Search results for: surface of a field
11757 Centrifuge Testing to Determine the Effect of Temperature on the Adhesion Strength of Ice
Authors: Zaid A. Janjua, Barbara Turnbull, Kwing-So Choi
Abstract:
The adhesion of glaze ice on power infrastructure, ships and aerofoils cause monetary and structural damage. Here we investigate the influence of temperature as an important parameter affecting adhesion strength of ice. Two terms are defined to investigate this: 'freezing temperature', the temperature at which glaze ice forms; and 'ambient temperature', the temperature of the surrounding during the test. Using three metal surfaces, the adhesion strength of ice has been calculated as a value of shear stress at the point of detachment on a spinning centrifuge. Findings show that the ambient temperature has a greater influence than the freezing temperature on the adhesion strength of ice. This is because there exists an amorphous liquid-like layer at the ice-surface interface, whose bond with the surface increases in strength at lower ambient temperatures when the substrate conducts heat much faster than the ice and acts as a heat sink. The results will help us to measure the actual adhesion strength of ice to metal surfaces based on data from weather monitoring devices. Future tests envisaged focus on thermally non-conducting substrates and their influence on adhesion strength.Keywords: ice adhesion, centrifuge, glaze ice, freezing temperature, ambient temperature
Procedia PDF Downloads 34311756 Virtual Reality Application for Neurorehabilitation
Authors: Daniel Vargas-Herrera, Ivette Caldelas, Fernando Brambila-Paz, Rodrigo Montufar-Chaveznava
Abstract:
In this paper, we present a virtual reality application for neurorehabilitation. This application was developed using the Unity SDK integrating the Oculus Rift and Leap Motion devices. Essentially, it consists of three stages according to the kind of rehabilitation to carry on: ocular rehabilitation, head/neck rehabilitation, and eye-hand coordination. We build three scenes for each task; for ocular and head/neck rehabilitation, there are different objects moving in the field of view and extended field of view of the user according to some patterns relative to the therapy. In the third stage the user must try to touch with the hand some objects guided by its view. We report the primer results of the use of the application with healthy people.Keywords: virtual reality, interactive technologies, video games, neurorehabilitation
Procedia PDF Downloads 41211755 Stagnation-Point Flow towards a Stretching/Shrinking Sheet in a Nanofluid: A Stability Analysis
Authors: Anuar Ishak
Abstract:
The characteristics of stagnation point flow of a nanofluid towards a stretching/shrinking sheet are investigated. The governing partial differential equations are transformed into a set of ordinary differential equations, which are then solved numerically using MATLAB routine boundary value problem solver bvp4c. The numerical results show that dual (upper and lower branch) solutions exist for the shrinking case, while for the stretching case, the solution is unique. A stability analysis is performed to determine the stability of the dual solutions. It is found that the skin friction decreases when the sheet is stretched, but increases when the suction effect is increased. It is also found that increasing the thermophoresis parameter reduces the heat transfer rate at the surface, while increasing the Brownian motion parameter increases the mass transfer rate at the surface.Keywords: dual solutions, heat transfer, forced convection, nanofluid, stability analysis
Procedia PDF Downloads 41811754 Development of a Bacterial Resistant Concrete for Use in Low Cost Kitchen Floors
Authors: S. S. Mahlangu, R. K. K. Mbaya, D. D. Delport, H. Van. Zyl
Abstract:
The degrading effect due to bacterial growth on the structural integrity of concrete floor surfaces is predictable; this consequently cause development of surface micro cracks in which organisms penetrate through resulting in surface spalling. Hence, the need to develop mix design meeting the requirement of floor surfaces exposed to aggressive agent to improve certain material properties with good workability, extended lifespan and low cost is essential. In this work, tests were performed to examine the microbial activity on kitchen floor surfaces and the effect of adding admixtures. The biochemical test shows the existence of microorganisms (E.coli, Streptococcus) on newly casted structure. Of up to 6% porosity was reduced and improvement on structural integrity was observed upon adding mineral admixtures from the concrete mortar. The SEM result after 84 days of curing specimens, shows that chemical admixtures have significant role to enable retard bacterial penetration and good quality structure is achieved.Keywords: admixture, organisms, porosity, strength
Procedia PDF Downloads 23611753 Enhancement of Raman Scattering using Photonic Nanojet and Whispering Gallery Mode of a Dielectric Microstructure
Authors: A. Arya, R. Laha, V. R. Dantham
Abstract:
We report the enhancement of Raman scattering signal by one order of magnitude using photonic nanojet (PNJ) of a lollipop shaped dielectric microstructure (LSDM) fabricated by a pulsed CO₂ laser. Here, the PNJ is generated by illuminating sphere portion of the LSDM with non-resonant laser. Unlike the surface enhanced Raman scattering (SERS) technique, this technique is simple, and the obtained results are highly reproducible. In addition, an efficient technique is proposed to enhance the SERS signal with the help of high quality factor optical resonance (whispering gallery mode) of a LSDM. From the theoretical simulations, it has been found that at least an order of magnitude enhancement in the SERS signal could be achieved easily using the proposed technique. We strongly believe that this report will enable the research community for improving the Raman scattering signals.Keywords: localized surface plasmons, photonic nanojet, SERS, whispering gallery mode
Procedia PDF Downloads 24511752 Structural, Magnetic and Magnetocaloric Properties of Iron-Doped Nd₀.₆Sr₀.₄MnO₃ Perovskite
