginosa aptamer through 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)/N-hydroxysuccinimide (NHS) chemistry separately, to capture and enrich the P. aeruginosa cells. When incubating with the target, a ‘sandwich’ (MN₁₀-bacteria-MN₄₀₀) complex are formed driven by the bonding of MN400 with P. aeruginosa through aptamer recognition, as well as the conjugate aggregation of MN₁₀ on the surface of P. aeruginosa. Due to the different magnetic performance of the MN₁₀ and MN₄₀₀ in the magnetic field caused by their different saturation magnetization, the MN₁₀-bacteria-MN₄₀₀ complex, as well as the unreacted MN₄₀₀ in the solution, can be quickly removed by magnetic separation, and as a result, only unreacted MN₁₀ remain in the solution. The remaining MN₁₀, which are superparamagnetic and stable in low field magnetic field, work as a signal readout for T₂ measurement. Under the optimum condition, the LF-MRI platform provides both image analysis and quantitative detection of P. aeruginosa, with the detection limit as low as 100 cfu/mL. The feasibility and specificity of the aptasensor are demonstrated in detecting real food samples and validated by using plate counting methods. Only two steps and less than 2 hours needed for the detection procedure, this robust aptasensor can detect P. aeruginosa with a wide linear range from 3.1 ×10² cfu/mL to 3.1 ×10⁷ cfu/mL, which is superior to conventional plate counting method and other molecular biology testing assay. Moreover, the aptasensor has a potential to detect other bacteria or toxins by changing suitable aptamers. Considering the excellent accuracy, feasibility, and practicality, the whole-cell aptasensor provides a promising platform for a quick, direct and accurate determination of food-borne pathogens at cell-level.Keywords: magnetic resonance imaging, meat spoilage, P. aeruginosa, transverse relaxation time
Procedia PDF Downloads 15237 Achieving Flow at Work: An Experience Sampling Study to Comprehend How Cognitive Task Characteristics and Work Environments Predict Flow Experiences
Authors: Jonas De Kerf, Rein De Cooman, Sara De Gieter
Abstract:
For many decades, scholars have aimed to understand how work can become more meaningful by maximizing both potential and enhancing feelings of satisfaction. One of the largest contributions towards such positive psychology was made with the introduction of the concept of ‘flow,’ which refers to a condition in which people feel intense engagement and effortless action. Since then, valuable research on work-related flow has indicated that this state of mind is related to positive outcomes for both organizations (e.g., social, supportive climates) and workers (e.g., job satisfaction). Yet, scholars still do not fully comprehend how such deep involvement at work is obtained, given the notion that flow is considered a short-term, complex, and dynamic experience. Most research neglects that people who experience flow ought to be optimally challenged so that intense concentration is required. Because attention is at the core of this enjoyable state of mind, this study aims to comprehend how elements that affect workers’ cognitive functioning impact flow at work. Research on cognitive performance suggests that working on mentally demanding tasks (e.g., information processing tasks) requires workers to concentrate deeply, as a result leading to flow experiences. Based on social facilitation theory, working on such tasks in an isolated environment eases concentration. Prior research has indicated that working at home (instead of working at the office) or in a closed office (rather than in an open-plan office) impacts employees’ overall functioning in terms of concentration and productivity. Consequently, we advance such knowledge and propose an interaction by combining cognitive task characteristics and work environments among part-time teleworkers. Hence, we not only aim to shed light on the relation between cognitive tasks and flow but also provide empirical evidence that workers performing such tasks achieve the highest states of flow while working either at home or in closed offices. In July 2022, an experience-sampling study will be conducted that uses a semi-random signal schedule to understand how task and environment predictors together impact part-time teleworkers’ flow. More precisely, about 150 knowledge workers will fill in multiple surveys a day for two consecutive workweeks to report their flow experiences, cognitive tasks, and work environments. Preliminary results from a pilot study indicate that on a between level, tasks high in information processing go along with high self-reported fluent productivity (i.e., making progress). As expected, evidence was found for higher fluency in productivity for workers performing information processing tasks both at home and in a closed office, compared to those performing the same tasks at the office or in open-plan offices. This study expands the current knowledge on work-related flow by looking at a task and environmental predictors that enable workers to obtain such a peak state. While doing so, our findings suggest that practitioners should strive for ideal alignments between tasks and work locations to work with both deep involvement and gratification.Keywords: cognitive work, office lay-out, work location, work-related flow
Procedia PDF Downloads 10036 Characteristics of Plasma Synthetic Jet Actuator in Repetitive Working Mode
Authors: Haohua Zong, Marios Kotsonis
Abstract:
