Search results for: magnetic drug delivery system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20606

Search results for: magnetic drug delivery system

20606 Functionalized DOX Nanocapsules by Iron Oxide Nanoparticles for Targeted Drug Delivery

Authors: Afsaneh Ghorbanzadeh, Afshin Farahbakhsh, Zakieh Bayat

Abstract:

The drug capsulation was used for release and targeted delivery in determined time, place and temperature or pH. The DOX nanocapsules were used to reduce and to minimize the unwanted side effects of drug. In this paper, the encapsulation methods of doxorubicin (DOX) and the labeling it by the magnetic core of iron (Fe3O4) has been studied. The Fe3O4 was conjugated with DOX via hydrazine bond. The solution was capsuled by the sensitive polymer of heat or pH such as chitosan-g-poly (N-isopropylacrylamide-co-N,N-dimethylacrylamide), dextran-g-poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide) and mPEG-G2.5 PAMAM by hydrazine bond. The drug release was very slow at temperatures lower than 380°C. There was a rapid and controlled drug release at temperatures higher than 380°C. According to experiments, the use mPEG-G2.5PAMAM is the best method of DOX nanocapsules synthesis, because in this method, the drug delivery time to certain place is lower than other methods and the percentage of released drug is higher. The synthesized magnetic carrier system has potential applications in magnetic drug-targeting delivery and magnetic resonance imaging.

Keywords: drug carrier, drug release, doxorubicin, iron oxide NPs

Procedia PDF Downloads 389
20605 Core-Shell Type Magnetic Nanoparticles for Targeted Drug Delivery

Authors: Yogita Patil-Sen

Abstract:

Magnetic nanoparticles such as those made of iron oxide have been widely explored as biocatalysts, contrast agents, and drug delivery systems. However, some of the challenges associated with these particles are agglomeration and biocompatibility, which lead to concern of toxicity of the particles, especially for drug delivery applications. Coating the particles with biocompatible materials such as lipids and peptides have shown to improve the mentioned issues. Thus, these core-shell type nanoparticles are emerging as the new class of nanomaterials for targeted drug delivery applications. In this study, various types of core-shell magnetic nanoparticles are prepared and characterized using techniques, such as Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Vibrating Sample Magnetometer (VSM) and Thermogravimetric Analysis (TGA). The heating ability of nanoparticles is tested under oscillating magnetic field. The efficacy of the nanoparticles as drug carrier is also investigated. The loading of an anticancer drug, Doxorubicin at 18 °C is measured up to 48 hours using UV-visible spectrophotometer. The drug release profile is obtained under thermal incubation condition at 37 °C and compared with that under the influence of oscillating field. The results suggest that the core-shell nanoparticles exhibit superparamagnetic behaviour, although, coating reduces the magnetic properties of the particles. Both the uncoated and coated particles show good heating ability, again it is observed that coating decreases the heating behaviour of the particles. However, coated particles show higher drug loading efficiency than the uncoated particles and the drug release is much more controlled under the oscillating magnetic field. Thus, the results strongly indicate the suitability of the prepared core-shell type nanoparticles as drug delivery vehicles and their potential in magnetic hyperthermia applications and for hyperthermia cancer therapy.

Keywords: core-shell, hyperthermia, magnetic nanoparticles, targeted drug delivery

Procedia PDF Downloads 304
20604 PEG-b-poly(4-vinylbenzyl phosphonate) Coated Magnetic Iron Oxide Nanoparticles as Drug Carrier System: Biological and Physicochemical Characterization

Authors: Magdalena Hałupka-Bryl, Magdalena Bednarowicz, Ryszard Krzyminiewski, Yukio Nagasaki

Abstract:

Due to their unique physical properties, superparamagnetic iron oxide nanoparticles are increasingly used in medical applications. They are very useful carriers for delivering antitumor drugs in targeted cancer treatment. Magnetic nanoparticles (PEG-PIONs/DOX) with chemotherapeutic were synthesized by coprecipitation method followed by coating with biocompatible polymer PEG-derivative (poly(ethylene glycol)-block-poly(4-vinylbenzylphosphonate). Complete physicochemical characterization was carried out (ESR, HRTEM, X-ray diffraction, SQUID analysis) to evaluate the magnetic properties of obtained PEG-PIONs/DOX. Nanoparticles were investigated also in terms of their stability, drug loading efficiency, drug release and antiproliferative effect on cancer cells. PEG-PIONs/DOX have been successfully used for the efficient delivery of an anticancer drug into the tumor region. Fluorescent imaging showed the internalization of PEG-PIONs/DOX in the cytoplasm. Biodistribution studies demonstrated that PEG-PIONs/DOX preferentially accumulate in tumor region via the enhanced permeability and retention effect. The present findings show that synthesized nanosystem is promising tool for potential magnetic drug delivery.

Keywords: targeted drug delivery, magnetic properties, iron oxide nanoparticles, biodistribution

Procedia PDF Downloads 433
20603 Management and Evaluation of the Importance of Porous Media in Biomedical Engineering as Associated with Magnetic Resonance Imaging Besides Drug Delivery

Authors: Fateme Nokhodchi Bonab

Abstract:

Studies related to magnetic resonance imaging (MRI) and drug delivery are reviewed in this study to demonstrate the role of transport theory in porous media in facilitating advances in biomedical applications. Diffusion processes are believed to be important in many therapeutic modalities such as: B. Delivery of drugs to the brain. We analyse the progress in the development of diffusion equations using the local volume average method and the evaluation of applications related to diffusion equations. Torsion and porosity have significant effects on diffusive transport. In this study, various relevant models of torsion are presented and mathematical modeling of drug release from biodegradable delivery systems is analysed. In this study, a new model of drug release kinetics from porous biodegradable polymeric microspheres under bulk and surface erosion of the polymer matrix is presented. Solute drug diffusion, drug dissolution from the solid phase, and polymer matrix erosion have been found to play a central role in controlling the overall drug release process. This work paves the way for MRI and drug delivery researchers to develop comprehensive models based on porous media theory that use fewer assumptions compared to other approaches.