Authors: Ismail Al-Yahmadi, Abbasher Gismelseed, Fatma Al-Mammari, Ahmed Al-Rawas, Ali Yousif, Imaddin Al-Omari, Hisham Widatallah, Mohamed Elzain
Abstract:
The influence of Fe-doping on the structural, magnetic and magnetocaloric properties of Nd₀.₆Sr₀.₄FeₓMn₁₋ₓO₃ (0≤ x ≤0.5) were investigated. The samples were synthesized by auto-combustion Sol-Gel method. The phase purity, crystallinity, and the structural properties for all prepared samples were examined by X-ray diffraction. XRD refinement indicates that the samples are crystallized in the orthorhombic single-phase with Pnma space group. Temperature dependence of magnetization measurements under a magnetic applied field of 0.02 T reveals that the samples with (x=0.0, 0.1, 0.2 and 0.3) exhibit a paramagnetic (PM) to ferromagnetic (FM) transition with decreasing temperature. The Curie temperature decreased with increasing Fe content from 256 K for x =0.0 to 80 K for x =0.3 due to increasing of antiferromagnetic superexchange (SE) interaction coupling. Moreover, the magnetization as a function of applied magnetic field (M-H) curves was measured at 2 K, and 300 K. the results of such measurements confirm the temperature dependence of magnetization measurements. The magnetic entropy change|∆SM | was evaluated using Maxwell's relation. The maximum values of the magnetic entropy change |-∆SMax |for x=0.0, 0.1, 0.2, 0.3 are found to be 15.35, 5.13, 3.36, 1.08 J/kg.K for an applied magnetic field of 9 T. Our result on magnetocaloric properties suggests that the parent sample Nd₀.₆Sr₀.₄MnO₃ could be a good refrigerant for low-temperature magnetic refrigeration.Keywords: manganite perovskite, magnetocaloric effect, X-ray diffraction, relative cooling power
Procedia PDF Downloads 15911751 Pullout Capacity of Hybrid Anchor Piles
Authors: P. Hari Krishna, V. Ramana Murty
Abstract:
Different types of foundations are subjected to pullout or tensile loads depending on the soil in which they are embedded or due to the structural loads coming on them. In those circumstances, anchors were generally used to resist these loads. This paper presents the field pullout studies on hybrid anchor piles embedded in different types of soils. The pullout capacity and resistance of the hybrid granular anchor piles installed in the native expansive soil which is available in the campus are compared with similar hybrid concrete anchor piles which were installed in similar field conditions.Keywords: expansive soil, hybrid concrete anchor piles, hybrid granular anchor piles, pullout tests
Procedia PDF Downloads 41011750 Effect of Pristine Graphene on Developmental Toxicity in Zebrafish (Danio rerio) Embryos: Cardiovascular Defects, Apoptosis, and Globin Expression Analysis
Authors: Manjunatha Bangeppagari, Lee Sang Joon
Abstract:
Recently, graphene-related nanomaterials are receiving fast-increasing attention with augmented applications in various fields. Especially, graphene-related materials have been widely applied to the biomedical field in the past years. In the present study, we evaluated the adverse effects of pristine graphene (pG) in zebrafish (Danio rerio) embryos in various aspects, such as mortality rate, heart rate, hatching rate, cardiotoxicity, cardiovascular defect, cardiac looping, apoptosis, and globin expression. For various trace concentrations of pG (1, 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 μg/L), early life-stage parameters were observed at 24, 48, 72, and 96 hpf. As a result, pG induces significant developmental defects including yolk sac edema, pericardial edema, embryonic mortality, delayed hatching, heartbeat, several morphological defects, pericardial toxicity, and bradycardia. Moreover, the exposure to pG was found to be a potential risk factor to the cardiovascular system of zebrafish embryos. However, further study on their properties which vary according to production methods and surface functionalization is essentially required. In addition, the possible risks of pG flakes to aquatic animals, and public health should be evaluated before releasing them to the surrounding environment.Keywords: apoptosis, cardiovascular toxicity, globin expression, pristine graphene, zebrafish embryos
Procedia PDF Downloads 13111749 Experimental Study for the Development of a Wireless Communication System in a Solar Central Tower Facility
Authors: Victor H. Benitez, Ramon V. Armas-Flores, Jesus H. Pacheco-Ramirez
Abstract:
Systems transforming solar energy into electrical power have emerged as a viable source of clean, renewable energy. Solar power tower technology is a good example of this type of system, which consists of several mobile mirrors, called heliostats, which reflect the sun's radiation to the same point, located on top of a tower at the center of heliostat field, for collection or transformation into another type of energy. The so-called Hermosillo’s Solar Platform (Plataforma Solar de Hermosillo, PSH, in Spanish) is a facility constituted with several heliostats, its aim and scope is for research purposes. In this paper, the implementation of a wireless communication system based on intelligent nodes is proposed in order to allow the communication and control of the heliostats in PSH. Intelligent nodes transmit information from one point to another, and can perform other actions that allow them to adapt to the conditions and limitations of a field of heliostats, thus achieving effective communication system. After deployment of the nodes in the heliostats, tests were conducted to measure the effectiveness of the communication, and determine the feasibility of using the proposed technologies. The test results were always positive, exceeding expectations held for its operation in the field of heliostats. Therefore, it was possible to validate the efficiency of the wireless communication system to be implemented in PSH, allowing communication and control of the heliostats.Keywords: heliostat, intelligent node, solar energy, wireless communication
Procedia PDF Downloads 40811748 Downhole Corrosion Inhibition Treatment for Water Supply Wells
Authors: Nayif Alrasheedi, Sultan Almutairi