Plasma synthetic jet actuator (PSJA) is a new concept of zero net mass flow actuator which utilizes pulsed arc/spark discharge to rapidly pressurize gas in a small cavity under constant-volume conditions. The unique combination of high exit jet velocity (>400 m/s) and high actuation frequency (>5 kHz) provides a promising solution for high-speed high-Reynolds-number flow control. This paper focuses on the performance of PSJA in repetitive working mode which is more relevant to future flow control applications. A two-electrodes PSJA (cavity volume: 424 mm3, orifice diameter: 2 mm) together with a capacitive discharge circuit (discharge energy: 50 mJ-110 mJ) is designed to enable repetitive operation. Time-Resolved Particle Imaging Velocimetry (TR-PIV) system working at 10 kHz is exploited to investigate the influence of discharge frequency on performance of PSJA. In total, seven cases are tested, covering a wide range of discharge frequencies (20 Hz-560 Hz). The pertinent flow features (shock wave, vortex ring and jet) remain the same for single shot mode and repetitive working mode. Shock wave is issued prior to jet eruption. Two distinct vortex rings are formed in one cycle. The first one is produced by the starting jet whereas the second one is related with the shock wave reflection in cavity. A sudden pressure rise is induced at the throat inlet by the reflection of primary shock wave, promoting the shedding of second vortex ring. In one cycle, jet exit velocity first increases sharply, then decreases almost linearly. Afterwards, an alternate occurrence of multiple jet stages and refresh stages is observed. By monitoring the dynamic evolution of exit velocity in one cycle, some integral performance parameters of PSJA can be deduced. As frequency increases, the jet intensity in steady phase decreases monotonically. In the investigated frequency range, jet duration time drops from 250 µs to 210 µs and peak jet velocity decreases from 53 m/s to approximately 39 m/s. The jet impulse and the expelled gas mass (0.69 µN∙s and 0.027 mg at 20 Hz) decline by 48% and 40%, respectively. However, the electro-mechanical efficiency of PSJA defined by the ratio of jet mechanical energy to capacitor energy doesn’t show significant difference (o(0.01%)). Fourier transformation of the temporal exit velocity signal indicates two dominant frequencies. One corresponds to the discharge frequency, while the other accounts for the alternation frequency of jet stage and refresh stage in one cycle. The alternation period (300 µs approximately) is independent of discharge frequency, and possibly determined intrinsically by the actuator geometry. A simple analytical model is established to interpret the alternation of jet stage and refresh stage. Results show that the dynamic response of exit velocity to a small-scale disturbance (jump in cavity pressure) can be treated as a second-order under-damping system. Oscillation frequency of the exit velocity, namely alternation frequency, is positively proportional to exit area, but inversely proportional to cavity volume and throat length. Theoretical value of alternation period (305 µs) agrees well with the experimental value.Keywords: plasma, synthetic jet, actuator, frequency effect
Procedia PDF Downloads 25235 Magnetic Carriers of Organic Selenium (IV) Compounds: Physicochemical Properties and Possible Applications in Anticancer Therapy
Authors: E. Mosiniewicz-Szablewska, P. Suchocki, P. C. Morais
Abstract:
Despite the significant progress in cancer treatment, there is a need to search for new therapeutic methods in order to minimize side effects. Chemotherapy, the main current method of treating cancer, is non-selective and has a number of limitations. Toxicity to healthy cells is undoubtedly the biggest problem limiting the use of many anticancer drugs. The problem of how to kill cancer without harming a patient can be solved by using organic selenium (IV) compounds. Organic selenium (IV) compounds are a new class of materials showing a strong anticancer activity. They are first organic compounds containing selenium at the +4 oxidation level and therefore they eliminate the multidrug-resistance for all tumor cell lines tested so far. These materials are capable of selectively killing cancer cells without damaging the healthy ones. They are obtained by the incorporation of selenous acid (H2SeO3) into molecules of fatty acids of sunflower oil and therefore, they are inexpensive to manufacture. Attaching these compounds to magnetic carriers enables their precise delivery directly to the tumor area and the simultaneous application of the magnetic hyperthermia, thus creating a huge opportunity to effectively get rid of the tumor without any side effects. Polylactic-co-glicolic acid (PLGA) nanocapsules loaded with maghemite (-Fe2O3) nanoparticles and organic selenium (IV) compounds are successfully prepared by nanoprecipitation method. In vitro antitumor activity of the nanocapsules were evidenced using murine melanoma (B16-F10), oral squamos carcinoma (OSCC) and murine (4T1) and human (MCF-7) breast lines. Further exposure of these cells to an alternating magnetic field increased the antitumor effect of nanocapsules. Moreover, the nanocapsules presented antitumor effect while not affecting normal cells. Magnetic properties of the nanocapsules were investigated by means of dc magnetization, ac susceptibility and electron spin resonance (ESR) measurements. The nanocapsules presented a typical superparamagnetic behavior around room temperature manifested itself by the split between zero field-cooled/field-cooled (ZFC/FC) magnetization curves and the absence of hysteresis on the field-dependent magnetization curve above the blocking temperature. Moreover, the blocking temperature decreased with increasing applied magnetic field. The superparamagnetic character of the nanocapsules was also confirmed by the occurrence of a maximum in temperature dependences of both real ′(T) and imaginary ′′ (T) components of the ac magnetic susceptibility, which shifted towards higher temperatures with increasing frequency. Additionally, upon decreasing the temperature the ESR signal shifted to lower fields and gradually broadened following closely the predictions for the ESR of superparamagnetoc nanoparticles. The observed superparamagnetic properties of nanocapsules enable their simple manipulation by means of magnetic field gradient, after introduction into the blood stream, which is a necessary condition for their use as magnetic drug carriers. The observed anticancer and superparamgnetic properties show that the magnetic nanocapsules loaded with organic selenium (IV) compounds should be considered as an effective material system for magnetic drug delivery and magnetohyperthermia inductor in antitumor therapy.Keywords: cancer treatment, magnetic drug delivery system, nanomaterials, nanotechnology