Keywords: MRI, porous media, drug delivery, biomedical applications

Procedia PDF Downloads 54
20602 The Effect of Backing Layer on Adhesion Properties of Single Layer Ketoprofen Transdermal Drug Delivery System

Authors: Maryam Hamedanlou, Shahla Hajializadeh

Abstract:

The transdermal drug delivery system is one of the types of novel drug delivery system that the drug is absorbed into the skin. The major considerations for designing and producing transdermal patch are small size, suitable drug release and good adhering. In this study, drug-in-adhesive transdermal patch contained non-steroidal anti-inflammatory ketoprofen is prepared. Also, the effect of non-woven fabric and plastic backing layers on adhesion properties is assessed. The results of the test, demonstrated the use of plastic backing layer increases tack and peel rather than non-woven fabric type. The balance tack with plastic backing layer patch is 6.7 (N/mm2), and the fabric one is 3.8 (N/mm2), and their peel is 9.2 (N/25mm) and 8.3 (N/25mm) by arrangement.

Keywords: transdermal drug delivery system, single layer patch of ketoprofen, plastic layer, fabric backing layer

Procedia PDF Downloads 220
20601 Lipid-Coated Magnetic Nanoparticles for Frequency Triggered Drug Delivery

Authors: Yogita Patil-Sen

Abstract:

Superparamagnetic Iron Oxide Nanoparticles (SPIONs) have become increasingly important materials for separation of specific bio-molecules, drug delivery vehicle, contrast agent for MRI and magnetic hyperthermia for cancer therapy. Hyperthermia is emerging as an alternative cancer treatment to the conventional radio- and chemo-therapy, which have harmful side effects. When subjected to an alternating magnetic field, the magnetic energy of SPIONs is converted into thermal energy due to movement of particles. The ability of SPIONs to generate heat and potentially kill cancerous cells, which are more susceptible than the normal cells to temperatures higher than 41 °C forms the basis of hyerpthermia treatement. The amount of heat generated depends upon the magnetic properties of SPIONs which in turn is affected by their properties such as size and shape. One of the main problems associated with SPIONs is particle aggregation which limits their employability in in vivo drug delivery applications and hyperthermia cancer treatments. Coating the iron oxide core with thermally responsive lipid based nanostructures tend to overcome the issue of aggregation as well as improve biocompatibility and can enhance drug loading efficiency. Herein we report suitability of SPIONs and silica coated core-shell SPIONs, which are further, coated with various lipids for drug delivery and magnetic hyperthermia applications. The synthesis of nanoparticles is carried out using the established methods reported in the literature with some modifications. The nanoparticles are characterised using Infrared spectroscopy (IR), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Vibrating Sample Magnetometer (VSM). The heating ability of nanoparticles is tested under alternating magnetic field. The efficacy of the nanoparticles as drug carrier is also investigated. The loading of an anticancer drug, Doxorubicin at 18 °C is measured up to 48 hours using UV-visible spectrophotometer. The drug release profile is obtained under thermal incubation condition at 37 °C and compared with that under the influence of alternating magnetic field. The results suggest that the nanoparticles exhibit superparamagnetic behaviour, although coating reduces the magnetic properties of the particles. Both the uncoated and coated particles show good heating ability, again it is observed that coating decreases the heating behaviour of the particles. However, coated particles show higher drug loading efficiency than the uncoated particles and the drug release is much more controlled under the alternating magnetic field. Thus, the results demonstrate that lipid coated SPIONs exhibit potential as drug delivery vehicles for magnetic hyperthermia based cancer therapy.

Keywords: drug delivery, hyperthermia, lipids, superparamagnetic iron oxide nanoparticles (SPIONS)

Procedia PDF Downloads 203
20600 Experimental Study on Capturing of Magnetic Nanoparticles Transported in an Implant Assisted Cylindrical Tube under Magnetic Field

Authors: Anurag Gaur Nidhi

Abstract:

Targeted drug delivery is a method of delivering medication to a patient in a manner that increases the concentration of the medication in some parts of the body relative to others. Targeted drug delivery seeks to concentrate the medication in the tissues of interest while reducing the relative concentration of the medication in the remaining tissues. This improves efficacy of the while reducing side effects. In the present work, we investigate the effect of magnetic field, flow rate and particle concentration on the capturing of magnetic particles transported in a stent implanted fluidic channel. Iron oxide magnetic nanoparticles (Fe3O4) nanoparticles were synthesized via co-precipitation method. The synthesized Fe3O4 nanoparticles were added in the de-ionized (DI) water to prepare the Fe3O4 magnetic particle suspended fluid. This fluid is transported in a cylindrical tube of diameter 8 mm with help of a peristaltic pump at different flow rate (25-40 ml/min). A ferromagnetic coil of SS 430 has been implanted inside the cylindrical tube to enhance the capturing of magnetic nanoparticles under magnetic field. The capturing of magnetic nanoparticles was observed at different magnetic magnetic field, flow rate and particle concentration. It is observed that capture efficiency increases from 47-67 % at magnetic field 2-5kG, respectively at particle concentration 0.6 mg/ml and at flow rate 30 ml/min. However, the capture efficiency decreases from 65 to 44 % by increasing the flow rate from 25 to 40 ml/min, respectively. Furthermore, it is observed that capture efficiency increases from 51 to 67 % by increasing the particle concentration from 0.3 to 0.6 mg/ml, respectively.

Keywords: capture efficiency, implant assisted-Magnetic drug targeting (IA-MDT), magnetic nanoparticles, In-vitro study

Procedia PDF Downloads 277
20599 Control of Doxorubicin Release Rate from Magnetic PLGA Nanoparticles Using a Non-Permanent Magnetic Field

Authors: Inês N. Peça , A. Bicho, Rui Gardner, M. Margarida Cardoso

Abstract:

Inorganic/organic nanocomplexes offer tremendous scope for future biomedical applications, including imaging, disease diagnosis and drug delivery. The combination of Fe3O4 with biocompatible polymers to produce smart drug delivery systems for use in pharmaceutical formulation present a powerful tool to target anti-cancer drugs to specific tumor sites through the application of an external magnetic field. In the present study, we focused on the evaluation of the effect of the magnetic field application time on the rate of drug release from iron oxide polymeric nanoparticles. Doxorubicin, an anticancer drug, was selected as the model drug loaded into the nanoparticles. Nanoparticles composed of poly(d-lactide-co-glycolide (PLGA), a biocompatible polymer already approved by FDA, containing iron oxide nanoparticles (MNP) for magnetic targeting and doxorubicin (DOX) were synthesized by the o/w solvent extraction/evaporation method and characterized by scanning electron microscopy (SEM), by dynamic light scattering (DLS), by inductively coupled plasma-atomic emission spectrometry and by Fourier transformed infrared spectroscopy. The produced particles yielded smooth surfaces and spherical shapes exhibiting a size between 400 and 600 nm. The effect of the magnetic doxorubicin loaded PLGA nanoparticles produced on cell viability was investigated in mammalian CHO cell cultures. The results showed that unloaded magnetic PLGA nanoparticles were nontoxic while the magnetic particles without polymeric coating show a high level of toxicity. Concerning the therapeutic activity doxorubicin loaded magnetic particles cause a remarkable enhancement of the cell inhibition rates compared to their non-magnetic counterpart. In vitro drug release studies performed under a non-permanent magnetic field show that the application time and the on/off cycle duration have a great influence with respect to the final amount and to the rate of drug release. In order to determine the mechanism of drug release, the data obtained from the release curves were fitted to the semi-empirical equation of the the Korsmeyer-Peppas model that may be used to describe the Fickian and non-Fickian release behaviour. Doxorubicin release mechanism has shown to be governed mainly by Fickian diffusion. The results obtained show that the rate of drug release from the produced magnetic nanoparticles can be modulated through the magnetic field time application.

Keywords: drug delivery, magnetic nanoparticles, PLGA nanoparticles, controlled release rate

Procedia PDF Downloads 233
20598 Integrated Mathematical Modeling and Advance Visualization of Magnetic Nanoparticle for Drug Delivery, Drug Release and Effects to Cancer Cell Treatment

Authors: Norma Binti Alias, Che Rahim Che The, Norfarizan Mohd Said, Sakinah Abdul Hanan, Akhtar Ali

Abstract:

This paper discusses on the transportation of magnetic drug targeting through blood within vessels, tissues and cells. There are three integrated mathematical models to be discussed and analyze the concentration of drug and blood flow through magnetic nanoparticles. The cell therapy brought advancement in the field of nanotechnology to fight against the tumors. The systematic therapeutic effect of Single Cells can reduce the growth of cancer tissue. The process of this nanoscale phenomena system is able to measure and to model, by identifying some parameters and applying fundamental principles of mathematical modeling and simulation. The mathematical modeling of single cell growth depends on three types of cell densities such as proliferative, quiescent and necrotic cells. The aim of this paper is to enhance the simulation of three types of models. The first model represents the transport of drugs by coupled partial differential equations (PDEs) with 3D parabolic type in a cylindrical coordinate system. This model is integrated by Non-Newtonian flow equations, leading to blood liquid flow as the medium for transportation system and the magnetic force on the magnetic nanoparticles. The interaction between the magnetic force on drug with magnetic properties produces induced currents and the applied magnetic field yields forces with tend to move slowly the movement of blood and bring the drug to the cancer cells. The devices of nanoscale allow the drug to discharge the blood vessels and even spread out through the tissue and access to the cancer cells. The second model is the transport of drug nanoparticles from the vascular system to a single cell. The treatment of the vascular system encounters some parameter identification such as magnetic nanoparticle targeted delivery, blood flow, momentum transport, density and viscosity for drug and blood medium, intensity of magnetic fields and the radius of the capillary. Based on two discretization techniques, finite difference method (FDM) and finite element method (FEM), the set of integrated models are transformed into a series of grid points to get a large system of equations. The third model is a single cell density model involving the three sets of first order PDEs equations for proliferating, quiescent and necrotic cells change over time and space in Cartesian coordinate which regulates under different rates of nutrients consumptions. The model presents the proliferative and quiescent cell growth depends on some parameter changes and the necrotic cells emerged as the tumor core. Some numerical schemes for solving the system of equations are compared and analyzed. Simulation and computation of the discretized model are supported by Matlab and C programming languages on a single processing unit. Some numerical results and analysis of the algorithms are presented in terms of informative presentation of tables, multiple graph and multidimensional visualization. As a conclusion, the integrated of three types mathematical modeling and the comparison of numerical performance indicates that the superior tool and analysis for solving the complete set of magnetic drug delivery system which give significant effects on the growth of the targeted cancer cell.

Keywords: mathematical modeling, visualization, PDE models, magnetic nanoparticle drug delivery model, drug release model, single cell effects, avascular tumor growth, numerical analysis

Procedia PDF Downloads 394
20597 Development of an Erodable Matrix Drug Delivery Platform for Controled Delivery of Non Steroidal Anti Inflamatory Drugs Using Melt Granulation Process

Authors: A. Hilsana, Vinay U. Rao, M. Sudhakar

Abstract:

Even though a number of non-steroidal anti-inflammatory drugs (NSAIDS) are available with different chemistries, they share a common solubility characteristic that is they are relatively more soluble in alkaline environment and practically insoluble in acidic environment. This work deals with developing a wax matrix drug delivery platform for controlled delivery of three model NSAIDS, Diclofenac sodium (DNa), Mefenamic acid (MA) and Naproxen (NPX) using the melt granulation technique. The aim of developing the platform was to have a general understanding on how an erodible matrix system modulates drug delivery rate and extent and how it can be optimized to give a delivery system which shall release the drug as per a common target product profile (TPP). Commonly used waxes like Cetostearyl alcohol and stearic acid were used singly an in combination to achieve a TPP of not 15 to 35% in 1 hour and not less than 80% Q in 24 hours. Full factorial design of experiments was followed for optimization of the formulation.

Keywords: NSAIDs, controlled delivery, target product profile, melt granulation

Procedia PDF Downloads 300
20596 Synthesis and Characterisation of Starch-PVP as Encapsulation Material for Drug Delivery System

Authors: Nungki Rositaningsih, Emil Budianto

Abstract:

Starch has been widely used as an encapsulation material for drug delivery system. However, starch hydrogel is very easily degraded during metabolism in human stomach. Modification of this material is needed to improve the encapsulation process in drug delivery system, especially for gastrointestinal drug. In this research, three modified starch-based hydrogels are synthesized i.e. Crosslinked starch hydrogel, Semi- and Full- Interpenetrating Polymer Network (IPN) starch hydrogel using Poly(N-Vinyl-Pyrrolidone). Non-modified starch hydrogel was also synthesized as a control. All of those samples were compared as biomaterials, floating drug delivery, and their ability in loading drug test. Biomaterial characterizations were swelling test, stereomicroscopy observation, Differential Scanning Calorimetry (DSC), and Fourier Transform Infrared Spectroscopy (FTIR). Buoyancy test and stereomicroscopy scanning were done for floating drug delivery characterizations. Lastly, amoxicillin was used as test drug, and characterized with UV-Vis spectroscopy for loading drug observation. Preliminary observation showed that Full-IPN has the most dense and elastic texture, followed by Semi-IPN, Crosslinked, and Non-modified in the last position. Semi-IPN and Crosslinked starch hydrogel have the most ideal properties and will not be degraded easily during metabolism. Therefore, both hydrogels could be considered as promising candidates for encapsulation material. Further analysis and issues will be discussed in the paper.