Abstract:
Field-wide, a water supply wells’ downhole corrosion inhibition program is being applied to maintain downhole component integrity and keep the fluid corrosivity below 5 MPY. Batch treatment is currently used to inject the oil field chemical. This work is a case study consisting of analytical procedures used to optimize the frequency of the good corrosion inhibition treatments. During the study, a corrosion cell was fitted with a special three-electrode configuration for electrochemical measurements, electrochemical linear polarization, corrosion monitoring, and microbial analysis. This study revealed that the current practice is not able to mitigate material corrosion in the downhole system for more than three months.Keywords: downhole corrosion inhibition, electrochemical measurements, electrochemical linear polarization, corrosion monitoring
Procedia PDF Downloads 18211747 Transcriptomine: The Nuclear Receptor Signaling Transcriptome Database
Authors: Scott A. Ochsner, Christopher M. Watkins, Apollo McOwiti, David L. Steffen Lauren B. Becnel, Neil J. McKenna
Abstract:
Understanding signaling by nuclear receptors (NRs) requires an appreciation of their cognate ligand- and tissue-specific transcriptomes. While target gene regulation data are abundant in this field, they reside in hundreds of discrete publications in formats refractory to routine query and analysis and, accordingly, their full value to the NR signaling community has not been realized. One of the mandates of the Nuclear Receptor Signaling Atlas (NURSA) is to facilitate access of the community to existing public datasets. Pursuant to this mandate we are developing a freely-accessible community web resource, Transcriptomine, to bring together the sum total of available expression array and RNA-Seq data points generated by the field in a single location. Transcriptomine currently contains over 25,000,000 gene fold change datapoints from over 1200 contrasts relevant to over 100 NRs, ligands and coregulators in over 200 tissues and cell lines. Transcriptomine is designed to accommodate a spectrum of end users ranging from the bench researcher to those with advanced bioinformatic training. Visualization tools allow users to build custom charts to compare and contrast patterns of gene regulation across different tissues and in response to different ligands. Our resource affords an entirely new paradigm for leveraging gene expression data in the NR signaling field, empowering users to query gene fold changes across diverse regulatory molecules, tissues and cell lines, target genes, biological functions and disease associations, and that would otherwise be prohibitive in terms of time and effort. Transcriptomine will be regularly updated with gene lists from future genome-wide expression array and expression-sequencing datasets in the NR signaling field.Keywords: target gene database, informatics, gene expression, transcriptomics
Procedia PDF Downloads 27311746 Polishing Machine Based on High-Pressure Water Jet
Authors: Mohammad A. Khasawneh
Abstract:
The design of high pressure water jet based polishing equipment and its fabrication conducted in this study is reported herein, together with some preliminary test results for assessing its applicability for HMA surface polishing. This study also provides preliminary findings concerning the test variables, such as the rotational speed, the water jet pressure, the abrasive agent used, and the impact angel that were experimentally investigated in this study. The preliminary findings based on four trial tests (two on large slab specimens and two on small size gyratory compacted specimens), however, indicate that both friction and texture values tend to increase with the polishing durations for two combinations of pressure and rotation speed of the rotary deck. It seems that the more polishing action the specimen is subjected to; the aggregate edges are created such that the surface texture values are increased with the accompanied increase in friction values. It may be of interest (but which is outside the scope of this study) to investigate if the similar trend exist for HMA prepared with aggregate source that is sand and gravel.Keywords: high-pressure, water jet, friction, texture, polishing, statistical analysis
Procedia PDF Downloads 48711745 An Adjoint-Based Method to Compute Derivatives with Respect to Bed Boundary Positions in Resistivity Measurements
Authors: Mostafa Shahriari, Theophile Chaumont-Frelet, David Pardo
Abstract:
Resistivity measurements are used to characterize the Earth’s subsurface. They are categorized into two different groups: (a) those acquired on the Earth’s surface, for instance, controlled source electromagnetic (CSEM) and Magnetotellurics (MT), and (b) those recorded with borehole logging instruments such as Logging-While-Drilling (LWD) devices. LWD instruments are mostly used for geo-steering purposes, i.e., to adjust dip and azimuthal angles of a well trajectory to drill along a particular geological target. Modern LWD tools measure all nine components of the magnetic field corresponding to three orthogonal transmitter and receiver orientations. In order to map the Earth’s subsurface and perform geo-steering, we invert measurements using a gradient-based method that utilizes the derivatives of the recorded measurements with respect to the inversion variables. For resistivity measurements, these inversion variables are usually the constant resistivity value of each layer and the bed boundary positions. It is well-known how to compute derivatives with respect to the constant resistivity value of each layer using semi-analytic or numerical methods. However, similar formulas for computing the derivatives with respect to bed boundary positions are unavailable. The main contribution of this work is to provide an adjoint-based formulation for computing derivatives with respect to the bed boundary positions. The key idea to obtain the aforementioned adjoint state formulations for the derivatives is to separate the tangential and normal components of the field and treat them differently. This formulation allows us to compute the