Procedia PDF Downloads 20434 Automated End of Sprint Detection for Force-Velocity-Power Analysis with GPS/GNSS Systems
Authors: Patrick Cormier, Cesar Meylan, Matt Jensen, Dana Agar-Newman, Chloe Werle, Ming-Chang Tsai, Marc Klimstra
Abstract:
Sprint-derived horizontal force-velocity-power (FVP) profiles can be developed with adequate validity and reliability with satellite (GPS/GNSS) systems. However, FVP metrics are sensitive to small nuances in data processing procedures such that minor differences in defining the onset and end of the sprint could result in different FVP metric outcomes. Furthermore, in team-sports, there is a requirement for rapid analysis and feedback of results from multiple athletes, therefore developing standardized and automated methods to improve the speed, efficiency and reliability of this process are warranted. Thus, the purpose of this study was to compare different methods of sprint end detection on the development of FVP profiles from 10Hz GPS/GNSS data through goodness-of-fit and intertrial reliability statistics. Seventeen national team female soccer players participated in the FVP protocol which consisted of 2x40m maximal sprints performed towards the end of a soccer specific warm-up in a training session (1020 hPa, wind = 0, temperature = 30°C) on an open grass field. Each player wore a 10Hz Catapult system unit (Vector S7, Catapult Innovations) inserted in a vest in a pouch between the scapulae. All data were analyzed following common procedures. Variables computed and assessed were the model parameters, estimated maximal sprint speed (MSS) and the acceleration constant τ, in addition to horizontal relative force (F₀), velocity at zero (V₀), and relative mechanical power (Pmax). The onset of the sprints was standardized with an acceleration threshold of 0.1 m/s². The sprint end detection methods were: 1. Time when peak velocity (MSS) was achieved (zero acceleration), 2. Time after peak velocity drops by -0.4 m/s, 3. Time after peak velocity drops by -0.6 m/s, and 4. When the integrated distance from the GPS/GNSS signal achieves 40-m. Goodness-of-fit of each sprint end detection method was determined using the residual sum of squares (RSS) to demonstrate the error of the FVP modeling with the sprint data from the GPS/GNSS system. Inter-trial reliability (from 2 trials) was assessed utilizing intraclass correlation coefficients (ICC). For goodness-of-fit results, the end detection technique that used the time when peak velocity was achieved (zero acceleration) had the lowest RSS values, followed by -0.4 and -0.6 velocity decay, and 40-m end had the highest RSS values. For intertrial reliability, the end of sprint detection techniques that were defined as the time at (method 1) or shortly after (method 2 and 3) when MSS was achieved had very large to near perfect ICC and the time at the 40 m integrated distance (method 4) had large to very large ICCs. Peak velocity was reached at 29.52 ± 4.02-m. Therefore, sport scientists should implement end of sprint detection either when peak velocity is determined or shortly after to improve goodness of fit to achieve reliable between trial FVP profile metrics. Although, more robust processing and modeling procedures should be developed in future research to improve sprint model fitting. This protocol was seamlessly integrated into the usual training which shows promise for sprint monitoring in the field with this technology.Keywords: automated, biomechanics, team-sports, sprint
Procedia PDF Downloads 11933 Structural, Spectral and Optical Properties of Boron-Aluminosilicate Glasses with High Dy₂O₃ and Er₂O₃ Content for Faraday Rotator Operating at 2µm
Authors: Viktor D. Dubrovin, Masoud Mollaee, Jie Zong, Xiushan Zhu, Nasser Peyghambarian
Abstract:
Glasses doped with high rare-earth (RE) elements concentration attracted considerable attention since the middle of the 20th century due to their particular magneto-optical properties. Such glasses exhibit the Faraday effect in which the polarization plane of a linearly polarized light beam is rotated by the interaction between the incident light and the magneto-optical material. That effect found application in optical isolators that are useful for laser systems, which can prevent back reflection of light into lasers or optical amplifiers and reduce signal instability and noise. Glasses are of particular interest since they are cost-effective and can be formed into fibers, thus breaking the limits of traditional bulk optics requiring optical coupling for use with fiber-optic systems. The advent of high-power fiber lasers operating near 2µm revealed a necessity in the development of all fiber isolators for this region. Ce³⁺, Pr³⁺, Dy³⁺, and Tb³⁺ ions provide the biggest contribution to the Verdet constant value of optical materials among the RE. It is known that Pr³⁺ and Tb³⁺ ions have strong absorption bands near 2 µm, thus making Dy³⁺ and Ce³⁺ the only prospective candidates for fiber isolator operating in that region. Due to the high tendency of Ce³⁺ ions pass to Ce⁴⁺ during the synthesis, glasses with high cerium content usually suffers from Ce⁴⁺ ions absorption extending from visible to IR. Additionally, Dy³⁺ (₆H¹⁵/²) same as Ho³⁺ (⁵I₈) ions, have the largest effective magnetic moment (µeff = 10.6 µB) among the RE ions that starts to play the key role if the operating region is far from 4fⁿ→ 4fⁿ⁻¹5 d¹ electric-dipole transition relevant to the Faraday Effect. Considering the high effective magnetic moment value of Er³⁺ ions (µeff = 9.6 µB) that is 3rd after Dy³⁺/ Ho³⁺ and Tb³⁺, it is possible to assume that Er³⁺ doped glasses should exhibit Verdet constant value near 2µm that is comparable with one of Dy doped glasses. Thus, partial replacement of Dy³⁺ on Er³⁺ ions has been performed, keeping the overall concentration of Re₂O₃ equal to 70 wt.