Search results for: LULC
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 49

Search results for: LULC

49 Comparative Analysis of Different Land Use Land Cover (LULC) Maps in WRF Modelling Over Indian Region

Authors: Sen Tanmoy, Jain Sarika, Panda Jagabandhu

Abstract:

The studies regarding the impact of urbanization using the WRF-ARW model rely heavily on the static geographical information selected, including domain configuration and land use land cover (LULC) data. Accurate representation of LULC data provides essential information for understanding urban growth and simulating meteorological parameters such as temperature, precipitation etc. Researchers are using different LULC data as per availability and their requirements. As far as India is concerned, we have very limited resources and data availability. So, it is important to understand how we can optimize our results using limited LULC data. In this review article, we explored how a LULC map is generated from different sources in the Indian context and what its significance is in WRF-ARW modeling to study urbanization/Climate change or any other meteorological parameters. Bibliometric analyses were also performed in this review article based on countries of study and indexed keywords. Finally, some key points are marked out for selecting the most suitable LULC map for any urbanization-related study.

Keywords: LULC, LULC mapping, LANDSAT, WRF-ARW, ISRO, bibliometric Analysis.

Procedia PDF Downloads 14
48 Community Perception of Dynamics and Drivers of Land Cover Change around Pendjari Biosphere Reserve in Northern Benin

Authors: Jesugnon E. A. Kpodo, Aurlus D. Ouindeyama, Jan H. Sommer, Fifanou G. Vodouhe, Kolo Yeo

Abstract:

Local communities are recognized as key actors for sustainable land use and to some extent actors driving land use land cover (LULC) change around protected areas. Understanding drivers responsible for these changes are very crucial for better policy decisions making. This study analyzed perception of 425 local people in 28 villages towards land cover change around Pendjari Biosphere Reserve using semi-structured questionnaire. 72.9% of local communities perceive land cover as degrading while 24.5% as improving and only 2.6% as stable during the five last years. Women perceived more land cover degradation than men do (84.1 vs. 67.1%). Local communities identified cultivated land expansion, logging, firewood collection, charcoal production, population growth, and poverty as the key drivers of declined LULC in the study area. Education has emerged as a significant factor influencing respondents’ perceptions of these drivers of LULC changes. Appropriate management measures and government policies should be implemented around Pendjari Biosphere Reserve to control drivers of LULC change.

Keywords: local perceptions, LULC drivers, LULC dynamics, Pendjari Biosphere Reserve, rural livelihoods, sustainable resource management

Procedia PDF Downloads 108
47 Study of Land Use Land Cover Change of Bhimbetka with Temporal Satellite Data and Information Systems

Authors: Pranita Shivankar, Devashree Hardas, Prabodhachandra Deshmukh, Arun Suryavanshi

Abstract:

Bhimbetka Rock Shelters is the UNESCO World Heritage Site located about 45 kilometers south of Bhopal in the state of Madhya Pradesh, India. Rapid changes in land use land cover (LULC) adversely affect the environment. In recent past, significant changes are found in the cultural landscape over a period of time. The objective of the paper was to study the changes in land use land cover (LULC) of Bhimbetka and its peripheral region. For this purpose, the supervised classification was carried out by using satellite images of Landsat and IRS LISS III for the year 2000 and 2013. Use of remote sensing in combination with geographic information system is one of the effective information technology tools to generate land use land cover (LULC) change information.

Keywords: IRS LISS III, Landsat, LULC, UNESCO, World Heritage Site

Procedia PDF Downloads 343
46 Using Geo-Statistical Techniques and Machine Learning Algorithms to Model the Spatiotemporal Heterogeneity of Land Surface Temperature and its Relationship with Land Use Land Cover

Authors: Javed Mallick

Abstract:

In metropolitan areas, rapid changes in land use and land cover (LULC) have ecological and environmental consequences. Saudi Arabia's cities have experienced tremendous urban growth since the 1990s, resulting in urban heat islands, groundwater depletion, air pollution, loss of ecosystem services, and so on. From 1990 to 2020, this study examines the variance and heterogeneity in land surface temperature (LST) caused by LULC changes in Abha-Khamis Mushyet, Saudi Arabia. LULC was mapped using the support vector machine (SVM). The mono-window algorithm was used to calculate the land surface temperature (LST). To identify LST clusters, the local indicator of spatial associations (LISA) model was applied to spatiotemporal LST maps. In addition, the parallel coordinate (PCP) method was used to investigate the relationship between LST clusters and urban biophysical variables as a proxy for LULC. According to LULC maps, urban areas increased by more than 330% between 1990 and 2018. Between 1990 and 2018, built-up areas had an 83.6% transitional probability. Furthermore, between 1990 and 2020, vegetation and agricultural land were converted into built-up areas at a rate of 17.9% and 21.8%, respectively. Uneven LULC changes in built-up areas result in more LST hotspots. LST hotspots were associated with high NDBI but not NDWI or NDVI. This study could assist policymakers in developing mitigation strategies for urban heat islands