Keywords: biomaterial, drug delivery system, interpenetrating polymer network, poly(N-vinyl-pyrrolidone), starch hydrogel

Procedia PDF Downloads 222
20595 Development and Evaluation of Simvastatin Based Self Nanoemulsifying Drug Delivery System (SNEDDS) for Treatment of Alzheimer's Disease

Authors: Hardeep

Abstract:

The aim of this research work to improve the solubility and bioavailability of Simvastatin using a self nanoemulsifying drug delivery system (SNEDDS). Self emulsifying property of various oils including essential oils was evaluated with suitable surfactants and co-surfactants. Validation of a method for accuracy, repeatability, Interday and intraday precision, ruggedness, and robustness were within acceptable limits. The liquid SNEDDS was prepared and optimized using a ternary phase diagram, thermodynamic, centrifugation and cloud point studies. The globule size of optimized formulations was less than 200 nm which could be an acceptable nanoemulsion size range. The mean droplet size, drug loading, PDI and zeta potential were found to be 141.0 nm, 92.22%, 0.23 and -10.13 mV and 153.5nm, 93.89 % ,0.41 and -11.7 mV and 164.26 nm, 95.26% , 0.41 and -10.66mV respectively.

Keywords: simvastatin, self nanoemulsifying drug delivery system, solubility, bioavailability

Procedia PDF Downloads 163
20594 Design, Development and Characterization of Pioglitazone Transdermal Drug Delivery System

Authors: Dwarakanadha Reddy Peram, D. Swarnalatha, C. Gopinath

Abstract:

The main aim of this research work was to design and development characterization of Pioglitazone transdermal drug delivery system by using various polymers such as Olibanum with different concentration by solvent evaporation technique. The prepared formulations were evaluated for different physicochemical characteristics like thickness, folding endurance, drug content, percentage moisture absorption, percentage moisture loss, percentage elongation break test and weight uniformity. The diffusion studies were performed by using modified Franz diffusion cells. The result of dissolution studies shows that formulation, F3 (Olibanum with 50 mg) showed maximum release of 99.95 % in 12hrs, whereas F1 (Olibanum and EC backing membrane) showed minimum release of 93.65% in 12 hr. Based on the drug release and physicochemical values obtained the formulation F3 is considered as an optimized formulation which shows higher percentage of drug release of 99.95 % in 12 hr. The developed transdermal patches increase the therapeutic efficacy and reduced toxic effect of pioglitazone.

Keywords: pioglitazone, olibanum, transdermal drug delivery system, drug release percantage

Procedia PDF Downloads 177
20593 Intelligent Drug Delivery Systems

Authors: Shideh Mohseni Movahed, Mansoureh Safari

Abstract:

Intelligent drug delivery systems (IDDS) are innovative technological innovations and clinical way to advance current treatments. These systems differ in technique of therapeutic administration, intricacy, materials and patient compliance to address numerous clinical conditions that require different pharmacological therapies. IDDS capable of releasing an active molecule at the proper site and at a amount that adjusts in response to the progression of the disease or to certain functions/biorhythms of the organism is particularly appealing. In this paper, we describe the most recent advances in the development of intelligent drug delivery systems.

Keywords: drug delivery systems, IDDS, medicine, health

Procedia PDF Downloads 195
20592 Development of Nanoparticulate Based Chimeric Drug Delivery System Using Drug Bioconjugated Plant Virus Capsid on Biocompatible Nanoparticles

Authors: Indu Barwal, Shloka Thakur, Subhash C. Yadav

Abstract:

The plant virus capsid protein based nanoparticles are extensively studied for their application in biomedical research for development of nanomedicines and drug delivery systems. We have developed a chimeric drug delivery system by controlled in vitro assembly of separately bioconjugated fluorescent dye (as reporting molecule), folic acid (as receptor binding biomolecule for targeted delivery) and doxorubicin (as anticancer drug) using modified EDC NHS chemistry on heterologously overexpressed (E. coli) capsid proteins of cowpea chlorotic mottle virus (CCMV). This chimeric vehicle was further encapsidated on gold nanoparticles (20nm) coated with 5≠ thiolated DNA probe to neutralize the positive charge of capsid proteins. This facilitates the in vitro assembly of modified capsid subunits on the gold nanoparticles to develop chimeric GNPs encapsidated targeted drug delivery system. The bioconjugation of functionalities, number of functionality on capsid subunits as well as virus like nanoparticles, structural stability and in vitro assembly were confirmed by SDS PAGE, relative absorbance, MALDI TOF, ESI-MS, Circular dichroism, intrinsic tryptophan fluorescence, zeta particle size analyzer and TEM imaging. This vehicle was stable at pH 4.0 to 8.0 suitable for many organelles targeting. This in vitro assembled chimeric plant virus like particles could be suitable for ideal drug delivery vehicles for subcutaneous cancer treatment and could be further modified for other type of cancer treatment by conjugating other functionalities (targeting, drug) on capsids.