% (30.6 mol.%). Al₂O₃-B₂O₃-SiO₂-30.6RE₂O₃ (RE= Er, Dy) glasses had been synthesized, and their thermal, spectral, optical, structural, and magneto-optical properties had been studied. Glasses synthesis had been conducted in Pt crucibles for 3h at 1500 °C. The obtained melt was poured into preheated up to 400 °C mold and annealed from 800 oC to room temperature for 12h with 1h dwell. The mass of obtained glass samples was about 200g. Shown that the difference between crystallization and glass transition temperature is about 150 oC, even taking into account the fact that high content of RE₂O₃ leads to glass network depolymerization. Verdet constant of Al₂O₃-B₂O₃-SiO₂-30.6RE₂O₃ glasses for wavelength 1950 nm can reach more than 5.9 rad/(T*m), which is among the highest number reported for a paramagnetic glass at this wavelength. The refractive index value was found to be equal to 1.7545 at 633 nm. Our experimental results show that Al₂O₃-B₂O₃-SiO₂-30.6RE₂O₃ glasses with high Dy₂O₃ content are expected to be promising material for use as highly effective Faraday isolators and modulators of electromagnetic radiation in the 2μm region.Keywords: oxide glass, magneto-optical, dysprosium, erbium, Faraday rotator, boron-aluminosilicate system
Procedia PDF Downloads 11432 Flexible Ethylene-Propylene Copolymer Nanofibers Decorated with Ag Nanoparticles as Effective 3D Surface-Enhanced Raman Scattering Substrates
Authors: Yi Li, Rui Lu, Lianjun Wang
Abstract:
With the rapid development of chemical industry, the consumption of volatile organic compounds (VOCs) has increased extensively. In the process of VOCs production and application, plenty of them have been transferred to environment. As a result, it has led to pollution problems not only in soil and ground water but also to human beings. Thus, it is important to develop a sensitive and cost-effective analytical method for trace VOCs detection in environment. Surface-enhanced Raman Spectroscopy (SERS), as one of the most sensitive optical analytical technique with rapid response, pinpoint accuracy and noninvasive detection, has been widely used for ultratrace analysis. Based on the plasmon resonance on the nanoscale metallic surface, SERS technology can even detect single molecule due to abundant nanogaps (i.e. 'hot spots') on the nanosubstrate. In this work, a self-supported flexible silver nitrate (AgNO3)/ethylene-propylene copolymer (EPM) hybrid nanofibers was fabricated by electrospinning. After an in-situ chemical reduction using ice-cold sodium borohydride as reduction agent, numerous silver nanoparticles were formed on the nanofiber surface. By adjusting the reduction time and AgNO3 content, the morphology and dimension of silver nanoparticles could be controlled. According to the principles of solid-phase extraction, the hydrophobic substance is more likely to partition into the hydrophobic EPM membrane in an aqueous environment while water and other polar components are excluded from the analytes. By the enrichment of EPM fibers, the number of hydrophobic molecules located on the 'hot spots' generated from criss-crossed nanofibers is greatly increased, which further enhances SERS signal intensity. The as-prepared Ag/EPM hybrid nanofibers were first employed to detect common SERS probe molecule (p-aminothiophenol) with the detection limit down to 10-12 M, which demonstrated an excellent SERS performance. To further study the application of the fabricated substrate for monitoring hydrophobic substance in water, several typical VOCs, such as benzene, toluene and p-xylene, were selected as model compounds. The results showed that the characteristic peaks of these target analytes in the mixed aqueous solution could be distinguished even at a concentration of 10-6 M after multi-peaks gaussian fitting process, including C-H bending (850 cm-1), C-C ring stretching (1581 cm-1, 1600 cm-1) of benzene, C-H bending (844 cm-1 ,1151 cm-1), C-C ring stretching (1001 cm-1), CH3 bending vibration (1377 cm-1) of toluene, C-H bending (829 cm-1), C-C stretching (1614 cm-1) of p-xylene. The SERS substrate has remarkable advantages which combine the enrichment capacity from EPM and the Raman enhancement of Ag nanoparticles. Meanwhile, the huge specific surface area resulted from electrospinning is benificial to increase the number of adsoption sites and promotes 'hot spots' formation. In summary, this work provides powerful potential in rapid, on-site and accurate detection of trace VOCs using a portable Raman.Keywords: electrospinning, ethylene-propylene copolymer, silver nanoparticles, SERS, VOCs
Procedia PDF Downloads 16031 Hydrodynamic Characterisation of a Hydraulic Flume with Sheared Flow
Authors: Daniel Rowe, Christopher R. Vogel, Richard H. J. Willden
Abstract:
The University of Oxford’s recirculating water flume is a combined wave and current test tank with a 1 m depth, 1.1 m width, and 10 m long working section, and is capable of flow speeds up to 1 ms−1 . This study documents the hydrodynamic characteristics of the facility in preparation for experimental testing of horizontal axis tidal stream turbine models. The turbine to be tested has a rotor diameter of 0.6 m and is a modified version of one of two model-scale turbines tested in previous experimental campaigns. An Acoustic Doppler Velocimeter (ADV) was used to measure the flow at high temporal resolution at various locations throughout the flume, enabling the spatial uniformity and turbulence flow parameters to be investigated. The mean velocity profiles exhibited high levels of spatial uniformity at the design speed of the flume, 0.6 ms−1 , with variations in the three-dimensional velocity components on the order of ±1% at the 95% confidence level, along with a modest streamwise acceleration through the measurement domain, a target 5 m working section of the flume. A high degree of uniformity was also apparent for the turbulence intensity, with values