Keywords: land use land cover mapping, land surface temperature, support vector machine, LISA model, parallel coordinate plot

Procedia PDF Downloads 62
45 The Change of Urban Land Use/Cover Using Object Based Approach for Southern Bali

Authors: I. Gusti A. A. Rai Asmiwyati, Robert J. Corner, Ashraf M. Dewan

Abstract:

Change on land use/cover (LULC) dominantly affects spatial structure and function. It can have such impacts by disrupting social culture practice and disturbing physical elements. Thus, it has become essential to understand of the dynamics in time and space of LULC as it can be used as a critical input for developing sustainable LULC. This study was an attempt to map and monitor the LULC change in Bali Indonesia from 2003 to 2013. Using object based classification to improve the accuracy, and change detection, multi temporal land use/cover data were extracted from a set of ASTER satellite image. The overall accuracies of the classification maps of 2003 and 2013 were 86.99% and 80.36%, respectively. Built up area and paddy field were the dominant type of land use/cover in both years. Patch increase dominantly in 2003 illustrated the rapid paddy field fragmentation and the huge occurring transformation. This approach is new for the case of diverse urban features of Bali that has been growing fast and increased the classification accuracy than the manual pixel based classification.

Keywords: land use/cover, urban, Bali, ASTER

Procedia PDF Downloads 534
44 Effects of Changes in LULC on Hydrological Response in Upper Indus Basin

Authors: Ahmad Ammar, Umar Khan Khattak, Muhammad Majid

Abstract:

Empirically based lumped hydrologic models have an extensive track record of use for various watershed managements and flood related studies. This study focuses on the impacts of LULC change for 10 year period on the discharge in watershed using lumped model HEC-HMS. The Indus above Tarbela region acts as a source of the main flood events in the middle and lower portions of Indus because of the amount of rainfall and topographic setting of the region. The discharge pattern of the region is influenced by the LULC associated with it. In this study the Landsat TM images were used to do LULC analysis of the watershed. Satellite daily precipitation TRMM data was used as input rainfall. The input variables for model building in HEC-HMS were then calculated based on the GIS data collected and pre-processed in HEC-GeoHMS. SCS-CN was used as transform model, SCS unit hydrograph method was used as loss model and Muskingum was used as routing model. For discharge simulation years 2000 and 2010 were taken. HEC-HMS was calibrated for the year 2000 and then validated for 2010.The performance of the model was assessed through calibration and validation process and resulted R2=0.92 during calibration and validation. Relative Bias for the years 2000 was -9% and for2010 was -14%. The result shows that in 10 years the impact of LULC change on discharge has been negligible in the study area overall. One reason is that, the proportion of built-up area in the watershed, which is the main causative factor of change in discharge, is less than 1% of the total area. However, locally, the impact of development was found significant in built up area of Mansehra city. The analysis was done on Mansehra city sub-watershed with an area of about 16 km2 and has more than 13% built up area in 2010. The results showed that with an increase of 40% built-up area in the city from 2000 to 2010 the discharge values increased about 33 percent, indicating the impact of LULC change on discharge value.

Keywords: LULC change, HEC-HMS, Indus Above Tarbela, SCS-CN

Procedia PDF Downloads 497
43 Change Detection Analysis on Support Vector Machine Classifier of Land Use and Land Cover Changes: Case Study on Yangon

Authors: Khin Mar Yee, Mu Mu Than, Kyi Lint, Aye Aye Oo, Chan Mya Hmway, Khin Zar Chi Winn

Abstract:

The dynamic changes of Land Use and Land Cover (LULC) changes in Yangon have generally resulted the improvement of human welfare and economic development since the last twenty years. Making map of LULC is crucially important for the sustainable development of the environment. However, the exactly data on how environmental factors influence the LULC situation at the various scales because the nature of the natural environment is naturally composed of non-homogeneous surface features, so the features in the satellite data also have the mixed pixels. The main objective of this study is to the calculation of accuracy based on change detection of LULC changes by Support Vector Machines (SVMs). For this research work, the main data was satellite images of 1996, 2006 and 2015. Computing change detection statistics use change detection statistics to compile a detailed tabulation of changes between two classification images and Support Vector Machines (SVMs) process was applied with a soft approach at allocation as well as at a testing stage and to higher accuracy. The results of this paper showed that vegetation and cultivated area were decreased (average total 29 % from 1996 to 2015) because of conversion to the replacing over double of the built up area (average total 30 % from 1996 to 2015). The error matrix and confidence limits led to the validation of the result for LULC mapping.