derivatives faster and more accurately than with traditional finite differences approximations. In the presentation, we shall first derive a formula for computing the derivatives with respect to the bed boundary positions for the potential equation. Then, we shall extend our formulation to 3D Maxwell’s equations. Finally, by considering a 1D domain and reducing the dimensionality of the problem, which is a common practice in the inversion of resistivity measurements, we shall derive a formulation to compute the derivatives of the measurements with respect to the bed boundary positions using a 1.5D variational formulation. Then, we shall illustrate the accuracy and convergence properties of our formulations by comparing numerical results with the analytical derivatives for the potential equation. For the 1.5D Maxwell’s system, we shall compare our numerical results based on the proposed adjoint-based formulation vs those obtained with a traditional finite difference approach. Numerical results shall show that our proposed adjoint-based technique produces enhanced accuracy solutions while its cost is negligible, as opposed to the finite difference approach that requires the solution of one additional problem per derivative.Keywords: inverse problem, bed boundary positions, electromagnetism, potential equation
Procedia PDF Downloads 17811744 Simple and Effective Method of Lubrication and Wear Protection
Authors: Buddha Ratna Shrestha, Jimmy Faivre, Xavier Banquy
Abstract:
By precisely controlling the molecular interactions between anti-wear macromolecules and bottle-brush lubricating molecules in the solution state, we obtained a fluid with excellent lubricating and wear protection capabilities. The reason for this synergistic behavior relies on the subtle interaction forces between the fluid components which allow the confined macromolecules to sustain high loads under shear without rupture. Our results provide rational guides to design such fluids for virtually any type of surfaces. The lowest friction coefficient and the maximum pressure that it can sustain is 5*10-3 and 2.5 MPa which is close to the physiological pressure. Lubricating and protecting surfaces against wear using liquid lubricants is a great technological challenge. Until now, wear protection was usually imparted by surface coatings involving complex chemical modifications of the surface while lubrication was provided by a lubricating fluid. Hence, we here research for a simple, effective and applicable solution to the above problem using surface force apparatus (SFA). SFA is a powerful technique with sub-angstrom resolution in distance and 10 nN/m resolution in interaction force while performing friction experiment. Thus, SFA is used to have the direct insight into interaction force, material and friction at interface. Also, we always know the exact contact area. From our experiments, we found that by precisely controlling the molecular interactions between anti-wear macromolecules and lubricating molecules, we obtained a fluid with excellent lubricating and wear protection capabilities. The reason for this synergistic behavior relies on the subtle interaction forces between the fluid components which allow the confined macromolecules to sustain high loads under shear without rupture. The lowest friction coefficient and the maximum pressure that it can sustain in our system is 5*10-3 and 2.5 GPA which is well above the physiological pressure. Our results provide rational guides to design such fluids for virtually any type of surfaces. Most importantly this process is simple, effective and applicable method of lubrication and protection as until now wear protection was usually imparted by surface coatings involving complex chemical modifications of the surface. Currently, the frictional data that are obtained while sliding the flat mica surfaces are compared and confirmed that a particular mixture of solution was found to surpass all other combination. So, further we would like to confirm that the lubricating and antiwear protection remains the same by performing the friction experiments in synthetic cartilages.Keywords: bottle brush polymer, hyaluronic acid, lubrication, tribology
Procedia PDF Downloads 26311743 The Development of Liquid Chromatography Tandem Mass Spectrometry Method for Citrinin Determination in Dry-Fermented Meat Products
Authors: Ana Vulic, Tina Lesic, Nina Kudumija, Maja Kis, Manuela Zadravec, Nada Vahcic, Tomaz Polak, Jelka Pleadin
Abstract:
Mycotoxins are toxic secondary metabolites produced by numerous types of molds. They can contaminate both food and feed so that they represent a serious public health concern. Production of dry-fermented meat products involves ripening, during which molds can overgrow the product surface, produce mycotoxins, and consequently contaminate the final product. Citrinin is a mycotoxin produced mainly by the Penicillium citrinum. Data on citrinin occurrence in both food and feed are limited. Therefore, there is a need for research on citrinin occurrence in these types of meat products. The LC-MS/MS method for citrinin determination was developed and validated. Sample preparation was performed using immunoaffinity columns, which resulted in clean sample extracts. Method validation included the determination of the limit of detection (LOD), the limit of quantification (LOQ), recovery, linearity, and matrix effect in accordance to the latest validation guidance. The determined LOD and LOQ were 0.60 µg/kg and 1.98 µg/kg, respectively, showing a good method sensitivity. The method was tested for its linearity in the calibration range of 1 µg/L to 10 µg/L. The recovery was 100.9 %, while the matrix effect was 0.7 %. This method was employed in the analysis of 47 samples of dry-fermented sausages collected from local households. Citrinin wasn’t detected in any of these samples, probably because of the short ripening period of the tested sausages that takes three months tops. The developed method shall be used to test other types of traditional dry-cured products, such as prosciuttos, whose surface is usually more heavily overgrown by surface molds due to the longer ripening period.Keywords: citrinin, dry-fermented meat products, LC-MS/MS, mycotoxins