ranging between 1-2% across the intended swept area of the turbine rotor. The integral scales of turbulence exhibited a far higher degree of variation throughout the water column, particularly in the streamwise and vertical scales. This behaviour is believed to be due to the high signal noise content leading to decorrelation in the sampling records. To achieve more realistic levels of vertical velocity shear in the flume, a simple procedure to practically generate target vertical shear profiles in open-channel flows is described. Here, the authors arranged a series of non-uniformly spaced parallel bars placed across the width of the flume and normal to the onset flow. By adjusting the resistance grading across the height of the working section, the downstream profiles could be modified accordingly, characterised by changes in the velocity profile power law exponent, 1/n. Considering the significant temporal variation in a tidal channel, the choice of the exponent denominator, n = 6 and n = 9, effectively provides an achievable range around the much-cited value of n = 7 observed at many tidal sites. The resulting flow profiles, which we intend to use in future turbine tests, have been characterised in detail. The results indicate non-uniform vertical shear across the survey area and reveal substantial corner flows, arising from the differential shear between the target vertical and cross-stream shear profiles throughout the measurement domain. In vertically sheared flow, the rotor-equivalent turbulence intensity ranges between 3.0-3.8% throughout the measurement domain for both bar arrangements, while the streamwise integral length scale grows from a characteristic dimension on the order of the bar width, similar to the flow downstream of a turbulence-generating grid. The experimental tests are well-defined and repeatable and serve as a reference for other researchers who wish to undertake similar investigations.Keywords: acoustic doppler Velocimeter, experimental hydrodynamics, open-channel flow, shear profiles, tidal stream turbines
Procedia PDF Downloads 8630 A Study of Interleukin-1β Genetic Polymorphisms in Gastric Carcinoma and Colorectal Carcinoma in Egyptian Patients
Authors: Mariam Khaled, Noha Farag, Ghada Mohamed Abdel Salam, Khaled Abu-Aisha, Mohamed El-Azizi
Abstract:
Gastric and colorectal cancers are among the most frequent causes of cancer-associated mortalities in Africa. They have been considered as a global public health concern, as nearly one million new cases are reported per year. IL-1β is a pro-inflammatory cytokine-produced by activated macrophages and monocytes- and a member of the IL-1 family. The inactive IL-1β precursor is cleaved and activated by caspase-1 enzyme, which itself is activated by the assembly of intracellular structures defined as NLRP3 (Nod Like receptor P3) inflammasomes. Activated IL-1β stimulates the Interleukin-1 receptor type-1 (IL-1R1), which is responsible for the initiation of a signal transduction pathway leading to cell proliferation. It has been proven that the IL-1β gene is a highly polymorphic gene in which single nucleotide polymorphisms (SNPs) may affect its expression. It has been previously reported that SNPs including base transitions between C and T at positions, -511 (C-T; dbSNP: rs16944) and -31 (C-T; dbSNP: rs1143627), from the transcriptional start site, contribute to the pathogenesis of gastric and colorectal cancers by affecting IL-1β levels. Altered production of IL-1β due to such polymorphisms is suspected to stimulate an amplified inflammatory response and promote Epithelial Mesenchymal Transition leading to malignancy. Allele frequency distribution of the IL-1β-31 and -511 SNPs, in different populations, and their correlation to the incidence of gastric and colorectal cancers, has been intriguing to researchers worldwide. The current study aims to investigate allele distributions of the IL-1β SNPs among gastric and colorectal cancers Egyptian patients. In order to achieve to that, 89 Biopsy and surgical specimens from the antrum and corpus mucosa of chronic gastritis subjects and gastric and colorectal carcinoma patients was collected for DNA extraction followed by restriction fragment length polymorphism polymerase chain reaction (RFLP-PCR). The amplified PCR products of IL-1β-31C > T and IL-1β-511T > C were digested by incubation with the restriction endonuclease enzymes ALu1 and Ava1. Statistical analysis was carried out to determine the allele frequency distribution in the three studied groups. Also, the effect of the IL-1β -31 and -511 SNPs on nuclear factor binding was analyzed using Fluorescence Electrophoretic Mobility Shift Assay (EMSA), preceded by nuclear factor extraction from gastric and colorectal tissue samples and LPS stimulated monocytes. The results of this study showed that a significantly higher percentage of Egyptian gastric cancer patients have a homozygous CC genotype at the IL-1β-31 position and a heterozygous TC genotype at the IL-1β-511 position. Moreover, a significantly higher percentage of the colorectal cancer patients have a homozygous CC genotype at the IL-1β-31 and -511 positions as compared to the control group. In addition, the EMSA results showed that IL-1β-31C/T and IL-1β-511T/C SNPs do not affect nuclear factor binding. Results of this study suggest that the IL-1β-31 C/T and IL-1β-511 T/C may be correlated to the incidence of gastric cancer in Egyptian patients; however, similar findings couldn’t be proven in the colorectal cancer patients group for the IL-1β-511 T/C SNP. This is the first study to investigate IL-1β -31 and -511 SNPs in the Egyptian population.Keywords: colorectal cancer, Egyptian patients, gastric cancer, interleukin-1β, single nucleotide polymorphisms
Procedia PDF Downloads 14029 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra
Authors: Bitewulign Mekonnen
Abstract:
Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network
Procedia PDF Downloads 9428 Academia as Creator of Emerging, Innovative Communities of Practice and Learning