Keywords: land use and land cover change, change detection, image processing, support vector machines

Procedia PDF Downloads 119
42 Assessment of Agricultural Land Use Land Cover, Land Surface Temperature and Population Changes Using Remote Sensing and GIS: Southwest Part of Marmara Sea, Turkey

Authors: Melis Inalpulat, Levent Genc

Abstract:

Land Use Land Cover (LULC) changes due to human activities and natural causes have become a major environmental concern. Assessment of temporal remote sensing data provides information about LULC impacts on environment. Land Surface Temperature (LST) is one of the important components for modeling environmental changes in climatological, hydrological, and agricultural studies. In this study, LULC changes (September 7, 1984 and July 8, 2014) especially in agricultural lands together with population changes (1985-2014) and LST status were investigated using remotely sensed and census data in South Marmara Watershed, Turkey. LULC changes were determined using Landsat TM and Landsat OLI data acquired in 1984 and 2014 summers. Six-band TM and OLI images were classified using supervised classification method to prepare LULC map including five classes including Forest (F), Grazing Land (G), Agricultural Land (A), Water Surface (W), and Residential Area-Bare Soil (R-B) classes. The LST image was also derived from thermal bands of the same dates. LULC classification results showed that forest areas, agricultural lands, water surfaces and residential area-bare soils were increased as 65751 ha, 20163 ha, 1924 ha and 20462 ha respectively. In comparison, a dramatic decrement occurred in grazing land (107985 ha) within three decades. The population increased % 29 between years 1984-2014 in whole study area. Along with the natural causes, migration also caused this increase since the study area has an important employment potential. LULC was transformed among the classes due to the expansion in residential, commercial and industrial areas as well as political decisions. In the study, results showed that agricultural lands around the settlement areas transformed to residential areas in 30 years. The LST images showed that mean temperatures were ranged between 26-32 °C in 1984 and 27-33 °C in 2014. Minimum temperature of agricultural lands was increased 3 °C and reached to 23 °C. In contrast, maximum temperature of A class decreased to 41 °C from 44 °C. Considering temperatures of the 2014 R-B class and 1984 status of same areas, it was seen that mean, min and max temperatures increased by 2 °C. As a result, the dynamism of population, LULC and LST resulted in increasing mean and maximum surface temperatures, living spaces/industrial areas and agricultural lands.

Keywords: census data, landsat, land surface temperature (LST), land use land cover (LULC)

Procedia PDF Downloads 378
41 Land Use Land Cover Changes in Response to Urban Sprawl within North-West Anatolia, Turkey

Authors: Melis Inalpulat, Levent Genc

Abstract:

In the present study, an attempt was made to state the Land Use Land Cover (LULC) transformation over three decades around the urban regions of Balıkesir, Bursa, and Çanakkale provincial centers (PCs) in Turkey. Landsat imageries acquired in 1984, 1999 and 2014 were used to determine the LULC change. Images were classified using the supervised classification technique and five main LULC classes were considered including forest (F), agricultural land (A), residential area (urban) - bare soil (R-B), water surface (W), and other (O). Change detection analyses were conducted for 1984-1999 and 1999-2014, and the results were evaluated. Conversions of LULC types to R-B class were investigated. In addition, population changes (1985-2014) were assessed depending on census data, the relations between population and the urban areas were stated, and future populations and urban area needs were forecasted for 2030. The results of LULC analysis indicated that urban areas, which are covered under R-B class, were expanded in all PCs. During 1984-1999 R-B class within Balıkesir, Bursa and Çanakkale PCs were found to have increased by 7.1%, 8.4%, and 2.9%, respectively. The trend continued in the 1999-2014 term and the increment percentages reached to 15.7%, 15.5%, and 10.2% at the end of 30-year period (1984-2014). Furthermore, since A class in all provinces was found to be the principal contributor for the R-B class, urban sprawl lead to the loss of agricultural lands. Moreover, the areas of R-B classes were highly correlated with population within all PCs (R2>0.992). Depending on this situation, both future populations and R-B class areas were forecasted. The estimated values of increase in the R-B class areas for Balıkesir, Bursa, and Çanakkale PCs were 1,586 ha, 7,999 ha and 854 ha, respectively. Due to this fact, the forecasted values for 2,030 are 7,838 ha, 27,866, and 2,486 ha for Balıkesir, Bursa, and Çanakkale, and thus, 7.7%, 8.2%, and 9.7% more R-B class areas are expected to locate in PCs in respect to the same order.