Keywords: chimeric drug delivery vehicles, bioconjugated plant, virus, capsid

Procedia PDF Downloads 451
20591 Synthesis of Multi-Functional Iron Oxide Nanoparticles for Targeted Drug Delivery in Cancer Treatment

Authors: Masome Moeni, Roya Abedizadeh, Elham Aram, Hamid Sadeghi-Abandansari, Davood Sabour, Robert Menzel, Ali Hassanpour

Abstract:

Significant number of studies and preclinical research in formulation of cancer nano-pharmaceutics have led to an improvement in cancer care. Nonetheless, the antineoplastic agents have ‘failed to live up to its promise’ since their clinical performance is moderately low. For almost ninety years, iron oxide nanoparticles (IONPS) have managed to keep its reputation in clinical application due to their low toxicity, versatility and multi-modal capabilities. Drug Administration approved utilization of IONPs for diagnosis of cancer as contrast media in magnetic resonance imaging, as heat mediator in magnetic hyperthermia and for the treatment of iron deficiency. Furthermore, IONPs have high drug-loading capacity, which makes them good candidates as therapeutic agent transporters. There are yet challenges to overcome for successful clinical application of IONPs, including stability of drug and poor delivery, which might lead to (i) drug resistance, (ii) shorter blood circulation time, and (iii) rapid elimination and adverse side effects from the system. In this study, highly stable and super paramagnetic IONPs were prepared for efficient and targeted drug delivery in cancer treatment. The synthesis procedure was briefly involved the production of IONPs via co-precipitation followed by coating with tetraethyl orthosilicate and 3-aminopropylethoxysilane and grafting with folic acid for stability targeted purposes and controlled drug release. Physiochemical and morphological properties of modified IONPs were characterised using different analytical techniques. The resultant IONPs exhibited clusters of 10 nm spherical shape crystals with less than 100 nm size suitable for drug delivery. The functionalized IONP showed mesoporous features, high stability, dispersibility and crystallinity. Subsequently, the functionalized IONPs were successfully loaded with oxaliplatin, a chemotherapeutic agent, for a controlled drug release in an actively targeting cancer cells. FT-IR observations confirmed presence of oxaliplatin functional groups, while ICP-MS results verified the drug loading was ~ 1.3%.

Keywords: cancer treatment, chemotherapeutic agent, drug delivery, iron oxide, multi-functional nanoparticle

Procedia PDF Downloads 54
20590 Iontophoretic Drug Transport of Some Anti-Diabetic Agents

Authors: Ashish Jain, Satish Nayak

Abstract:

Transdermal iontophoretic drug delivery system is viable drug delivery platform technology and has a strong market worldwide. Transdermal drug delivery system is particularly desirable for therapeutic agents that need prolonged administration at controlled plasma level. This makes appropriateness to antihypertensive and anti-diabetic agents for their transdermal development. Controlled zero order absorption, easily termination of drug delivery and easy to administration also support for popularity of transdermal delivery. In this current research iontophoretic delivery of various anti diabetic agents like glipizide, glibenclamide and glimepiride were carried out. The experiments were carried out at different drug concentrations and different current densities using cathodal iontophoresis. Diffusion cell for iontophoretic permeation study was modified according to Glikfield Design. Pig skin was used for in vitro permeation study and for the in-vivo study New Zealand rabbits were used. At all concentration level iontophoresis showed enhanced permeation rate compared to passive controls. Iontophoretic transports of selected drugs were found to be increased with the current densities. Results showed that target permeation rate for selected drugs could be achieved with the aid of iontophoresis by increasing the area in an appreciable range.

Keywords: transdermal, iontophoresis, pig skin, rabbits, glipizide, glibeclamide

Procedia PDF Downloads 352
20589 Application of Low Frequency Ac Magnetic Field for Controlled Delivery of Drugs by Magnetic Nanoparticles

Authors: K. Yu Vlasova, M. A. Abakumov, H. Wishwarsao, M. Sokolsky, N. V. Nukolova, A. G. Majouga, Y. I. Golovin, N. L. Klyachko, A. V. Kabanov

Abstract:

Introduction:Nowadays pharmaceutical medicine is aimed to create systems for combined therapy, diagnostic, drug delivery and controlled release of active molecules to target cells. Magnetic nanoparticles (MNPs) are used to achieve this aim. MNPs can be applied in molecular diagnostics, magnetic resonance imaging (T1/T2 contrast agents), drug delivery, hyperthermia and could improve therapeutic effect of drugs. The most common drug containers, containing MNPs, are liposomes, micelles and polymeric molecules bonded to the MNPs surface. Usually superparamagnetic nanoparticles are used (the general diameter is about 5-6 nm) and all effects of high frequency magnetic field (MF) application are based on Neel relaxation resulting in heating of surrounded media. In this work we try to develop a new method to improve drug release from MNPs under super low frequency MF. We suppose that under low frequency MF exposures the Brown’s relaxation dominates and MNPs rotation could occur leading to conformation changes and release of bioactive molecules immobilized on MNPs surface.The aim of this work was to synthesize different systems with active drug (biopolymers coated MNPs nanoclusters with immobilized enzymes and doxorubicin (Dox) loaded magnetic liposomes/micelles) and investigate the effect of super low frequency MF on these drug containers. Methods: We have synthesized MNPs of magnetite with magnetic core diameter 7-12 nm . The MNPs were coated with block-copolymer of polylysine and polyethylene glycol. Superoxide dismutase 1 (SOD1) was electrostatically adsorbed on the surface of the clusters. Liposomes were prepared as follow: MNPs, phosphatidylcholine and cholesterol were dispersed in chloroform, dried to get film and then dispersed in distillated water, sonicated. Dox was added to the solution, pH was adjusted to 7.4 and excess of drug was removed by centrifugation through 3 kDa filters. Results: Polylysine coated MNPs formed nanosized clusters (as observed by TEM) with intensity average diameter of 112±5 nm and zeta potential 12±3 mV. After low frequency AC MF exposure we observed change of immobilized enzyme activity and hydrodynamic size of clusters. We suppose that the biomolecules (enzymes) are released from the MNPs surface followed with additional aggregation of complexes at the MF in medium. Centrifugation of the nanosuspension after AC MF exposures resulted in increase of positive charge of clusters and change in enzyme concentration in comparison with control sample without MF, thus confirming desorption of negatively charged enzyme from the positively charged surface of MNPs. Dox loaded magnetic liposomes had average diameter of 160±8 nm and polydispersity index (PDI) 0.25±0.07. Liposomes were stable in DW and PBS at pH=7.4 at 370C during a week. After MF application (10 min of exposure, 50 Hz, 230 mT) diameter of liposomes raised to 190±10 nm and PDI was 0.38±0.05. We explain this by destroying and/or reorganization of lipid bilayer, that leads to changes in release of drug in comparison with control without MF exposure. Conclusion: A new application of low frequency AC MF for drug delivery and controlled drug release was shown. Investigation was supported by RSF-14-13-00731 grant, K1-2014-022 grant.

