Search results for: kinetic energy loss
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11762

Search results for: kinetic energy loss

9452 A Novel RLS Based Adaptive Filtering Method for Speech Enhancement

Authors: Pogula Rakesh, T. Kishore Kumar

Abstract:

Speech enhancement is a long standing problem with numerous applications like teleconferencing, VoIP, hearing aids, and speech recognition. The motivation behind this research work is to obtain a clean speech signal of higher quality by applying the optimal noise cancellation technique. Real-time adaptive filtering algorithms seem to be the best candidate among all categories of the speech enhancement methods. In this paper, we propose a speech enhancement method based on Recursive Least Squares (RLS) adaptive filter of speech signals. Experiments were performed on noisy data which was prepared by adding AWGN, Babble and Pink noise to clean speech samples at -5dB, 0dB, 5dB, and 10dB SNR levels. We then compare the noise cancellation performance of proposed RLS algorithm with existing NLMS algorithm in terms of Mean Squared Error (MSE), Signal to Noise ratio (SNR), and SNR loss. Based on the performance evaluation, the proposed RLS algorithm was found to be a better optimal noise cancellation technique for speech signals.

Keywords: adaptive filter, adaptive noise canceller, mean squared error, noise reduction, NLMS, RLS, SNR, SNR loss

Procedia PDF Downloads 481
9451 Energy Budgeting, Carbon and Water Footprints Under Conventional and Conservation Tillage Practices of Rice-Wheat Double Cropping System

Authors: Ahmad Latif Virk, Naeem Ahmad, Muhammad Ishaq Asif Rehmani

Abstract:

Amid the present environmental crises, developing environment-resilient and cost-effective conservation agriculture strategies to feed the world's ever-growing population is pertinent. Therefore, a field study was conducted to test the hypothesis that residue retention under no-till (NTR) would enhance energy productivity (EP) and energy use efficiency (EUE) while offsetting the carbon footprints (CF), water footprints (WF) and greenhouse gases emissions (GHGs) in rice (Oryza sativa L.)-wheat (Triticum aestivum L.) double cropping system. Two tillage systems viz., conventional tillage (CT) and conservation tillage (no-till; NT), with or without residue retention, were combined into four treatments as CT0 (puddled rice, conventional wheat - residue); CTR (puddled rice, conventional wheat + residue); NT0 (direct rice seeding, zero-tilled wheat - residue); NTR (direct rice seeding, zero-tilled wheat + residue) were evaluated. Overall, results showed that the NT system had 34.2% lower energy consumption, 1.2 times more EP than CT system. Moreover, NTR had 19.8% higher EUE than CT0. The overall system grain yield ranged from 7.8 to 9.3 Mg ha−1 under NT0 and CTR, respectively. The NTR had 56.6% and 17.9% lesser CF and WF, respectively, than CT0. The net GHGs emissions (CO2-eq kg ha−1) under CT0 were the highest, while NTR had the lowest emissions. The NTR enhanced carbon sequestration in soil that can offset half of the system's CO2 emissions. The findings of this study might help develop a suitable strategy for resource/energy conservation and higher productivity while offsetting GHGs emissions in the Indo-Gangetic Plains.

Keywords: residue, yield, indirect emissions, energy use efficiency, carbon sequestration

Procedia PDF Downloads 92
9450 An Improved Modular Multilevel Converter Voltage Balancing Approach for Grid Connected PV System

Authors: Safia Bashir, Zulfiqar Memon

Abstract:

During the last decade, renewable energy sources in particular solar photovoltaic (PV) has gained increased attention. Therefore, various PV converters topologies have emerged. Among this topology, the modular multilevel converter (MMC) is considered as one of the most promising topologies for the grid-connected PV system due to its modularity and transformerless features. When it comes to the safe operation of MMC, the balancing of the Submodules Voltages (SMs) plays a critical role. This paper proposes a balancing approach based on space vector PWM (SVPWM). Unlike the existing techniques, this method generates the switching vectors for the MMC by using only one SVPWM for the upper arm. The lower arm switching vectors are obtained by finding the complement of the upper arm switching vectors. The use of one SVPWM not only simplifies the calculation but also helped in reducing the circulating current in the MMC. The proposed method is varied through simulation using Matlab/Simulink and compared with other available modulation methods. The results validate the ability of the suggested method in balancing the SMs capacitors voltages and reducing the circulating current which will help in reducing the power loss of the PV system.

Keywords: capacitor voltage balancing, circulating current, modular multilevel converter, PV system

Procedia PDF Downloads 158
9449 Exploring Perceptions of Local Stakeholders in Climate Change Adaptation in Central and Western Terai, Nepal

Authors: Shree Kumar Maharjan

Abstract:

Climate change has varied impacts on diverse livelihood sectors, which is more prominent at the community level. The stakeholders and local institutions have been supporting the communities either by building adaptive capacities and resilience or minimizing the impacts of different adaptation interventions. Some of these interventions are effective, whereas others need further dynamisms and exertions considering the complexity of the risks and vulnerabilities. Hence, consolidated efforts of concerned stakeholders are required to minimize and adapt the present and future impacts. This study digs out and analyses the perceptions of local stakeholders in climate change adaptation in Madi and Deukhuri valleys of Nepal through a questionnaire survey. The study has categorized the local stakeholders into 5 groups in the study sites – Farmers groups and cooperatives, Government, I/NGOs, Development banks and education and other organizations. The local stakeholders revealed flood, drought, cold wave and riverbank erosion as the major climatic risks and hazards found in the sites eventually impacting on the loss of agricultural production, loss of agricultural land and properties, loss of livestock, the emergence of diseases and pest. The stakeholders believed that most of the farmers dealing with these impacts based on their traditional knowledge and practices, followed by with the support of NGOs and with the help of neighbors and community. The major supports of the stakeholders to deal with these impacts were on training and awareness, risk analysis and minimization, livelihood improvement, financial support, coordination and networking and facilitation in policy formulation. The stakeholders emphasized primarily on capacity building, appropriate technologies, community-based planning and monitoring, prioritization to the poor and the marginalized and establishment of community fund respectively for building adaptive capacities.