Authors: Francisco Julio Batle Lorente
Abstract:
The present paper aims at presenting a new category of role for academia: proactive creator/promoter of communities of practice in emerging areas of innovation. It is based in research among practitioners in three different areas: social entrepreneurship, alumni engaged in entrepreneurship and innovation, and digital nomads. The concept of CoP is related to an intentionally created space to share experiences and collectively reflect on the cases arising from practice. Such an endeavour is not contemplated in the literature on academic roles in an explicit way. The goal of the paper is providing a framework for this function and throw some light on the perception and priorities of members of emerging communities (78 alumni, 154 social entrepreneurs, and 231 digital nomads) regarding community, learning, engagement, and networking, areas in which the university can help and, by doing so, contributing to signal the emerging area and creating new opportunities for the academia. The research methodology was based in Survey research. It is a specific type of field study that involves the collection of data from a sample of elements drawn from a well-defined population through the use of a questionnaire. It was considered that survey research might be valuable to the present project and help outline the utility of various study designs and future projects with the emerging communities that are the object of the investigation. Open questions were used for different topics, as well as critical incident technique. It was used a standard technique for survey sampling and questionnaire design. Finally, it was defined a procedure for pretesting questionnaires and for data collection. The questionnaire was channelled by means of google forms. The results indicate that the members of emerging, innovative CoPs and learning such the ones that were selected for this investigation lack cohesion, inspiration, networking, opportunities for creation of social capital, opportunities for collaboration beyond their existing and close network. The opportunity that arises for the academia from proactively helping articulate CoP (and Communities of learning) are related to key elements of any CoP/ CoL: community construction approaches, technological infrastructure, benefits, participation issues and urgent challenges, trust, networking, technical ability/training/development and collaboration. Beyond training, other three areas (networking, collaboration and urgent challenges) were the ones in which the contribution of universities to the communities were considered more interesting and workable to practitioners. The analysis of the responses for the open questions related to perception of the universities offer options for terra incognita to be explored for universities (signalling new areas, establishing broader collaborations with research, government, media and corporations, attracting investment). Based on the findings from this research, there is some evidence that CoPs can offer a formal and informal method of professional and interprofessional development for member of any emerging and innovative community and can decrease social and professional isolation. The opportunity that it offers to academia can increase the entrepreneurial and engaged university identity. It also moves to academia into a realm of civic confrontation of present and future challenges in a more proactive way.Keywords: social innovation, new roles of academia, community of learning, community of practice
Procedia PDF Downloads 8327 To Smile or Not to Smile: How Engendered Facial Cues affect Hiring Decisions
Authors: Sabrina S. W. Chan, Emily Schwartzman, Nicholas O. Rule
Abstract:
Past literature showed mixed findings on how smiling affects a person’s chance of getting hired. On one hand, smiling suggests enthusiasm, cooperativeness, and enthusiasm, which can elicit positive impressions. On the other hand, smiling can suggest weaker professionalism or a filler to hide nervousness, which can lower a candidate’s perceived competence. Emotion expressions can also be perceived differently depending on the person’s gender and can activate certain gender stereotypes. Women especially face a double bind with respect to hiring decisions and smiling. Because women are socially expected to smile more, those who do not smile will be considered stereotype incongruent. This becomes a noisy signal to employers and may lower their chance of being hired. However, women’s smiling as a formality may also be an obstacle. They are more likely to put on fake smiles; but if they do, they are also likely to be perceived as inauthentic and over-expressive. This paper sought to investigate how smiling affects hiring decisions, and whether this relationship is moderated by gender. In Study 1, participants were shown a series of smiling and emotionally neutral face images, incorporated into fabricated LinkedIn profiles. Participants were asked to rate how hireable they thought that candidate was. Results showed that participants rated smiling candidates as more hireable than nonsmiling candidates, and that there was no difference in gender. Moreover, individuals who did not study business were more biased in their perceptions than those who did. Since results showed a trending favoritism over female targets, in suspect of desirability bias, a second study was conducted to collect implicit measures behind the decision-making process. In Study 2, a mouse-tracking design was adopted to explore whether participants’ implicit attitudes were different from their explicit responses on hiring. Participants asked to respond whether they would offer an interview to a candidate. Findings from Study 1 was replicated in that smiling candidates received more offers than neutral-faced candidates. Results also showed that female candidates received significantly more offers than male candidates but was associated with higher attractiveness ratings. There were no significant findings in