Keywords: magnetic nanoparticles, low frequency magnetic field, drug delivery, controlled drug release

Procedia PDF Downloads 453
20588 Preparation of Polymer-Stabilized Magnetic Iron Oxide as Selective Drug Nanocarriers to Human Acute Myeloid Leukemia

Authors: Kheireddine El-Boubbou

Abstract:

Drug delivery to target human acute myeloid leukemia (AML) using a nanoparticulate chemotherapeutic formulation that can deliver drugs selectively to AML cancer is hugely needed. In this work, we report the development of a nanoformulation made of polymeric-stabilized multifunctional magnetic iron oxide nanoparticles (PMNP) loaded with the anticancer drug Doxorubicin (Dox) as a promising drug carrier to treat AML. Dox@PMNP conjugates simultaneously exhibited high drug content, maximized fluorescence, and excellent release properties. Nanoparticulate uptake and cell death following addition of Dox@PMNPs were then evaluated in different types of human AML target cells, as well as on normal human cells. While the unloaded MNPs were not toxic to any of the cells, Dox@PMNPs were found to be highly toxic to the different AML cell lines, albeit at different inhibitory concentrations (IC50 values), but showed very little toxicity towards the normal cells. In comparison, free Dox showed significant potency concurrently to all the cell lines, suggesting huge potentials for the use of Dox@PMNPs as selective AML anticancer cargos. Live confocal imaging, fluorescence and electron microscopy confirmed that Dox is indeed delivered to the nucleus in relatively short periods of time, causing apoptotic cell death. Importantly, this targeted payload may potentially enhance the effectiveness of the drug in AML patients and may further allow physicians to image leukemic cells exposed to Dox@PMNPs using MRI.

Keywords: magnetic nanoparticles, drug delivery, acute myeloid leukemia, iron oxide, cancer nanotherapy

Procedia PDF Downloads 197
20587 Development of Mucoadhesive Multiparticulate System for Nasal Drug Delivery

Authors: K. S. Hemant Yadav, H. G. Shivakumar

Abstract:

The present study investigation was to prepare and evaluate the mucoadhesive multi-particulate system for nasal drug delivery of anti-histaminic drug. Ebastine was chosen as the model drug. Drug loaded nanoparticles of Ebastine were prepared by ionic gelation method using chitosan as polymer using the drug-polymer weight ratios 1:1, 1:2, 1:3. Sodium tripolyphosphate (STPP) was used as the cross-linking agent in the range of 0.5 and 0.7% w/v. FTIR and DSC studies indicated that no chemical interaction occurred between the drug and polymers. Particle size ranged from 169 to 500 nm. The drug loading and entrapment efficiency was found to increase with increase in chitosan concentration and decreased with increase in poloxamer 407 concentration. The results of in vitro mucoadhesion carried out showed that all the prepared formulation had good mucoadhesive property and mucoadhesion increases with increase in the concentration of chitosan. The in vitro release pattern of all the formulations was observed to be in a biphasic manner characterized by slight burst effect followed by a slow release. By the end of 8 hrs, formulation F6 showed a release of only 86.9% which explains its sustained behaviour. The ex-vivo permeation of the pure drug ebastine was rapid than the optimized formulation(F6) indicating the capability of the chitosan polymer to control drug permeation rate through the sheep nasal mucosa. The results indicated that the mucoadhesive nanoparticulate system can be used for the nasal delivery of antihistaminic drugs in an effective manner.

Keywords: nasal, nanoparticles, ebastine, anti-histaminic drug, mucoadhesive multi-particulate system

Procedia PDF Downloads 396
20586 Modulated Bioavailability of an Anti HIV Drug through a Self-Nanoemulsifying Drug Delivery System

Authors: Sunit Kumar Sahoo, Prakash Chandra Senapati

Abstract:

The main drawback to design drug delivery systems with BCS class II drugs is their low bioavailabilty due to their inherent low permeability characteristics. So the present investigation aspire to develop a self-nanoemulsifying drug delivery system (SNEDDS) of BCS class II anti HIV drug efavirenz (EFZ) using mixtures of non-ionic surfactant mixtures with the main objective to improve the oral bioavailability of said drug. Results obtained from solubility studies of EFZ in various expients utilized for construction of the pseudo ternary phase diagram containing surfactant mixtures. Surfactants in 1:1 combination are used with different co-surfactants in different ratio to delineate the area of monophasic region of the pseudo ternary phase diagram. The formulations which offered positive results in different thermodynamic stability studies were considered for percentage transmittance and turbidity analysis. The various characterization studies like the TEM analysis of post diluted SNEDDS formulations r confirmed the size in nanometric range (below 50 nm) and FT-IR studies confirmed the intactness of the drug the in the preconcentrate. The in vitro dissolution profile of SNEDDS showed that 80% drug was released within 30 min in case of optimized SNEDDS while it was approximately 18.3 % in the case of plain drug powder.. The Pharmacokinetic study using rat model revealed a 2.63 fold increase in AUC (0-∞) in comparison to plain EFZ suspension. The designed delivery system illustrated the confidence in creating a formulation of EFZ with enhanced bioavailability for better HIV treatment.

Keywords: efavirenz, self-nanoemulsifying, surfactant mixture, bioavailability

Procedia PDF Downloads 325
20585 Development and Evaluation of Gastro Retentive Floating Tablets of Ayurvedic Vati Formulation

Authors: Imran Khan Pathan, Anil Bhandari, Peeyush K. Sharma, Rakesh K. Patel, Suresh Purohit

Abstract:

Floating tablets of Marichyadi Vati were developed with an aim to prolong its gastric residence time and increase the bioavailability of drug. Rapid gastrointestinal transit could result in incomplete drug release from the drug delivery system above the absorption zone leading to diminished efficacy of the administered dose. The tablets were prepared by wet granulation technique, using HPMC E50 LV act as Matrixing agent, Carbopol as floating enhancer, microcrystalline cellulose as binder, sodium bi carbonate as effervescent agent with other excipients. The simplex lattice design was used for selection of variables for tablets formulation. Formulation was optimized on the basis of floating time and in vitro drug release. The results showed that the floating lag time for optimized formulation was found to be 61 second with about 97.32 % of total drug release within 3 hours. The in vitro release profiles of drug from the formulation could be best expressed zero order with highest linearity r2 = 0.9943. It was concluded that the gastroretentive drug delivery system can be developed for Marichyadi Vati containing piperine to increase the residence time of the drug in the stomach and thereby increasing bioavailability.