Keywords: landsat, LULC change, population, urban sprawl

Procedia PDF Downloads 251
40 GIS Based Atmospheric Analysis to Predict Future Temperature Rise Caused by Land Use and Land Cover in Okara by Using Environmental Remote Sensing

Authors: Sumaira Hafeez, Saira Akram

Abstract:

Albeit the populace in metropolitan regions on the planet develops each year, the urban communities battling to adapt to the expanded metropolitan movement grow at different rates. Land Surface Temperature and other atmospheric parameters of the area of not really settled using Landsat pictures more than 10 years isolated. The LULC types were moreover arranged using managed gathering techniques. Quick urbanization is changing the current examples of Land Use Land Cover (LULC) all around the world, which is thusly expanding the Land Surface Temperature (LST) other atmospheric parameters in numerous districts. Present review was centered around assessing the current and recreating the future LULC and Land Surface Temperature patterns in the elevated climate of lower Himalayan district of Pakistan. Past examples of LULC and Land Surface Temperature were distinguished through the multi-unearthly Landsat satellite pictures during the 1995–2019 information period. The future forecasts were made for the year 2030 to work out LULC and LST changes separately, utilizing their previous examples. The review presumes that the reliably extending encroachment of the city's as of late advanced provincial regions over the totally open have went with an overall warming of the district's typical. Meteorological parameters over the earlier ten years and that permitting the land to lie void for a significant long time resulting to clearing the country fields for future metropolitan improvement is a preparation that has lamentable natural effects.

Keywords: surface urban heat island, land surface temperature, urban climate change, spatial analysis of meterological and atmospheric science

Procedia PDF Downloads 117
39 Assessment of Land Use Land Cover Change-Induced Climatic Effects

Authors: Mahesh K. Jat, Ankan Jana, Mahender Choudhary

Abstract:

Rapid population and economic growth resulted in changes in large-scale land use land cover (LULC) changes. Changes in the biophysical properties of the Earth's surface and its impact on climate are of primary concern nowadays. Different approaches, ranging from location-based relationships or modelling earth surface - atmospheric interaction through modelling techniques like surface energy balance (SEB) are used in the recent past to examine the relationship between changes in Earth surface land cover and climatic characteristics like temperature and precipitation. A remote sensing-based model i.e., Surface Energy Balance Algorithm for Land (SEBAL), has been used to estimate the surface heat fluxes over Mahi Bajaj Sagar catchment (India) from 2001 to 2020. Landsat ETM and OLI satellite data are used to model the SEB of the area. Changes in observed precipitation and temperature, obtained from India Meteorological Department (IMD) have been correlated with changes in surface heat fluxes to understand the relative contributions of LULC change in changing these climatic variables. Results indicate a noticeable impact of LULC changes on climatic variables, which are aligned with respective changes in SEB components. Results suggest that precipitation increases at a rate of 20 mm/year. The maximum and minimum temperature decreases and increases at 0.007 ℃ /year and 0.02 ℃ /year, respectively. The average temperature increases at 0.009 ℃ /year. Changes in latent heat flux and sensible heat flux positively correlate with precipitation and temperature, respectively. Variation in surface heat fluxes influences the climate parameters and is an adequate reason for climate change. So, SEB modelling is helpful to understand the LULC change and its impact on climate.