reaction time or change of decisions. However, stronger hesitation was detected for responses made towards neutral targets when participants perceived the given position as masculine, implying a conscious attempt of making situational judgments (e.g., considering candidate’s personality and job fit) to override automatic processing (evaluations based on attractiveness). Future studies would look at how these findings differ for positions which are stereotypically masculine (e.g., surgeons) and stereotypically feminine (e.g., kindergarten teachers). Current findings have strong implications for developing bias-free hiring policies in workplace, especially for organizations who maintain online/hybrid working arrangements in the post-pandemic era. This also bridges the literature gap between face perception and gender discrimination, highlighting how engendered facial cues can affect individual’s career development and organization’s success in diversity and inclusion.Keywords: engendered facial cues, face perception, gender stereotypes, hiring decisions, smiling, workplace discrimination
Procedia PDF Downloads 13326 Decoding Kinematic Characteristics of Finger Movement from Electrocorticography Using Classical Methods and Deep Convolutional Neural Networks
Authors: Ksenia Volkova, Artur Petrosyan, Ignatii Dubyshkin, Alexei Ossadtchi
Abstract:
Brain-computer interfaces are a growing research field producing many implementations that find use in different fields and are used for research and practical purposes. Despite the popularity of the implementations using non-invasive neuroimaging methods, radical improvement of the state channel bandwidth and, thus, decoding accuracy is only possible by using invasive techniques. Electrocorticography (ECoG) is a minimally invasive neuroimaging method that provides highly informative brain activity signals, effective analysis of which requires the use of machine learning methods that are able to learn representations of complex patterns. Deep learning is a family of machine learning algorithms that allow learning representations of data with multiple levels of abstraction. This study explores the potential of deep learning approaches for ECoG processing, decoding movement intentions and the perception of proprioceptive information. To obtain synchronous recording of kinematic movement characteristics and corresponding electrical brain activity, a series of experiments were carried out, during which subjects performed finger movements at their own pace. Finger movements were recorded with a three-axis accelerometer, while ECoG was synchronously registered from the electrode strips that were implanted over the contralateral sensorimotor cortex. Then, multichannel ECoG signals were used to track finger movement trajectory characterized by accelerometer signal. This process was carried out both causally and non-causally, using different position of the ECoG data segment with respect to the accelerometer data stream. The recorded data was split into training and testing sets, containing continuous non-overlapping fragments of the multichannel ECoG. A deep convolutional neural network was implemented and trained, using 1-second segments of ECoG data from the training dataset as input. To assess the decoding accuracy, correlation coefficient r between the output of the model and the accelerometer readings was computed. After optimization of hyperparameters and training, the deep learning model allowed reasonably accurate causal decoding of finger movement with correlation coefficient r = 0.8. In contrast, the classical Wiener-filter like approach was able to achieve only 0.56 in the causal decoding mode. In the noncausal case, the traditional approach reached the accuracy of r = 0.69, which may be due to the presence of additional proprioceptive information. This result demonstrates that the deep neural network was able to effectively find a representation of the complex top-down information related to the actual movement rather than proprioception. The sensitivity analysis shows physiologically plausible pictures of the extent to which individual features (channel, wavelet subband) are utilized during the decoding procedure. In conclusion, the results of this study have demonstrated that a combination of a minimally invasive neuroimaging technique such as ECoG and advanced machine learning approaches allows decoding motion with high accuracy. Such setup provides means for control of devices with a large number of degrees of freedom as well as exploratory studies of the complex neural processes underlying movement execution.Keywords: brain-computer interface, deep learning, ECoG, movement decoding, sensorimotor cortex
Procedia PDF Downloads 17725 Transcriptomic Analysis of Acanthamoeba castellanii Virulence Alteration by Epigenetic DNA Methylation
Authors: Yi-Hao Wong, Li-Li Chan, Chee-Onn Leong, Stephen Ambu, Joon-Wah Mak, Priyasashi Sahu
Abstract:
Background: Acanthamoeba is a genus of amoebae which lives as a free-living in nature or as a human pathogen that causes severe brain and eye infections. Virulence potential of Acanthamoeba is not constant and can change with growth conditions. DNA methylation, an epigenetic process which adds methyl groups to DNA, is used by eukaryotic cells, including several human parasites to control their gene expression. We used qPCR, siRNA gene silencing, and RNA sequencing (RNA-Seq) to study DNA-methyltransferase gene family (DNMT) in order to indicate the possibility of its involvement in programming Acanthamoeba virulence potential. Methods: A virulence-attenuated Acanthamoeba isolate (designation: ATCC; original isolate: ATCC 50492) was subjected to mouse passages to restore its pathogenicity; a virulence-reactivated isolate (designation: AC/5) was generated. Several established factors associated with Acanthamoeba virulence phenotype were examined to confirm the succession of reactivation process. Differential gene expression of DNMT between ATCC and AC/5 isolates was performed by