Keywords: climate change adaptation, local stakeholders, Madi, Deukhuri, Nepal

Procedia PDF Downloads 179
9448 Reliability Factors Based Fuzzy Logic Scheme for Spectrum Sensing

Authors: Tallataf Rasheed, Adnan Rashdi, Ahmad Naeem Akhtar

Abstract:

The accurate spectrum sensing is a fundamental requirement of dynamic spectrum access for deployment of Cognitive Radio Network (CRN). To acheive this requirement a Reliability factors based Fuzzy Logic (RFL) Scheme for Spectrum Sensing has been proposed in this paper. Cognitive Radio User (CRU) predicts the presence or absence of Primary User (PU) using energy detector and calculates the Reliability factors which are SNR of sensing node, threshold of energy detector and decision difference of each node with other nodes in a cooperative spectrum sensing environment. Then the decision of energy detector is combined with Reliability factors of sensing node using Fuzzy Logic. These Reliability Factors used in RFL Scheme describes the reliability of decision made by a CRU to improve the local spectrum sensing. This Fuzzy combining scheme provides the accuracy of decision made by sensornode. The simulation results have shown that the proposed technique provide better PU detection probability than existing Spectrum Sensing Techniques.

Keywords: cognitive radio, spectrum sensing, energy detector, reliability factors, fuzzy logic

Procedia PDF Downloads 486
9447 A Cognitive Approach to the Optimization of Power Distribution across an Educational Campus

Authors: Mrinmoy Majumder, Apu Kumar Saha

Abstract:

The ever-increasing human population and its demand for energy is placing stress upon conventional energy sources; and as demand for power continues to outstrip supply, the need to optimize energy distribution and utilization is emerging as an important focus for various stakeholders. The distribution of available energy must be achieved in such a way that the needs of the consumer are satisfied. However, if the availability of resources is not sufficient to satisfy consumer demand, it is necessary to find a method to select consumers based on factors such as their socio-economic or environmental impacts. Weighting consumer types in this way can help separate them based on their relative importance, and cognitive optimization of the allocation process can then be carried out so that, even on days of particularly scarce supply, the socio-economic impacts of not satisfying the needs of consumers can be minimized. In this context, the present study utilized fuzzy logic to assign weightage to different types of consumers based at an educational campus in India, and then established optimal allocation by applying the non-linear mapping capability of neuro-genetic algorithms. The outputs of the algorithms were compared with similar outputs from particle swarm optimization and differential evolution algorithms. The results of the study demonstrate an option for the optimal utilization of available energy based on the socio-economic importance of consumers.

Keywords: power allocation, optimization problem, neural networks, environmental and ecological engineering

Procedia PDF Downloads 479
9446 Effect of Some Metal Ions on the Activity of Lipase Produced by Aspergillus Niger Cultured on Vitellaria Paradoxa Shells

Authors: Abdulhakeem Sulyman, Olukotun Zainab, Hammed Abdulquadri

Abstract:

Lipases (triacylglycerol acyl hydrolases) (EC 3.1.1.3) are class of enzymes that catalyses the hydrolysis of triglycerides to glycerol and free fatty acids. They account for up to 10% of the enzyme in the market and have a wide range of applications in biofuel production, detergent formulation, leather processing and in food and feed processing industry. This research was conducted to study the effect of some metal ions on the activity of purified lipase produced by Aspergillus niger cultured on Vitellaria paradoxa shells. Purified lipase in 12.5 mM p-NPL was incubated with different metal ions (Zn²⁺, Ca²⁺, Mn²⁺, Fe²⁺, Na⁺, K⁺ and Mg²⁺). The final concentrations of metal ions investigated were 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0 mM. The results obtained from the study showed that Zn²⁺, Ca²⁺, Mn²⁺ and Fe²⁺ ions increased the activity of lipase up to 3.0, 3.0, 1.0, and 26.0 folds respectively. Lipase activity was partially inhibited by Na⁺ and Mg²⁺ with up to 88.5% and 83.7% loss of activity respectively. Lipase activity was also inhibited by K⁺ with up to 56.7% loss in the activity as compared to in the absence of metal ions. The study concluded that lipase produced by Aspergillus niger cultured on Vitellaria paradoxa shells can be activated by the presence of Zn²⁺, Ca²⁺, Mn²⁺ and Fe²⁺ and inhibited by Na⁺, K⁺ and Mg²⁺.

Keywords: Aspergillus niger, Vitellaria paradoxa, lipase, metal ions

Procedia PDF Downloads 150
9445 HPLC-UV Screening of Legal (Caffeine and Yohimbine) and Illegal (Ephedrine and Sibutramine) Substances from Weight Loss Dietary Supplements for Athletes

Authors: Amelia Tero-Vescan, Camil-Eugen Vari, Laura Ciulea, Cristina Filip, Silvia Imre

Abstract:

A HPLC –UV method for the identification of ephedrine (EPH), sibutramine (SB), yohimbine (Y) and caffeine (CF) was developed. Separation was performed on a Kromasil 100-RP8, 150 mm x 4.6 mm, 5 mm column equipped with a precolumn Kromasil RP 8. Mobile phase was a gradient of 80-35 % sodium dihydrogen phosphate pH=5 with NH4OH and acetonitrile over 15 minutes time of analysis. Based on the responses of 113 athletes about dietary supplements (DS) consumed for "fat burning" and weight loss which have a legal status in Romania, 28 supplements have been selected and investigated for their content in CF, Y, legal substances, and SB, EPH (prohibited substances in DS). The method allows quantitative determination of the four substances in a short analysis time and with minimum cost. The presence of SB and EPH in the analyzed DS was not detected while the content in CF and Y considering the dosage recommended by the manufacturer does not affect the health of the consumers. DS labeling (plant extracts with CF and Y content) allows manufacturers to avoid declaring correct and exact amounts per pharmaceutical form (pure CF or equivalent and Y, respectively).