Keywords: LULC, sensible heat flux, latent heat flux, SEBAL, landsat, precipitation, temperature

Procedia PDF Downloads 106
38 Preliminary Analysis on Land Use-Land Cover Assessment of Post-Earthquake Geohazard: A Case Study in Kundasang, Sabah

Authors: Nur Afiqah Mohd Kamal, Khamarrul Azahari Razak

Abstract:

The earthquake aftermath has become a major concern, especially in high seismicity region. In Kundasang, Sabah, the earthquake on 5th June 2015 resulted in several catastrophes; landslides, rockfalls, mudflows and major slopes affected regardless of the series of the aftershocks. Certainly, the consequences of earthquake generate and induce the episodic disaster, not only life-threatening but it also affects infrastructure and economic development. Therefore, a need for investigating the change in land use and land cover (LULC) of post-earthquake geohazard is essential for identifying the extent of disastrous effects towards the development in Kundasang. With the advancement of remote sensing technology, post-earthquake geohazards (landslides, mudflows, rockfalls, debris flows) assessment can be evaluated by the employment of object-based image analysis in investigating the LULC change which consists of settlements, public infrastructure and vegetation cover. Therefore, this paper discusses the preliminary results on post-earthquakes geohazards distribution in Kundasang and evaluates the LULC classification effect upon the occurrences of geohazards event. The result of this preliminary analysis will provide an overview to determine the extent of geohazard impact on LULC. This research also provides beneficial input to the local authority in Kundasang about the risk of future structural development on the geohazard area.

Keywords: geohazard, land use land cover, object-based image analysis, remote sensing

Procedia PDF Downloads 233
37 Determination of Potential Agricultural Lands Using Landsat 8 OLI Images and GIS: Case Study of Gokceada (Imroz) Turkey

Authors: Rahmi Kafadar, Levent Genc

Abstract:

In present study, it was aimed to determine potential agricultural lands (PALs) in Gokceada (Imroz) Island of Canakkale province, Turkey. Seven-band Landsat 8 OLI images acquired on July 12 and August 13, 2013, and their 14-band combination image were used to identify current Land Use Land Cover (LULC) status. Principal Component Analysis (PCA) was applied to three Landsat datasets in order to reduce the correlation between the bands. A total of six Original and PCA images were classified using supervised classification method to obtain the LULC maps including 6 main classes (“Forest”, “Agriculture”, “Water Surface”, “Residential Area-Bare Soil”, “Reforestation” and “Other”). Accuracy assessment was performed by checking the accuracy of 120 randomized points for each LULC maps. The best overall accuracy and Kappa statistic values (90.83%, 0.8791% respectively) were found for PCA images which were generated from 14-bands combined images called 3-B/JA. Digital Elevation Model (DEM) with 15 m spatial resolution (ASTER) was used to consider topographical characteristics. Soil properties were obtained by digitizing 1:25000 scaled soil maps of rural services directorate general. Potential Agricultural Lands (PALs) were determined using Geographic information Systems (GIS). Procedure was applied considering that “Other” class of LULC map may be used for agricultural purposes in the future properties. Overlaying analysis was conducted using Slope (S), Land Use Capability Class (LUCC), Other Soil Properties (OSP) and Land Use Capability Sub-Class (SUBC) properties. A total of 901.62 ha areas within “Other” class (15798.2 ha) of LULC map were determined as PALs. These lands were ranked as “Very Suitable”, “Suitable”, “Moderate Suitable” and “Low Suitable”. It was determined that the 8.03 ha were classified as “Very Suitable” while 18.59 ha as suitable and 11.44 ha as “Moderate Suitable” for PALs. In addition, 756.56 ha were found to be “Low Suitable”. The results obtained from this preliminary study can serve as basis for further studies.

Keywords: digital elevation model (DEM), geographic information systems (GIS), gokceada (Imroz), lANDSAT 8 OLI-TIRS, land use land cover (LULC)

Procedia PDF Downloads 343
36 Assessment of Forest Above Ground Biomass Through Linear Modeling Technique Using SAR Data

Authors: Arjun G. Koppad

Abstract:

The study was conducted in Joida taluk of Uttara Kannada district, Karnataka, India, to assess the land use land cover (LULC) and forest aboveground biomass using L band SAR data. The study area covered has dense, moderately dense, and sparse forests. The sampled area was 0.01 percent of the forest area with 30 sampling plots which were selected randomly. The point center quadrate (PCQ) method was used to select the tree and collected the tree growth parameters viz., tree height, diameter at breast height (DBH), and diameter at the tree base. The tree crown density was measured with a densitometer. Each sample plot biomass was estimated using the standard formula. In this study, the LULC classification was done using Freeman-Durden, Yamaghuchi and Pauli polarimetric decompositions. It was observed that the Freeman-Durden decomposition showed better LULC classification with an accuracy of 88 percent. An attempt was made to estimate the aboveground biomass using SAR backscatter. The ALOS-2 PALSAR-2 L-band data (HH, HV, VV &VH) fully polarimetric quad-pol SAR data was used. SAR backscatter-based regression model was implemented to retrieve forest aboveground biomass of the study area. Cross-polarization (HV) has shown a good correlation with forest above-ground biomass. The Multi Linear Regression analysis was done to estimate aboveground biomass of the natural forest areas of the Joida taluk. The different polarizations (HH &HV, VV &HH, HV & VH, VV&VH) combination of HH and HV polarization shows a good correlation with field and predicted biomass. The RMSE and value for HH & HV and HH & VV were 78 t/ha and 0.861, 81 t/ha and 0.853, respectively. Hence the model can be recommended for estimating AGB for the dense, moderately dense, and sparse forest.