qPCR. Silencing on DNMT gene expression in AC/5 isolate was achieved by siRNA duplex. Total RNAs extracted from ATCC, AC/5, and siRNA-treated (designation: si-146) were subjected to RNA-Seq for comparative transcriptomic analysis in order to identify the genome-wide effect of DNMT in regulating Acanthamoeba gene expression. qPCR was performed to validate the RNA-Seq results. Results: Physiological and cytophatic assays demonstrated an increased in virulence potential of AC/5 isolate after mouse passages. DNMT gene expression was significantly higher in AC/5 compared to ATCC isolate (p ≤ 0.01) by qPCR. si-146 duplex reduced DNMT gene expression in AC/5 isolate by 30%. Comparative transcriptome analysis identified the differentially expressed genes, with 3768 genes in AC/5 vs ATCC isolate; 2102 genes in si-146 vs AC/5 isolate and 3422 genes in si-146 vs ATCC isolate, respectively (fold-change of ≥ 2 or ≤ 0.5, p-value adjusted (padj) < 0.05). Of these, 840 and 1262 genes were upregulated and downregulated, respectively, in si-146 vs AC/5 isolate. Eukaryotic orthologous group (KOG) assignments revealed a higher percentage of downregulated gene expression in si-146 compared to AC/5 isolate, were related to posttranslational modification, signal transduction and energy production. Gene Ontology (GO) terms for those downregulated genes shown were associated with transport activity, oxidation-reduction process, and metabolic process. Among these downregulated genes were putative genes encoded for heat shock proteins, transporters, ubiquitin-related proteins, proteins for vesicular trafficking (small GTPases), and oxidoreductases. Functional analysis of similar predicted proteins had been described in other parasitic protozoa for their survival and pathogenicity. Decreased expression of these genes in si146-treated isolate may account in part for Acanthamoeba reduced pathogenicity. qPCR on 6 selected genes upregulated in AC/5 compared to ATCC isolate corroborated the RNA sequencing findings, indicating a good concordance between these two analyses. Conclusion: To the best of our knowledge, this study represents the first genome-wide analysis of DNA methylation and its effects on gene expression in Acanthamoeba spp. The present data indicate that DNA methylation has substantial effect on global gene expression, allowing further dissection of the genome-wide effects of DNA-methyltransferase gene in regulating Acanthamoeba pathogenicity.Keywords: Acanthamoeba, DNA methylation, RNA sequencing, virulence
Procedia PDF Downloads 19624 South African Breast Cancer Mutation Spectrum: Pitfalls to Copy Number Variation Detection Using Internationally Designed Multiplex Ligation-Dependent Probe Amplification and Next Generation Sequencing Panels
Authors: Jaco Oosthuizen, Nerina C. Van Der Merwe
Abstract:
The National Health Laboratory Services in Bloemfontien has been the diagnostic testing facility for 1830 patients for familial breast cancer since 1997. From the cohort, 540 were comprehensively screened using High-Resolution Melting Analysis or Next Generation Sequencing for the presence of point mutations and/or indels. Approximately 90% of these patients stil remain undiagnosed as they are BRCA1/2 negative. Multiplex ligation-dependent probe amplification was initially added to screen for copy number variation detection, but with the introduction of next generation sequencing in 2017, was substituted and is currently used as a confirmation assay. The aim was to investigate the viability of utilizing internationally designed copy number variation detection assays based on mostly European/Caucasian genomic data for use within a South African context. The multiplex ligation-dependent probe amplification technique is based on the hybridization and subsequent ligation of multiple probes to a targeted exon. The ligated probes are amplified using conventional polymerase chain reaction, followed by fragment analysis by means of capillary electrophoresis. The experimental design of the assay was performed according to the guidelines of MRC-Holland. For BRCA1 (P002-D1) and BRCA2 (P045-B3), both multiplex assays were validated, and results were confirmed using a secondary probe set for each gene. The next generation sequencing technique is based on target amplification via multiplex polymerase chain reaction, where after the amplicons are sequenced parallel on a semiconductor chip. Amplified read counts are visualized as relative copy numbers to determine the median of the absolute values of all pairwise differences. Various experimental parameters such as DNA quality, quantity, and signal intensity or read depth were verified using positive and negative patients previously tested internationally. DNA quality and quantity proved to be the critical factors during the verification of both assays. The quantity influenced the relative copy number frequency directly whereas the quality of the DNA and its salt concentration influenced denaturation consistency in both assays. Multiplex ligation-dependent probe amplification produced false positives due to ligation failure when ligation was inhibited due to a variant present within the ligation site. Next generation sequencing produced false positives due to read dropout when primer sequences did not meet optimal multiplex binding kinetics due to population variants in the primer binding site. The analytical sensitivity and specificity for the South African population have been proven. Verification resulted in repeatable reactions with regards to the detection of relative copy number differences. Both multiplex ligation-dependent probe amplification and next generation sequencing multiplex panels need to be optimized to accommodate South African polymorphisms present within the genetically diverse ethnic groups to reduce the false copy number variation positive rate and increase performance efficiency.Keywords: familial breast cancer, multiplex ligation-dependent probe amplification, next generation sequencing, South Africa
Procedia PDF Downloads 231