Keywords: dietary supplements, sibutramine, ephedrine, yohimbine, caffeine, HPLC

Procedia PDF Downloads 442
9444 China's Middle East Policy and the Competition with the United States

Authors: Shabnam Dadparvar, Laijin Shen

Abstract:

This paper focuses on China’s policy in the Middle East and the rivalry with the U.S. The question is that what are the main factors on China’s Middle East policy and its competition with the U.S? The hypothesis regards to three effective factors: 'China’s energy dependency' on the Middle East, 'economy' and support for 'stability' in the Middle East. What is important in China’s competition with the U.S regarding to its Middle East policy is the substantial difference in ways of treating the countries of the region; China is committed to Westphalia model based on non-interference in internal affairs of the countries and respect the sovereignty of the governments. However, after 9/11, the U.S is seeking a balance between stability and change through intervention in the international affairs and in some cases is looking for a regime change. From the other hand, China, due to its dependency on the region’s energy welcomes America’s military presence in the region for providing stability. The authors by using a descriptive analytical method try to explain the situation of rivalry between China and the United States in Middle East. China is an 'emerging power' with high economic growth and in demand of more energy supply. The problem is that a rising power in the region is often a source of concern for hegemony.

Keywords: China's foreign policy, energy, hegemony, the Middle East

Procedia PDF Downloads 352
9443 A Review of Masonry Buildings Restrengthening Methods

Authors: Negar Sartipzadeh

Abstract:

The historic buildings are generally the ones which have been built by materials like brick, mud, stone, and wood. Some phenomena such as severe earthquakes can be tremendously detrimental to the structures, imposing serious effects and losses on such structures. Hence, it matters a lot to ascertain safety and reliability of the structures under such circumstances. It has been asserted that the major reason for the collapse of Unreinforced Masonry (URM) in various earthquakes is the incapability of resisting the forces and vice versa because such URMs are meant for the gravity load and they fail to withstand the shear forces inside the plate and the bending forces outside the plate. For this reason, restrengthening such structures is a key factor in lowering the seismic loss in developing countries. Seismic reinforcement of the historic buildings with regard to their cultural value on one hand, and exhaustion and damage of many of the structural elements on the other hand, have brought in restricting factors which necessitate the seismic reinforcement methods meant for such buildings to be maximally safe, non-destructive, effective, and non-obvious. Henceforth, it is pinpointed that making use of diverse technologies such as active controlling, Energy dampers, and seismic separators besides the current popular methods would be justifiable for such buildings, notwithstanding their high imposed costs.

Keywords: masonry buildings, seismic reinforcement, Unreinforced Masonry (URM), earthquake

Procedia PDF Downloads 280
9442 Battery Energy Storage System Economic Benefits Assessment on a Network Frequency Control

Authors: Kréhi Serge Agbli, Samuel Portebos, Michaël Salomon

Abstract:

Here a methodology is considered aiming at evaluating the economic benefit of the provision of a primary frequency control unit using a Battery Energy Storage System (BESS). In this methodology, two control types (basic and hysteresis) are implemented and the corresponding minimum energy storage system power allowing to maintain the frequency drop inside a given threshold under a given contingency is identified and compared using DigSilent’s PowerFactory software. Following this step, the corresponding energy storage capacity (in MWh) is calculated. As PowerFactory is dedicated to dynamic simulation for transient analysis, a first order model related to the IEEE 9 bus grid used for the analysis under PowerFactory is characterized and implemented on MATLAB-Simulink. Primary frequency control is simulated using the two control types over one-month grid's frequency deviation data on this Simulink model. This simulation results in the energy throughput both basic and hysteresis BESSs. It emerges that the 15 minutes operation band of the battery capacity allocated to frequency control is sufficient under the considered disturbances. A sensitivity analysis on the width of the control deadband is then performed for the two control types. The deadband width variation leads to an identical sizing with the hysteresis control showing a better frequency control at the cost of a higher delivered throughput compared to the basic control. An economic analysis comparing the cost of the sized BESS to the potential revenues is then performed.

Keywords: battery energy storage system, electrical network frequency stability, frequency control unit, PowerFactor

Procedia PDF Downloads 129
9441 Catalytic Pyrolysis of Sewage Sludge for Upgrading Bio-Oil Quality Using Sludge-Based Activated Char as an Alternative to HZSM5

Authors: Ali Zaker, Zhi Chen

Abstract:

Due to the concerns about the depletion of fossil fuel sources and the deteriorating environment, the attempt to investigate the production of renewable energy will play a crucial role as a potential to alleviate the dependency on mineral fuels. One particular area of interest is the generation of bio-oil through sewage sludge (SS) pyrolysis. SS can be a potential candidate in contrast to other types of biomasses due to its availability and low cost. However, the presence of high molecular weight hydrocarbons and oxygenated compounds in the SS bio-oil hinders some of its fuel applications. In this context, catalytic pyrolysis is another attainable route to upgrade bio-oil quality. Among different catalysts (i.e., zeolites) studied for SS pyrolysis, activated chars (AC) are eco-friendly alternatives. The beneficial features of AC derived from SS comprise the comparatively large surface area, porosity, enriched surface functional groups, and presence of a high amount of metal species that can improve the catalytic activity. Hence, a sludge-based AC catalyst was fabricated in a single-step pyrolysis reaction with NaOH as the activation agent and was compared with HZSM5 zeolite in this study. The thermal decomposition and kinetics were invested via thermogravimetric analysis (TGA) for guidance and control of pyrolysis and catalytic pyrolysis and the design of the pyrolysis setup. The results indicated that the pyrolysis and catalytic pyrolysis contains four obvious stages, and the main decomposition reaction occurred in the range of 200-600°C. The Coats-Redfern method was applied in the 2nd and 3rd devolatilization stages to estimate the reaction order and activation energy (E) from the mass loss data. The average activation energy (Em) values for the reaction orders n = 1, 2, and 3 were in the range of 6.67-20.37 kJ for SS; 1.51-6.87 kJ for HZSM5; and 2.29-9.17 kJ for AC, respectively. According to the results, AC and HZSM5 both were able to improve the reaction rate of SS pyrolysis by abridging the Em value. Moreover, to generate and examine the effect of the catalysts on the quality of bio-oil, a fixed-bed pyrolysis system was designed and implemented. The composition analysis of the produced bio-oil was carried out via gas chromatography/mass spectrometry (GC/MS). The selected SS to catalyst ratios were 1:1, 2:1, and 4:1. The optimum ratio in terms of cracking the long-chain hydrocarbons and removing oxygen-containing compounds was 1:1 for both catalysts. The upgraded bio-oils with AC and HZSM5 were in the total range of C4-C17, with around 72% in the range of C4-C9. The bio-oil from pyrolysis of SS contained 49.27% oxygenated compounds, while with the presence of AC and HZSM5 dropped to 13.02% and 7.3%, respectively. Meanwhile, the generation of benzene, toluene, and xylene (BTX) compounds was significantly improved in the catalytic process. Furthermore, the fabricated AC catalyst was characterized by BET, SEM-EDX, FT-IR, and TGA techniques. Overall, this research demonstrated AC is an efficient catalyst in the pyrolysis of SS and can be used as a cost-competitive catalyst in contrast to HZSM5.

Keywords: catalytic pyrolysis, sewage sludge, activated char, HZSM5, bio-oil

Procedia PDF Downloads 179
9440 Experimental Study of Solar Drying of Verbena in Different Dryers

Authors: Ilham Ihoume, Rachid Tadili, Nora Arbaoui

Abstract:

One of the most crucial ways to combat food insecurity is to minimize crop losses; food drying is one of the most organic, efficient, low-cost, and energy-saving food preservation methods. In this regard, we undertake in this study an experimental evaluation and analysis of the thermal performance of different natural convection drying systems: a solar greenhouse dryer, an indirect solar dryer with a single compartment, and a solar dryer with two compartments. These systems have been implemented at the Solar Energy and Environment Laboratory of Mohammed V University (Morocco). The objective of this work is to study the feasibility of converting a solar greenhouse into a solar dryer for use during the summer. On the other hand, to study the thermal performances of this greenhouse dryer by comparing it with other solar dryers. The experimental study showed that the drying of verbena leaves took 6 hours in the indirect dryer 1, 3 hours in the indirect dryer, and 2 and 4 hours in the greenhouse dryer, but the amortization period of the solar greenhouse dryer is lower than the other two solar dryers. The results of this study provide key information on the implementation and performance of these systems for drying food of great global interest.

Keywords: indirect solar dryer, solar energy, agricultural greenhouse, green energy

Procedia PDF Downloads 93
9439 Evaluating the Potential of Microwave Treatment as a Rock Pre-Conditioning Method in Achieving a More Sustainable Mining

Authors: Adel Ahmadi Hosseini, Fatemeh Tavanaei, Alessandro Navarra, Ferri Hassani

Abstract:

Mining engineering, as a part of geoscience, must address modern concerns. Traditional mining methods incorporate drill and blast technologies, which are followed by different issues, including excessive noise, vibration, air pollution, and safety hazards. Over the past two decades, mining engineers have sought alternative solutions to move from drill and blast to continuous methods to prevent such issues and improve sustainability in mining. Among the suggested methods, microwave treatment has shown promising results by creating micro/macro cracks in the rock structure prior to the operations. This research utilizes an energy-based analysis methodology to evaluate the efficiency of the microwave treatment in improving mining operations. The data analysis shows that increasing the input microwave energy dosage intensifies the rock damage. However, this approach can decrease the energy efficiency of the method by more than 50% in some cases. In this study, rock samples were treated with three power levels (3 kW, 7 kW, and 12 kW) and two energy dosages (20 kWh/t and 50 kWh/t), resulting in six conditions. To evaluate the impact of microwave treatment on the geomechanical behavior of the rocks, Unconfined Compressive Strength (UCS) tests were conducted on the microwave-treated samples, yielding stress-strain curves. Using the stress-strain curves, the effect of the different powers and energy dosages of microwaves are discussed. This research shows the potential of using microwave treatment to lead the industry to more sustainable mining.