Procedia PDF Downloads 12211742 Compact LWIR Borescope Sensor for Thermal Imaging of 2D Surface Temperature in Gas-Turbine Engines
Authors: Andy Zhang, Awnik Roy, Trevor B. Chen, Bibik Oleksandar, Subodh Adhikari, Paul S. Hsu
Abstract:
The durability of a combustor in gas-turbine engines is a strong function of its component temperatures and requires good control of these temperatures. Since the temperature of combustion gases frequently exceeds the melting point of the combustion liner walls, an efficient air-cooling system with optimized flow rates of cooling air is significantly important to elongate the lifetime of liner walls. To determine the effectiveness of the air-cooling system, accurate two-dimensional (2D) surface temperature measurement of combustor liner walls is crucial for advanced engine development. Traditional diagnostic techniques for temperature measurement in this application include the rmocouples, thermal wall paints, pyrometry, and phosphors. They have shown some disadvantages, including being intrusive and affecting local flame/flow dynamics, potential flame quenching, and physical damages to instrumentation due to harsh environments inside the combustor and strong optical interference from strong combustion emission in UV-Mid IR wavelength. To overcome these drawbacks, a compact and small borescope long-wave-infrared (LWIR) sensor is developed to achieve 2D high-spatial resolution, high-fidelity thermal imaging of 2D surface temperature in gas-turbine engines, providing the desired engine component temperature distribution. The compactLWIRborescope sensor makes it feasible to promote the durability of a combustor in gas-turbine engines and, furthermore, to develop more advanced gas-turbine engines.Keywords: borescope, engine, low-wave-infrared, sensor
Procedia PDF Downloads 13411741 Air-Purifying Properties of Cement Mortars Intermixed with TiO₂-SiO₂ Composites
Authors: A.M. Kaja, Q. Yu, H.J.H Brouwers
Abstract:
An increased functionality of concrete towards higher eco-efficiency is nowadays of great importance due to the decreasing air quality in urban areas. Surface modifications of concrete walls and roads, as a coating or an intermixing of the surface layer with TiO₂, provide an opportunity to improve the air quality by reducing NOx via photocatalytic phenomena. Nevertheless, there are still concerns regarding the cost-efficiency as well as the toxicity of intermediate products which can be produced during the photocatalysis, limiting a widespread adoption of these materials. This study addresses the problem of the selectivity of cement mortars towards nitrate in terms of microstructural characteristics and hydration products. The ability of cement mortars matrix intermixed with commercial TiO₂ and TiO₂-SiO₂ composite to abate NO₂ is investigated. The influence of hydration products formed under the carbonation facilitating conditions is discussed and solutions how to optimize the mix design are proposed. The incorporation of the TiO₂-SiO₂ composite into cement mortar is found to increase the nitrate selectivity index.Keywords: cement matrix, NO₂ abatement, photocatalysis, TiO₂-SiO₂ composite
Procedia PDF Downloads 16211740 2D and 3D Unsteady Simulation of the Heat Transfer in the Sample during Heat Treatment by Moving Heat Source
Authors: Zdeněk Veselý, Milan Honner, Jiří Mach
Abstract:
The aim of the performed work is to establish the 2D and 3D model of direct unsteady task of sample heat treatment by moving source employing computer model on the basis of finite element method. The complex boundary condition on heat loaded sample surface is the essential feature of the task. Computer model describes heat treatment of the sample during heat source movement over the sample surface. It is started from the 2D task of sample cross section as a basic model. Possibilities of extension from 2D to 3D task are discussed. The effect of the addition of third model dimension on the temperature distribution in the sample is showed. Comparison of various model parameters on the sample temperatures is observed. Influence of heat source motion on the depth of material heat treatment is shown for several velocities of the movement. Presented computer model is prepared for the utilization in laser treatment of machine parts.Keywords: computer simulation, unsteady model, heat treatment, complex boundary condition, moving heat source
Procedia PDF Downloads 39311739 Developing a Systemic Monoclonal Antibody Therapy for the Treatment of Large Burn Injuries
Authors: Alireza Hassanshahi, Xanthe Strudwick, Zlatko Kopecki, Allison J Cowin
Abstract:
Studies have shown that Flightless (Flii) is elevated in human wounds, including burns, and reducing the level of Flii is a promising approach for improving wound repair and reducing scar formation. The most effective approach has been to neutralise Flii activity using localized, intradermal application of function blocking monoclonal antibodies. However, large surface area burns are difficult to treat by intradermal injection of therapeutics, so the aim of this study was to investigate if a systemic injection of a monoclonal antibody against Flii could improve healing in mice following burn injury. Flii neutralizing antibodies (FnAbs) were labelled with Alxa-Fluor-680 for biodistribution studies and the healing effects of systemically administered FnAbs to mice with burn injuries. A partial thickness, 7% (70mm2) total body surface area scald burn injury was created on the dorsal surface of mice (n=10/group), and 100µL of Alexa-Flour-680-labeled FnAbs were injected into the intraperitoneal cavity (IP) at time of injury. The burns were imaged on days 0, 1, 2, 3, 4, and 7 using IVIS Lumina S5 Imaging System, and healing was assessed macroscopically, histologically, and using immunohistochemistry. Fluorescent radiance efficiency measurements showed that IP injected Alexa-Fluor-680-FnAbs localized at the site of burn injury from day 1, remaining there for the whole 7-day study. The burns treated with FnAbs showed a reduction in macroscopic wound area and an increased rate of epithelialization compared to controls. Immunohistochemistry for NIMP-R14 showed a reduction in the inflammatory infiltrate, while CD31/VEGF staining showed improved angiogenesis post-systemic FnAb treatment. These results suggest that systemically administered FnAbs are active within the burn site and can improve healing outcomes. The clinical application of systemically injected Flii monoclonal antibodies could therefore be a potential approach for promoting the healing of large surface area burns immediately after injury.Keywords: biodistribution, burn, flightless, systemic, fnAbs