Keywords: piperine, Marichyadi Vati, gastroretentive drug delivery, floating tablet

Procedia PDF Downloads 421
20584 Preparation and Characterization of Chitosan-Hydrocortisone Nanoshell for Drug Delivery Application

Authors: Suyeon Kwon, Ik Joong Kang, Wang Bingjie

Abstract:

Chitosan is a polymer that is usually produced from N-deacetylation of chitin. It is emerging as a promising biocompatible polymer that is harmless to humans. For the reason that many merits such as good adsorptive, biodegradability, many researches are being done on the chitosan for drug delivery system. Drug delivery system (DDS) has been developed for the control of drug. It makes the drug can be delivered effectively and safely into the targeted human body. The drug used in this work is hydrocortisone that is used in Rheumatism, skin diseases, allergy treatment. In this work, hydrocortisone was used to make allergic rhinitis medicine. Our study focuses on drug delivery through the nasal mucosa by using hydrocortisone impregnated chitosan nanoshells. This study has performed an investigation in order to establish the optimal conditions, changing concentration, quantity of hydrocortisone. DLS, SEM, TEM, FT-IR, UV spectrum were used to analyze the manufactured chitosan-hydrocortisone silver nanoshell and silver nanoshell, whose function as drug carriers. This study has performed an investigation on new drug carriers and delivery routes for hydrocortisone. Various methods of manufacturing chitosan-hydrocortisone nanoshells were attempted in order to establish the optimal condition. As a result, the average size of chitosan-hydrocortisone silver nanoshell is about 80 nm. So, chitosan-hydrocortisone silver nanoshell is suitable as drug carriers because optimal size of drug carrier in human body is less than 120 nm. UV spectrum of Chitosan-hydrocortisone silver nanoshell shows the characteristic peak of silver nanoshell at 420 nm. Likewise, the average size of chitosan-hydrocortisone silver nanoshell is about 100nm. It is also suitable for drug carrier in human body. Also, multi-layered silver shell over chitosan nanoshells induced the red-shift of absorption peak and increased the intensity of absorption peak. The resultant chitosan–silver nanocomposites (or nanoshells) exhibited the absorption peak around 430nm attributed to silvershell formation. i.e. the absorption peak was red-shifted by ca. 40 nm in reference to 390 nm of silver nanoshells.

Keywords: chitosan, drug delivery, hydrocortisone, rhinitis, nanoshell

Procedia PDF Downloads 235
20583 Functionalized Nanoparticles for Drug Delivery Applications

Authors: Temesgen Geremew

Abstract:

Functionalized nanoparticles have emerged as a revolutionary platform for drug delivery, offering significant advantages over traditional methods. By strategically modifying their surface properties, these nanoparticles can be designed to target specific tissues and cells, significantly reducing off-target effects and enhancing therapeutic efficacy. This targeted approach allows for lower drug doses, minimizing systemic exposure and potential side effects. Additionally, functionalization enables controlled release of the encapsulated drug, improving drug stability and reducing the frequency of administration, leading to improved patient compliance. This work explores the immense potential of functionalized nanoparticles in revolutionizing drug delivery, addressing limitations associated with conventional therapies and paving the way for personalized medicine with precise and targeted treatment strategies.

Keywords: nanoparticles, drug, nanomaterials, applications

Procedia PDF Downloads 20
20582 Numerical Investigation of Thermally Triggered Release Kinetics of Double Emulsion for Drug Delivery Using Phase Change Material

Authors: Yong Ren, Yaping Zhang

Abstract:

A numerical model has been developed to investigate the thermally triggered release kinetics for drug delivery using phase change material as shell of microcapsules. Biocompatible material n-Eicosane is used as demonstration. PCM shell of microcapsule will remain in solid form after the drug is taken, so the drug will be encapsulated by the shell, and will not be released until the target body part of lesion is exposed to external heat source, which will thermally trigger the release kinetics, leading to solid-to-liquid phase change. The findings can lead to better understanding on the key effects influencing the phase change process for drug delivery applications. The facile approach to release drug from core/shell structure of microcapsule can be well integrated with organic solvent free fabrication of microcapsules, using double emulsion as template in microfluidic aqueous two phase system.

Keywords: phase change material, drug release kinetics, double emulsion, microfluidics

Procedia PDF Downloads 325
20581 Drug Delivery to Solid Tumor: Effect of Dynamic Capillary Network Induced by Tumor

Authors: Mostafa Sefidgar, Kaamran Raahemifar, Hossein Bazmara, Madjid Soltani

Abstract:

The computational methods provide condition for investigation related to the process of drug delivery, such as convection and diffusion of drug in extracellular matrices, and drug extravasation from microvascular. The information of this process clarifies the mechanisms of drug delivery from the injection site to absorption by a solid tumor. In this study, an advanced numerical method is used to solve fluid flow and solute transport equations simultaneously to show how capillary network structure induced by tumor affects drug delivery. The effect of heterogeneous capillary network induced by tumor on interstitial fluid flow and drug delivery is investigated by this multi scale method. The sprouting angiogenesis model is used for generating capillary network induced by tumor. Fluid flow governing equations are implemented to calculate blood flow through the tumor-induced capillary network and fluid flow in normal and tumor tissues. The Starling’s law is used for closing this system of equations and coupling the intravascular and extravascular flows. Finally, convection-diffusion-reaction equation is used to simulate drug delivery. The dynamic approach which changes the capillary network structure based on signals sent by hemodynamic and metabolic stimuli is used in this study for more realistic assumption. The study indicates that drug delivery to solid tumors depends on the tumor induced capillary network structure. The dynamic approach generates the irregular capillary network around the tumor and predicts a higher interstitial pressure in the tumor region. This elevated interstitial pressure with irregular capillary network leads to a heterogeneous distribution of drug in the tumor region similar to in vivo observations. The investigation indicates that the drug transport properties have a significant role against the physiological barrier of drug delivery to a solid tumor.