Keywords: microwave treatment, microwave energy dosage, sustainable mining, rock fragmentation

Procedia PDF Downloads 40
9438 Development of Market Penetration for High Energy Efficiency Technologies in Alberta’s Residential Sector

Authors: Saeidreza Radpour, Md. Alam Mondal, Amit Kumar

Abstract:

Market penetration of high energy efficiency technologies has key impacts on energy consumption and GHG mitigation. Also, it will be useful to manage the policies formulated by public or private organizations to achieve energy or environmental targets. Energy intensity in residential sector of Alberta was 148.8 GJ per household in 2012 which is 39% more than the average of Canada 106.6 GJ, it was the highest amount among the provinces on per household energy consumption. Energy intensity by appliances of Alberta was 15.3 GJ per household in 2012 which is 14% higher than average value of other provinces and territories in energy demand intensity by appliances in Canada. In this research, a framework has been developed to analyze the market penetration and market share of high energy efficiency technologies in residential sector. The overall methodology was based on development of data-intensive models’ estimation of the market penetration of the appliances in the residential sector over a time period. The developed models were a function of a number of macroeconomic and technical parameters. Developed mathematical equations were developed based on twenty-two years of historical data (1990-2011). The models were analyzed through a series of statistical tests. The market shares of high efficiency appliances were estimated based on the related variables such as capital and operating costs, discount rate, appliance’s life time, annual interest rate, incentives and maximum achievable efficiency in the period of 2015 to 2050. Results show that the market penetration of refrigerators is higher than that of other appliances. The stocks of refrigerators per household are anticipated to increase from 1.28 in 2012 to 1.314 and 1.328 in 2030 and 2050, respectively. Modelling results show that the market penetration rate of stand-alone freezers will decrease between 2012 and 2050. Freezer stock per household will decline from 0.634 in 2012 to 0.556 and 0.515 in 2030 and 2050, respectively. The stock of dishwashers per household is expected to increase from 0.761 in 2012 to 0.865 and 0.960 in 2030 and 2050, respectively. The increase in the market penetration rate of clothes washers and clothes dryers is nearly parallel. The stock of clothes washers and clothes dryers per household is expected to rise from 0.893 and 0.979 in 2012 to 0.960 and 1.0 in 2050, respectively. This proposed presentation will include detailed discussion on the modelling methodology and results.

Keywords: appliances efficiency improvement, energy star, market penetration, residential sector

Procedia PDF Downloads 285
9437 Uranium Adsorption Using a Composite Material Based on Platelet SBA-15 Supported Tin Salt Tungstomolybdophosphoric Acid

Authors: H. Aghayan, F. A. Hashemi, R. Yavari, S. Zolghadri

Abstract:

In this work, a new composite adsorbent based on a mesoporous silica SBA-15 with platelet morphology and tin salt of tungstomolybdophosphoric (TWMP) acid was synthesized and applied for uranium adsorption from aqueous solution. The sample was characterized by X-ray diffraction, Fourier transfer infra-red, and N2 adsorption-desorption analysis, and then, effect of various parameters such as concentration of metal ions and contact time on adsorption behavior was examined. The experimental result showed that the adsorption process was explained by the Langmuir isotherm model very well, and predominant reaction mechanism is physisorption. Kinetic data of adsorption suggest that the adsorption process can be described by the pseudo second-order reaction rate model.

Keywords: platelet SBA-15, tungstomolybdophosphoric acid, adsorption, uranium ion

Procedia PDF Downloads 188
9436 Energy Transition and Investor-State Disputes: Scientific Knowledge as a Solution to the Burden for Climate Policy-Making

Authors: Marina E. Konstantinidi

Abstract:

It is now well-established that the fight against climate change and its consequences, which are a threat to mankind and to life on the planet Earth, requires that global temperature rise be kept under 1,5°C. It is also well-established that this requires humanity to put an end to the use of fossil fuels in the next decades, at the latest. However, investors in the fossil energy sector have brought or threatened to bring investment arbitration claims against States which put an end to their activity for the purpose of reaching their climate change policies’ objectives. Examples of such claims are provided by the cases of WMH v. Canada, Lone Pine v. Canada, Uniper v. Netherlands and RWE v. Netherlands. Irrespective of the outcome of the arbitration proceedings, the risk of being ordered to pay very substantial damages may have a ‘chilling effect’ on States, meaning that they may hesitate to implement the energy transition measures needed to fight climate change and its consequences. Although mitigation action is a relatively recent phenomenon, knowledge about the negative impact of fossil fuels has existed for a long time ago. In this paper, it is argued that structured documentation of evidence of knowledge about climate change may influence the adjudication of investment treaty claims and, consequently, affect the content of energy transition regulations that will be implemented. For example, as concerns investors, evidence that change in the regulatory framework towards environmental protection could have been predicted would refute the argument concerning legitimate expectations for legislative stability. By reference to relevant case law, it attempted to explore how pre-existing knowledge about climate change can be used in the adjudication of investor-State disputes and resulting from green energy transition policies.

Keywords: climate change, energy transition, international investment law, knowledge

Procedia PDF Downloads 99
9435 Evaluation of the Shelf Life of Horsetail Stems Stored in Ecological Packaging

Authors: Rosana Goncalves Das Dores, Maira Fonseca, Fernando Finger, Vicente Casali

Abstract:

Equisetum hyemale L. (horsetail, Equisetaceae) is a medicinal plant used and commercialized in simple paper bags or non-ecological packaging in Brazil. The aim of this work was to evaluate the relation between the bioactive compounds of horsetail stems stored in ecological packages (multi-ply paper sacks) at room temperature. Stems in primary and secondary stage were harvested from an organic estate, on December 2016, selected, measured (length from the soil to the apex (cm), stem diameter at ground level (DGL mm) and breast height (DBH mm) and cut into 10 cm. For the post-harvest evaluations, stems were stored in multi-ply paper sacks and evaluated daily to the respiratory rate, fresh weight loss, pH, presence of fungi / mold, phenolic compounds and antioxidant activity. The analyses were done with four replicates, over time (regression) and compared at 1% significance (Tukey test). The measured heights were 103.7 cm and 143.5 cm, DGL was 2.5mm and 8.4 mm and DBH of 2.59 and 6.15 mm, respectively for primary and secondary stems stage. At both stages of development, in storage in multi-ply paper sacks, the greatest mass loss occurred at 48 h, decaying up to 120 hours, stabilizing at 192 hours. The peak respiratory rate increase occurred in 24 hours, coinciding with a change in pH (temperature and mean humidity was 23.5°C and 55%). No fungi or mold were detected, however, there was loss of color of the stems. The average yields of ethanolic extracts were equivalent (approximately 30%). Phenolic compounds and antioxidant activity were higher in secondary stems stage in up to 120 hours (AATt0 = 20%, AATt30 = 45%), decreasing at the end of the experiment (240 hours). The packaging used allows the commercialization of fresh stems of Equisetum for up to five days.