Procedia PDF Downloads 17211738 Effect of Palm Bunch Ash and Neem (Azardirachta indica A. Juss) Leaf Powder on Termite Infestation in Groundnut Field
Authors: K. O. Ogbedeh, C. P. Ekwe, G. O. Ihejirika, S. A. Dialoke, O. P. Onyewuchi, C. P. Anyanwu, I. E. Kalu
Abstract:
As one of the major pests of field crops, termites attack groundnut at all stages of its development, especially during prolonged dry spell. Effect of palm bunch ash and neem(Azardirachta indica A. Juss) leaf powder on termite infestation in groundnut field in Owerri, Nigeria was investigated in this study. The field trial was carried out in 2016 at the Teaching and Research Farm of the Federal University of Technology, Owerri, Nigeria. The experiment was laid out in a 3x3 Factorial fitted into a Randomized Complete Block Design (RCBD) with three replications. The treatments include three rates of palm bunch ash at 0.0 (control), 1.0 and 2.0tons/ha and three rates of neem leaf powder at 0.0(control), 1.0, 2.0 tons/ha respectively. Data were collected on percentage emergence, termite incidence and termite severity. These were subjected to analysis of variance (ANOVA), and means were separated using least significant difference at 5% level of probability. The result shows that there were no significant (P= 0.05) differences in percentage emergence amongst treatment means due to palm bunch ash and neem leaf powder applications. Contrarily, palm bunch ash at 2.0 tons/ha recorded the least termite incidence especially at twelve weeks after planting (12WAP) with a value of 22.20% while control plot maintained highest values at 6WAP (48.70%) and 12WAP (48.30%) respectively. Also palm bunch ash at 2.0tons/ha depressed termite severity more than other treatments especially at 2 and 4 WAP (0.56) respectively. Control plots on the other hand consistently maintained highest termite severity throughout the trial with the highest value at 2 and 12WAP (1.56). Conclusively, palm bunch ash exhibited highest depressive action against termite on groundnut especially at higher application value (2.0tons/ha).Keywords: groundnut, incidence, neem, palm, severity, termites
Procedia PDF Downloads 22911737 Influence of Deposition Temperature on Supercapacitive Properties of Reduced Graphene Oxide on Carbon Cloth: New Generation of Wearable Energy Storage Electrode Material
Authors: Snehal L. Kadam, Shriniwas B. Kulkarni
Abstract:
Flexible electrode material with high surface area and good electrochemical properties is the current trend captivating the researchers across globe for application in the next generation energy storage field. In the present work, crumpled sheet like reduced graphene oxide grown on carbon cloth by the hydrothermal method with a series of different deposition temperatures at fixed time. The influence of the deposition temperature on the structural, morphological, optical and supercapacitive properties of the electrode material was investigated by XRD, RAMAN, XPS, TEM, FE-SEM, UV-VISIBLE and electrochemical characterization techniques.The results show that the hydrothermally synthesized reduced graphene oxide on carbon cloth has sheet like mesoporous structure. The reduced graphene oxide material at 160°C exhibits the best supercapacitor performance, with a specific capacitance of 443 F/g at scan rate 5mV/sec. Moreover, stability studies show 97% capacitance retention over 1000 CV cycles. This result shows that hydrothermally synthesized RGO on carbon cloth is the potential electrode material and would be used in the next-generation wearable energy storage systems. The detailed analysis and results will be presented at the conference.Keywords: graphene oxide, reduced graphene oxide, carbon cloth, deposition temperature, supercapacitor
Procedia PDF Downloads 19011736 Generation of Charged Nanoparticles and Their Contribution to the Thin Film and Nanowire Growth during Chemical Vapour Deposition
Authors: Seung-Min Yang, Seong-Han Park, Sang-Hoon Lee, Seung-Wan Yoo, Chan-Soo Kim, Nong-Moon Hwang
Abstract:
The theory of charged nanoparticles suggested that in many Chemical Vapour Depositions (CVD) processes, Charged Nanoparticles (CNPs) are generated in the gas-phase and become a building block of thin films and nanowires. Recently, the nanoparticle-based crystallization has become a big issue since the growth of nanorods or crystals by the building block of nanoparticles was directly observed by transmission electron microscopy observations in the liquid cell. In an effort to confirm charged gas-phase nuclei, that might be generated under conventional processing conditions of thin films and nanowires during CVD, we performed an in-situ measurement using differential mobility analyser and particle beam mass spectrometer. The size distribution and number density of CNPs were affected by process parameters such as precursor flow rate and working temperature. It was shown that many films and nanostructures, which have been believed to grow by individual atoms or molecules, actually grow by the building blocks of such charged nuclei. The electrostatic interaction between CNPs and the growing surface induces the self-assembly into films and nanowires. In addition, the charge-enhanced atomic diffusion makes CNPs liquid-like quasi solid. As a result, CNPs tend to land epitaxial on the growing surface, which results in the growth of single crystalline nanowires with a smooth surface.Keywords: chemical vapour deposition, charged nanoparticle, electrostatic force, nanostructure evolution, differential mobility analyser, particle beam mass spectrometer