Keywords: solid tumor, physiological barriers to drug delivery, angiogenesis, microvascular network, solute transport

Procedia PDF Downloads 281
20580 Ocular Delivery of Charged Drugs Using Iontophoresis

Authors: Abraham J. Domb

Abstract:

Nearly every eye disorder and treatment of post operated eyes evolve around ocular drug delivery. Most ocular diseases are treated with repeated topical applications administered as eye drops. Various attempts have been made to improve drug bioavailability by increasing both the retention of the drug in the pre-corneal area and the penetration of the drug through the cornea. However, currently marketed products are associated with vision blurring, irritability, patient discomfort, toxicity, low drug bioavailability, manufacturing difficulties and inadequate aqueous stability. It has been suggested to use iontophoresis for the non-invasive delivery of drugs. The iontophoretic device is composed of a control panel, two electrodes, a cylindrical well for the insertion of a disposable hydrogel, and a disposable hydrogel pellet. The drug-loaded hydrogel is attached to a cylindrical well at the edge of the electrode of the device and placed onto the eye. The device applies a variable electrical current that can vary from 0.1 mA to 1.5 mA for pre-set periods from 10 seconds to 300 seconds. The iontophoretic device developed in the lab was found to be effective in the delivery of the drugs: gentamicin, water-soluble steroids, and various anticancer agents. When testing in rabbits for safety, the device was considered to be non-toxic and effective.

Keywords: iontophoresis, eye disorder, drug delivery, hydrogel

Procedia PDF Downloads 45
20579 Tunable Control of Therapeutics Release from the Nanochannel Delivery System (nDS)

Authors: Thomas Geninatti, Bruno Giacomo, Alessandro Grattoni

Abstract:

Nanofluidic devices have been investigated for over a decade as promising platforms for the controlled release of therapeutics. The nanochannel drug delivery system (nDS), a membrane fabricated with high precision silicon techniques, capable of zero-order release of drugs by exploiting diffusion transport at the nanoscale originated from the interactions between molecules with nanochannel surfaces, showed the flexibility of the sustained release in vitro and in vivo, over periods of time ranging from weeks to months. To improve the implantable bio nanotechnology, in order to create a system that possesses the key features for achieve the suitable release of therapeutics, the next generation of nDS has been created. Platinum electrodes are integrated by e-beam deposition onto both surfaces of the membrane allowing low voltage (<2 V) and active temporal control of drug release through modulation of electrostatic potentials at the inlet and outlet of the membrane’s fluidic channels. Hence, a tunable administration of drugs is ensured from the nanochannel drug delivery system. The membrane will be incorporated into a peek implantable capsule, which will include drug reservoir, control hardware and RF system to allow suitable therapeutic regimens in real-time. Therefore, this new nanotechnology offers tremendous potential solutions to manage chronic disease such as cancer, heart disease, circadian dysfunction, pain and stress.

Keywords: nanochannel membrane, drug delivery, tunable release, personalized administration, nanoscale transport, biomems

Procedia PDF Downloads 280
20578 Biodegradable Polymeric Vesicles Containing Magnetic Nanoparticles, Quantum Dots and Anticancer Drugs for Drug Delivery and Imaging

Authors: Fei Ye, Åsa Barrefelt, Manuchehr Abedi-Valugerdi, Khalid M. Abu-Salah, Salman A. Alrokayan, Mamoun Muhammed, Moustapha Hassan

Abstract:

With appropriate encapsulation in functional nanoparticles drugs are more stable in physiological environment and the kinetics of the drug can be more carefully controlled and monitored. Furthermore, targeted drug delivery can be developed to improve chemotherapy in cancer treatment, not only by enhancing intracellular uptake by target cells but also by reducing the adverse effects in non-target organs. Inorganic imaging agents, delivered together with anti-cancer drugs, enhance the local imaging contrast and provide precise diagnosis as well as evaluation of therapy efficacy. We have developed biodegradable polymeric vesicles as a nanocarrier system for multimodal bio-imaging and anticancer drug delivery. The poly (lactic-co-glycolic acid) PLGA) vesicles were fabricated by encapsulating inorganic imaging agents of superparamagnetic iron oxide nanoparticles (SPION), manganese-doped zinc sulfide (MN:ZnS) quantum dots (QDs) and the anticancer drug busulfan into PLGA nanoparticles via an emulsion-evaporation method. T2-weighted magnetic resonance imaging (MRI) of PLGA-SPION-Mn:ZnS phantoms exhibited enhanced negative contrast with r2 relaxivity of approximately 523 s-1 mM-1 Fe. Murine macrophage (J774A) cellular uptake of PLGA vesicles started fluorescence imaging at 2 h and reached maximum intensity at 24 h incubation. The drug delivery ability PLGA vesicles was demonstrated in vitro by release of busulfan. PLGA vesicles degradation was studied in vitro, showing that approximately 32% was degraded into lactic and glycolic acid over a period of 5 weeks. The biodistribution of PLGA vesicles was investigated in vivo by MRI in a rat model. Change of contrast in the liver could be visualized by MRI after 7 min and maximal signal loss detected after 4 h post-injection of PLGA vesicles. Histological studies showed that the presence of PLGA vesicles in organs was shifted from the lungs to the liver and spleen over time.

Keywords: biodegradable polymers, multifunctional nanoparticles, quantum dots, anticancer drugs

Procedia PDF Downloads 441
20577 Proniosomes as a Drug Carrier for Topical Delivery of Tolnaftate

Authors: Mona Mahmoud Abou Samra, Alaa Hamed Salama, Ghada Awad, Soheir Said Mansy

Abstract:

Proniosomes are well documented for topical drug delivery and preferred over other vesicular systems because they are biodegradable, biocompatible, non-toxic, possess skin penetration ability and prolong the release of drugs by acting as depot in deeper layers of skin. Proniosome drug delivery was preferred due to improved stability of the system than niosomes. The present investigation aimed at formulation development and performance evaluation of proniosomal gel as a vesicular drug carrier system for antifungal drug tolnaftate. Proniosomes was developed using different nonionic surfactants such as span 60 and span 65 with cholesterol in different molar ratios by the Coacervation phase separation method in presence or absence of either lecithin or phospholipon 80 H. Proniosomal gel formulations of tolnaftate were characterized for vesicular shape & size, entrapment efficiency, rheological properties and release study. The effect of surfactants and additives on the entrapment efficiency, particle size and percent of drug released was studied. The selected proniosomal formulations for topical delivery of tolnaftate was subjected to a microbiological study in male rats infected with Trichophyton rubrum; the main cause of Tinea Pedis compared to the free drug and a market product and the results was recorded.

Keywords: fungal infection, proniosome, tolnaftate, trichophyton rubrum

Procedia PDF Downloads 480