Keywords: paper sacks, phenolic content, antioxidant activity, medicinal plants, post-harvest, ecological packages, Equisetum

Procedia PDF Downloads 166
9434 A Functional Thermochemical Energy Storage System for Mobile Applications: Design and Performance Analysis

Authors: Jure Galović, Peter Hofmann

Abstract:

Thermochemical energy storage (TCES), as a long-term and lossless energy storage principle, provides a contribution for the reduction of greenhouse emissions of mobile applications, such as passenger vehicles with an internal combustion engine. A prototype of a TCES system, based on reversible sorption reactions of LiBr composite and methanol has been designed at Vienna University of Technology. In this paper, the selection of reactive and inert carrier materials as well as the design of heat exchangers (reactor vessel and evapo-condenser) was reviewed and the cycle stability under real operating conditions was investigated. The performance of the developed system strongly depends on the environmental temperatures, to which the reactor vessel and evapo-condenser are exposed during the phases of thermal conversion. For an integration of the system into mobile applications, the functionality of the designed prototype was proved in numerous conducted cycles whereby no adverse reactions were observed.

Keywords: dynamic applications, LiBr composite, methanol, performance of TCES system, sorption process, thermochemical energy storage

Procedia PDF Downloads 166
9433 Effects of Damper Locations and Base Isolators on Seismic Response of a Building Frame

Authors: Azin Shakibabarough, Mojtaba Valinejadshoubi, Ashutosh Bagchi

Abstract:

Structural vibration means repetitive motion that causes fatigue and reduction of the performance of a structure. An earthquake may release high amount of energy that can have adverse effect on all components of a structure. Therefore, decreasing of vibration or maintaining performance of structures such as bridges, dams, roads and buildings is important for life safety and reducing economic loss. When earthquake or any vibration happens, investigation on parts of a structure which sustain the seismic loads is mandatory to provide a safe condition for the occupants. One of the solutions for reducing the earthquake vibration in a structure is using of vibration control devices such as dampers and base isolators. The objective of this study is to investigate the optimal positions of friction dampers and base isolators for better seismic response of 2D frame. For this purpose, a two bay and six story frame with different distribution formats was modeled and some of their responses to earthquake such as inter-story drift, max joint displacement, max axial force and max bending moment were determined and compared using non-linear dynamic analysis.

Keywords: fast nonlinear analysis, friction damper, base isolator, seismic vibration control, seismic response

Procedia PDF Downloads 321
9432 Baseline Study for Performance Evaluation of New Generation Solar Insulation Films for Windows: A Test Bed in Singapore

Authors: Priya Pawar, Rithika Susan Thomas, Emmanuel Blonkowski

Abstract:

Due to the solar geometry of Singapore, which lay within the geographical classification of equatorial tropics, there is a great deal of thermal energy transfer to the inside of the buildings. With changing face of economic development of cities like Singapore, more and more buildings are designed to be lightweight using transparent construction materials such as glass. Increased demand for energy efficiency and reduced cooling load demands make it important for building designer and operators to adopt new and non-invasive technologies to achieve building energy efficiency targets. A real time performance evaluation study was undertaken at School of Art Design and Media (SADM), Singapore, to determine the efficiency potential of a new generation solar insulation film. The building has a window to wall ratio (WWR) of 100% and is fitted with high performance (low emissivity) double glazed units. The empirical data collected was then used to calibrate a computerized simulation model to understand the annual energy consumption based on existing conditions (baseline performance). It was found that the correlations of various parameters such as solar irradiance, solar heat flux, and outdoor air-temperatures quantification are significantly important to determine the cooling load during a particular period of testing.

Keywords: solar insulation film, building energy efficiency, tropics, cooling load

Procedia PDF Downloads 193
9431 Deep Reinforcement Learning Approach for Optimal Control of Industrial Smart Grids

Authors: Niklas Panten, Eberhard Abele

Abstract:

This paper presents a novel approach for real-time and near-optimal control of industrial smart grids by deep reinforcement learning (DRL). To achieve highly energy-efficient factory systems, the energetic linkage of machines, technical building equipment and the building itself is desirable. However, the increased complexity of the interacting sub-systems, multiple time-variant target values and stochastic influences by the production environment, weather and energy markets make it difficult to efficiently control the energy production, storage and consumption in the hybrid industrial smart grids. The studied deep reinforcement learning approach allows to explore the solution space for proper control policies which minimize a cost function. The deep neural network of the DRL agent is based on a multilayer perceptron (MLP), Long Short-Term Memory (LSTM) and convolutional layers. The agent is trained within multiple Modelica-based factory simulation environments by the Advantage Actor Critic algorithm (A2C). The DRL controller is evaluated by means of the simulation and then compared to a conventional, rule-based approach. Finally, the results indicate that the DRL approach is able to improve the control performance and significantly reduce energy respectively operating costs of industrial smart grids.