Procedia PDF Downloads 45211735 Fabrication and Properties of Al2O3/Si Quantum Well-Structured Silicon Solar Cells
Authors: Kwang-Ho Kim, Kwan-Hong Min, Pyungwoo Jang, Chisup Jung, Kyu Seomoon
Abstract:
By restricting the dimensions of silicon to less than Bohr radius of bulk crystalline silicon (∼5 nm), quantum confinement causes its effective bandgap to increase. Therefore, silicon quantum wells (QWs) using these quantum phenomena could be a good candidate to achieve high performance silicon solar cells. The Al2O3/Si QW structures were fabricated by using the successive deposition technique, as a quantum confinement device to increase the effective energy bandgap and passivation effect in Si surface for the 3rd generation solar cell applications. In Si/Al2O3 QWs, the thicknesses of Si layers and Al2O3 layers were varied between 1 to 5 nm, respectively. The roughness of deposited Si on Al2O3 was less than 4 Å in the thickness of 2 nm. By using the Al2O3/Si QW structures on Si surfaces, the lifetime measured by u-PCD technique increased as a result of passivated surface effects. The discussion about the other properties such as electrical and optical properties of the QWs structures as well as the fabricated solar cells will be presented in this paper.Keywords: Al2O3/Si quantum well, quantum confinement, solar cells, third generation, successive deposition technique
Procedia PDF Downloads 34011734 Estimating Solar Irradiance on a Tilted Surface Using Artificial Neural Networks with Differential Outputs
Authors: Hsu-Yung Cheng, Kuo-Chang Hsu, Chi-Chang Chan, Mei-Hui Tseng, Chih-Chang Yu, Ya-Sheng Liu
Abstract:
Photovoltaics modules are usually not installed horizontally to avoid water or dust accumulation. However, the measured irradiance data on tilted surfaces are rarely available since installing pyranometers with various tilt angles induces high costs. Therefore, estimating solar irradiance on tilted surfaces is an important research topic. In this work, artificial neural networks (ANN) are utilized to construct the transfer model to estimate solar irradiance on tilted surfaces. Instead of predicting tilted irradiance directly, the proposed method estimates the differences between the horizontal irradiance and the irradiance on a tilted surface. The outputs of the ANNs in the proposed design are differential values. The experimental results have shown that the proposed ANNs with differential outputs can substantially improve the estimation accuracy compared to ANNs that estimate the titled irradiance directly.Keywords: photovoltaics, artificial neural networks, tilted irradiance, solar energy
Procedia PDF Downloads 39711733 Supply Chain Risk Management: A Meta-Study of Empirical Research
Authors: Shoufeng Cao, Kim Bryceson, Damian Hine
Abstract:
The existing supply chain risk management (SCRM) research is currently chaotic and somewhat disorganized, and the topic has been addressed conceptually more often than empirically. This paper, using both qualitative and quantitative data, employs a modified Meta-study method to investigate the SCRM empirical research published in quality journals over the period of 12 years (2004-2015). The purpose is to outline the extent research trends and the employed research methodologies (i.e., research method, data collection and data analysis) across the sub-field that will guide future research. The synthesized findings indicate that empirical study on risk ripple effect along an entire supply chain, industry-specific supply chain risk management and global/export supply chain risk management has not yet given much attention than it deserves in the SCRM field. Besides, it is suggested that future empirical research should employ multiple and/or mixed methods and multi-source data collection techniques to reduce common method bias and single-source bias, thus improving research validity and reliability. In conclusion, this paper helps to stimulate more quality empirical research in the SCRM field via identifying promising research directions and providing some methodology guidelines.Keywords: empirical research, meta-study, methodology guideline, research direction, supply chain risk management
Procedia PDF Downloads 31711732 Quantifying the Rapid Urbanization Impact on Potential Stormwater Runoff of Dhaka City, Bangladesh
Authors: Md. Kumruzzaman, Anutosh Das, Md. Mosharraf Hossain
Abstract:
Historically, rapid urban growth activities are considered one of the main culprits behind urban floods or waterlogging. The increased unplanned urbanization of many areas of Dhaka has resulted in waterlogging, urban floods, and increasing groundwater depth. To determine potential groundwater recharge from precipitation, the study is being conducted to examine the changes in land use/land cover (LULC) and urban runoff extent based on the NRCS-CN from 2005–2021. Four kinds of land use are used to examine the LULC change: built-up, bare land, vegetation, and water body. These categories are used for the years 2005, 2010, 2015, and 2021. The built-up area is growing at a relatively fast rate: 7.43%, 17.4%, and 5.21%, respectively, between the years 2005 and 2010, 2010 and 2015, and 2015 and 2021. As the amount of impervious surface rose in Dhaka city, stormwater discharge increased from 2005 to 2021. In 2005, 2010, 2015, and 2021, heavy stormwater runoff regions made up around 24.873%, 32.616%, 49.118%, and 55.986% of the entire Dhaka city. Stormwater runoff accounted for around 53.738%, 55.092%, 63.472%, and 67.061% of the total rainfall in 2005, 2010, 2015, and 2021, respectively. Between 2005 and 2021, a significant portion of the natural land cover was altered because of the expanding impervious surface, which also harmed the natural drainage system. Due to careless growth, the potential for stormwater runoff and groundwater recharge in Dhaka city worsens every year. Concerning this situation, a sustainable urban drainage system (SUDS) can be the best possible solution for minimizing the stormwater runoff and groundwater recharge problem.Keywords: LULC, impervious surface, stormwater runoff, groundwater recharge, SUDS