Keywords: industrial smart grids, energy efficiency, deep reinforcement learning, optimal control

Procedia PDF Downloads 195
9430 Mathematical Modeling of Eggplant Slices Drying Using Microwave-Oven

Authors: M.H. Keshek, M.N. Omar, A.H. Amer

Abstract:

Eggplant (Solanum melongena L.) is considered one of the most important crops in summer season, and it is grown in most cultivated area in Egypt. Eggplant has a very limited shelf life for freshness and physiological changes occur after harvest. Nowadays, microwave drying offers an alternative way to drying agricultural products. microwave drying is not only faster but also requiring less energy consumption than conventional drying. The main objective of this research was to evaluate using the microwave oven in Eggplant drying, to determine the optimum drying time of higher drying efficiency and lower energy consumption. The eggplants slices, having a thickness of about 5, 10, 15, and 20 mm, with diameter 50±2 mm was dried using microwave oven (KOR-9G2B) using three different levels were 450, 630, and 810 Watt (50%, 70%, and 90% of 900 Watt). The results show that, the initial moisture content of the eggplant slices was around 93 % wet basis (13.28 g water/g dry matter). The results indicated that, the moisture transfer within the sample was more rapidly during higher microwave power heating (810 watt) and lower thickness (5 mm) of the eggplant slices. In addition, the results show that, the drying efficiency increases by increasing slices thickness at power levels 450, 630 and 810 Watt. The higher drying efficiency was 83.13% occurred when drying the eggplant slices 20 mm thickness in microwave oven at power 630 Watt. the higher total energy consumption per dry kilogram was 1.275 (kWh/ dry kg) occurred at used microwave 810 Watt for drying eggplant slices 5 mm thickness, and the lower total energy consumption per dry kilogram was 0.55 (kWh/ dry kg) occurred at used microwave 810 Watt for drying eggplant slices 20 mm thickness.

Keywords: microwave drying, eggplant, drying rate, drying efficiency, energy consumption

Procedia PDF Downloads 158
9429 Production of Pre-Reduction of Iron Ore Nuggets with Lesser Sulphur Intake by Devolatisation of Boiler Grade Coal

Authors: Chanchal Biswas, Anrin Bhattacharyya, Gopes Chandra Das, Mahua Ghosh Chaudhuri, Rajib Dey

Abstract:

Boiler coals with low fixed carbon and higher ash content have always challenged the metallurgists to develop a suitable method for their utilization. In the present study, an attempt is made to establish an energy effective method for the reduction of iron ore fines in the form of nuggets by using ‘Syngas’. By devolatisation (expulsion of volatile matter by applying heat) of boiler coal, gaseous product (enriched with reducing agents like CO, CO2, H2, and CH4 gases) is generated. Iron ore nuggets are reduced by this syngas. For that reason, there is no direct contact between iron ore nuggets and coal ash. It helps to control the minimization of the sulphur intake of the reduced nuggets. A laboratory scale devolatisation furnace designed with reduction facility is evaluated after in-depth studies and exhaustive experimentations including thermo-gravimetric (TG-DTA) analysis to find out the volatile fraction present in boiler grade coal, gas chromatography (GC) to find out syngas composition in different temperature and furnace temperature gradient measurements to minimize the furnace cost by applying one heating coil. The nuggets are reduced in the devolatisation furnace at three different temperatures and three different times. The pre-reduced nuggets are subjected to analytical weight loss calculations to evaluate the extent of reduction. The phase and surface morphology analysis of pre-reduced samples are characterized using X-ray diffractometry (XRD), energy dispersive x-ray spectrometry (EDX), scanning electron microscopy (SEM), carbon sulphur analyzer and chemical analysis method. Degree of metallization of the reduced nuggets is 78.9% by using boiler grade coal. The pre-reduced nuggets with lesser sulphur content could be used in the blast furnace as raw materials or coolant which would reduce the high quality of coke rate of the furnace due to its pre-reduced character. These can be used in Basic Oxygen Furnace (BOF) as coolant also.

Keywords: alternative ironmaking, coal gasification, extent of reduction, nugget making, syngas based DRI, solid state reduction

Procedia PDF Downloads 260
9428 Thermophysical and Heat Transfer Performance of Covalent and Noncovalent Functionalized Graphene Nanoplatelet-Based Water Nanofluids in an Annular Heat Exchanger

Authors: Hamed K. Arzani, Ahmad Amiri, Hamid K. Arzani, Salim Newaz Kazi, Ahmad Badarudin

Abstract:

The new design of heat exchangers utilizing an annular distributor opens a new gateway for realizing higher energy optimization. To realize this goal, graphene nanoplatelet-based water nanofluids with promising thermophysical properties were synthesized in the presence of covalent and noncovalent functionalization. Thermal conductivity, density, viscosity and specific heat capacity were investigated and employed as a raw data for ANSYS-Fluent to be used in two-phase approach. After validation of obtained results by analytical equations, two special parameters of convective heat transfer coefficient and pressure drop were investigated. The study followed by studying other heat transfer parameters of annular pass in the presence of graphene nanopletelesbased water nanofluids at different weight concentrations, input powers and temperatures. As a result, heat transfer performance and friction loss are predicted for both synthesized nanofluids.

Keywords: heat transfer, nanofluid, turbulent flow, forced convection flow, graphene nanoplatelet

Procedia PDF Downloads 432
9427 Synthesis, Characterization, Optical and Photophysical Properties of Pyrene-Labeled Ruthenium(Ii) Trisbipyridine Complex Cored Dendrimers

Authors: Mireille Vonlanthen, Pasquale Porcu, Ernesto Rivera

Abstract:

Dendritic macromolecules are presenting unique physical and chemical properties. One of them is the faculty of transferring energy from a donor moiety introduced at the periphery to an acceptor moiety at the core, mimicking the antenna effect of the process of photosynthesis. The mechanism of energy transfer is based on the Förster resonance energy exchange and requires some overlap between the emission spectrum of the donor and the absorption spectrum of the acceptor. Since it requires a coupling of transition dipole but no overlap of the physical wavefunctions, the energy transfer by Förster mechanism can occur over quite long distances from 1 to a maximum of 10 nm. However, the efficiency of the transfer depends strongly on distance. The Förster radius is the distance at which 50% of the donor’s emission is deactivated by FRET. In this work, we synthesized and characterized a novel series of dendrimers bearing pyrene moieties at the periphery and a Ru (II) complex at the core. The optical and photophysical properties of these compounds were studied by absorption and fluorescence spectroscopy. Pyrene is a well-studied chromophore that has the particularity to present monomer as well as excimer fluorescence emission. The coordination compounds of Ru (II) are red emitters with low quantum yield and long excited lifetime. We observed an efficient singulet to singulet energy transfer in such constructs. Moreover, it is known that the energy of the MLCT emitting state of Ru (II) can be tuned to become almost isoenegetic with respect to the triplet state of pyrene, leading to an extended phosphorescence lifetime. Using dendrimers bearing pyrene moieties as ligands for Ru (II), we could combine the antenna effect of dendrimers as well as its protection effect to the quenching by dioxygen with lifetime increase due to triplet-triplet equilibrium.

Keywords: dendritic molecules, energy transfer, pyrene, ru-trisbipyridine complex

Procedia PDF Downloads 277
9426 Static Priority Approach to Under-Frequency Based Load Shedding Scheme in Islanded Industrial Networks: Using the Case Study of Fatima Fertilizer Company Ltd - FFL

Authors: S. H. Kazmi, T. Ahmed, K. Javed, A. Ghani

Abstract:

In this paper static scheme of under-frequency based load shedding is considered for chemical and petrochemical industries with islanded distribution networks relying heavily on the primary commodity to ensure minimum production loss, plant downtime or critical equipment shutdown. A simplistic methodology is proposed for in-house implementation of this scheme using underfrequency relays and a step by step guide is provided including the techniques to calculate maximum percentage overloads, frequency decay rates, time based frequency response and frequency based time response of the system. Case study of FFL electrical system is utilized, presenting the actual system parameters and employed load shedding settings following the similar series of steps. The arbitrary settings are then verified for worst overload conditions (loss of a generation source in this case) and comprehensive system response is then investigated.

Keywords: islanding, under-frequency load shedding, frequency rate of change, static UFLS

Procedia PDF Downloads 486
9425 Analysis of Solar Thermal Power Plant in Algeria

Authors: M. Laissaoui

Abstract:

The present work has for objective the simulation of a hybrid solar combined cycle power plant, compared with combined cycle conventional (gas turbine and steam turbine), this type of power plants disposed an solar tour (heliostat field and volumetric receiver) insurant a part of the thermal energy necessary for the functioning of the gas turbine. This solar energy serves to feed with heat the combustion air of the gas turbine when he out of the compressor and the front entered the combustion chamber. The simulation of even central and made for three zones deferential to know the zone of Hassi R' mel, Bechare, and the zone of Messaad wilaya of El djelfa. The radiometric and meteorological data arise directly from the software meteonorme 7. The simulation of the energy performances is made by the software TRNSYS 16.1.

Keywords: concentrating solar power, heliostat, thermal, Algeria

Procedia PDF Downloads 468
9424 Vernacular Façade for Energy Conservation: Mashrabiya, A Reminiscent of Arab-Islamic Architecture

Authors: Balpreet Singh Madan

Abstract:

The Middle Eastern countries have preserved their heritage, tradition, and culture in their buildings by incorporating vernacular features of Arab-Islamic Architecture. The harsh sun and arid climate in the Gulf region make their buildings and infrastructure extremely hot and challenging to live in. One such iconic feature of Arab architecture is the Mashrabiya, which has been refined and updated for both functional and aesthetic purposes. This feature helps reduce the impact of solar radiation in buildings and lowers the energy requirements for creating livable conditions. The incorporation of Mashrabiya in modern buildings in the region symbolizes the amalgamation of tradition with innovation and modern technology. These buildings depict Mashrabiya with refinements for its better functional performance and aesthetic appeal to make superior built forms. This paper emphasizes the study of Mashrabiya as a vernacular feature with its adaptability for Energy Conservation and Sustainability, as seen in some of the recent iconic buildings of the Middle East, through a literature review and case studies of renowned buildings.

Keywords: energy efficiency, climate responsive, sustainability, innovation, heritage, vernacular

Procedia PDF Downloads 102
9423 Real-Time Optimisation and Minimal Energy Use for Water and Environment Efficient Irrigation

Authors: Kanya L. Khatri, Ashfaque A. Memon, Rod J. Smith, Shamas Bilal

Abstract:

The viability and sustainability of crop production is currently threatened by increasing water scarcity. Water scarcity problems can be addressed through improved water productivity and the options usually presumed in this context are efficient water use and conversion of surface irrigation to pressurized systems. By replacing furrow irrigation with drip or centre pivot systems, the water efficiency can be improved by up to 30 to 45%. However, the installation and application of pumps and pipes, and the associated fuels needed for these alternatives increase energy consumption and cause significant greenhouse gas emissions. Hence, a balance between the improvement in water use and the potential increase in energy consumption is required keeping in view adverse impact of increased carbon emissions on the environment. When surface water is used, pressurized systems increase energy consumption substantially, by between 65% to 75%, and produce greenhouse gas emissions around 1.75 times higher than that of gravity based irrigation. With gravity based surface irrigation methods the energy consumption is assumed to be negligible. This study has shown that a novel real-time infiltration model REIP has enabled implementation of real-time optimization and control of surface irrigation and surface irrigation with real-time optimization has potential to bring significant improvements in irrigation performance along with substantial water savings of 2.92 ML/ha which is almost equivalent to that given by pressurized systems. Thus real-time optimization and control offers a modern, environment friendly and water efficient system with close to zero increase in energy consumption and minimal greenhouse gas emissions.

Keywords: pressurised irrigation, carbon emissions, real-time, environmentally-friendly, REIP

Procedia PDF Downloads 503