Procedia PDF Downloads 8011731 Studying the Influence of Stir Cast Parameters on Properties of Al6061/Al2O3 Composite
Authors: Anuj Suhag, Rahul Dayal
Abstract:
Aluminum matrix composites (AMCs) refer to the class of metal matrix composites that are lightweight but high performance aluminum centric material systems. The reinforcement in AMCs could be in the form of continuous/discontinuous fibers, whisker or particulates, in volume fractions. Properties of AMCs can be altered to the requirements of different industrial applications by suitable combinations of matrix, reinforcement and processing route. This work focuses on the fabrication of aluminum alloy (Al6061) matrix composites (AMCs) reinforced with 5 and 3 wt% Al2O3 particulates of 45µm using stir casting route. The aim of the present work is to investigate the effects of process parameters, determined by design of experiments, on microhardness, microstructure, Charpy impact strength, surface roughness and tensile properties of the AMC.Keywords: aluminium matrix composite, Charpy impact strength test, composite materials, matrix, metal matrix composite, surface roughness, reinforcement
Procedia PDF Downloads 65711730 Model Evaluation of Thermal Effects Created by Cell Membrane Electroporation
Authors: Jiahui Song
Abstract:
The use of very high electric fields (~ 100kV/cm or higher) with pulse durations in the nanosecond range has been a recent development. The electric pulses have been used as tools to generate electroporation which has many biomedical applications. Most of the studies of electroporation have ignored possible thermal effects because of the small duration of the applied voltage pulses. However, it has been predicted membrane temperature gradients ranging from 0.2×109 to 109 K/m. This research focuses on thermal gradients that drives for electroporative enhancements, even though the actual temperature values might not have changed appreciably from their equilibrium levels. The dynamics of pore formation with the application of an externally applied electric field is studied on the basis of molecular dynamics (MD) simulations using the GROMACS package. Different temperatures are assigned to various regions to simulate the appropriate temperature gradients. The GROMACS provides the force fields for the lipid membranes, which is taken to comprise of dipalmitoyl-phosphatidyl-choline (DPPC) molecules. The water model mimicks the aqueous environment surrounding the membrane. Velocities of water and membrane molecules are generated randomly at each simulation run according to a Maxwellian distribution. For statistical significance, a total of eight MD simulations are carried out with different starting molecular velocities for each simulation. MD simulation shows no pore is formed in a 10-ns snapshot for a DPPC membrane set at a uniform temperature of 295 K after a 0.4 V/nm electric field is applied. A nano-sized pore is clearly seen in a 10-ns snapshot on the same geometry but with the top and bottom membrane surfaces kept at temperatures of 300 and 295 K, respectively. For the same applied electric field, the formation of nanopores is clearly demonstrated, but only in the presence of a temperature gradient. MD simulation results show enhanced electroporative effects arising from thermal gradients. The study suggests the temperature gradient is a secondary driver, with the electric field being the primary cause for electroporation.Keywords: nanosecond, electroporation, thermal effects, molecular dynamics
Procedia PDF Downloads 8211729 Preparation and Study of Pluronic F127 Monolayers at Air-Water Interface
Authors: Neha Kanodia, M. Kamil
Abstract:
Properties of mono layers of Pluronic F127 at air/water interface have been investigated by using Langmuir trough method. Pluronic F127 is a triblock copolymer of poly (ethyleneoxide) (PEO groups)– poly (propylene oxide) (PO groups)–poly(ethylene oxide) (PEO groups). Surface pressure versus mean molecular area isotherms is studied. The isotherm of the mono layer showed the characteristics of a pancake-to-brush transition upon compression of the mono layer. The effect of adding surfactant (SDS) to polymer and the effect of increasing loading on polymer was also studied. The effect of repeated compression and expansion cycle (or hysteresis curve) is investigated to know about stability of the film formed. Static elasticity of mono layer gives information about molecular arrangement, phase structure and phase transition.Keywords: surface-pressure, mean molecular area isotherms, hysteresis, static elasticity
Procedia PDF Downloads 44911728 Lanthanide-Mediated Aggregation of Glutathione-Capped Gold Nanoclusters Exhibiting Strong Luminescence and Fluorescence Turn-on for Sensing Alkaline Phosphatase
Authors: Jyun-Guo You, Wei-Lung Tseng
Abstract:
Herein, this study represents a synthetic route for producing highly luminescent AuNCs based on the integration of two concepts, including thiol-induced luminescence enhancement of ligand-insufficient GSH-AuNCs and Ce3+-induced aggregation of GSH-AuNCs. The synthesis of GSH-AuNCs was conducted by modifying the previously reported procedure. To produce more Au(I)-GSH complexes on the surface of ligand-insufficient GSH-AuNCs, the extra GSH is added to attach onto the AuNC surface. The formed ligand-sufficient GSH-AuNCs (LS-GSH-AuNCs) emit relatively strong luminescence. The luminescence of LS-GSH-AuNCs is further enhanced by the coordination of two carboxylic groups (pKa1 = 2 and pKa2 = 3.5) of GSH and lanthanide ions, which induce the self-assembly of LS-GSH-AuNCs. As a result, the quantum yield of the self-assembled LS-GSH-AuNCs (SA-AuNCs) was improved to be 13%. Interestingly, the SA-AuNCs were dissembled into LS-GSH-AuNCs in the presence of adenosine triphosphate (ATP) because of the formation of the ATP- lanthanide ion complexes. Our assay was employed to detect alkaline phosphatase (ALP) activity over the range of 0.1−10 U/mL with a limit of detection (LOD) of 0.03 U/mL.Keywords: self-assembly, lanthanide ion, adenosine triphosphate, alkaline phosphatase
Procedia PDF Downloads 170