Keywords: forest, biomass, LULC, back scatter, SAR, regression

Procedia PDF Downloads 14
35 Comparati̇ve Study of Pi̇xel and Object-Based Image Classificati̇on Techni̇ques for Extracti̇on of Land Use/Land Cover Informati̇on

Authors: Mahesh Kumar Jat, Manisha Choudhary

Abstract:

Rapid population and economic growth resulted in changes in large-scale land use land cover (LULC) changes. Changes in the biophysical properties of the Earth's surface and its impact on climate are of primary concern nowadays. Different approaches, ranging from location-based relationships or modelling earth surface - atmospheric interaction through modelling techniques like surface energy balance (SEB) have been used in the recent past to examine the relationship between changes in Earth surface land cover and climatic characteristics like temperature and precipitation. A remote sensing-based model i.e., Surface Energy Balance Algorithm for Land (SEBAL), has been used to estimate the surface heat fluxes over Mahi Bajaj Sagar catchment (India) from 2001 to 2020. Landsat ETM and OLI satellite data are used to model the SEB of the area. Changes in observed precipitation and temperature, obtained from India Meteorological Department (IMD) have been correlated with changes in surface heat fluxes to understand the relative contributions of LULC change in changing these climatic variables. Results indicate a noticeable impact of LULC changes on climatic variables, which are aligned with respective changes in SEB components. Results suggest that precipitation increases at a rate of 20 mm/year. The maximum and minimum temperature decreases and increases at 0.007 ℃ /year and 0.02 ℃ /year, respectively. The average temperature increases at 0.009 ℃ /year. Changes in latent heat flux and sensible heat flux positively correlate with precipitation and temperature, respectively. Variation in surface heat fluxes influences the climate parameters and is an adequate reason for climate change. So, SEB modelling is helpful to understand the LULC change and its impact on climate.

Keywords: remote sensing, GIS, object based, classification

Procedia PDF Downloads 111
34 Hydrologic Impacts of Climate Change and Urbanization on Quetta Watershed, Pakistan

Authors: Malik Muhammad Akhtar, Tanzeel Khan

Abstract:

Various natural and anthropogenic factors are affecting recharge processes in urban areas due to intense urban expansion; land-use/landcover change (LULC) and climate considerably influence the ecosystem functions. In Quetta, a terrible transformation of LULC has occurred due to an increase in human population and rapid urbanization over the past years; according to the Pakistan Bureau of Statistics, the increase of population from 252,577 in 1972 to 2,275,699 in 2017 shows an abrupt rise which in turn has affected the aquifer recharge capability, vegetation, and precipitation at Quetta. This study focuses on the influence of population growth and LULC on groundwater table level by employing multi-temporal, multispectral satellite data during the selected years, i.e. 2014, 2017, and 2020. The results of land classification showed that barren land had shown a considerable decrease, whereas the urban area has increased over time from 152.4sq/km in 2014 to 195.5sq/km in 2017 to 283.3sq/km in 2020, whereas surface-water area coverage has increased since 2014 because of construction of few dams around the valley. Rapid urbanization stresses limited hydrology resources, and this needs to be addressed to conserve/sustain the resources through educating the local community, awareness regarding water use and climate change, and supporting artificial recharge of the aquifers.

Keywords: climate changes, urbanization, GIS, land use, Quetta, watershed

Procedia PDF Downloads 98
33 Impacts of Aquaculture Farms on the Mangroves Forests of Sundarbans, India (2010-2018): Temporal Changes of NDVI

Authors: Sandeep Thakur, Ismail Mondal, Phani Bhusan Ghosh, Papita Das, Tarun Kumar De

Abstract:

Sundarbans Reserve forest of India has been undergoing major transformations in the recent past owing to population pressure and related changes. This has brought about major changes in the spatial landscape of the region especially in the western parts. This study attempts to assess the impacts of the Landcover changes on the mangrove habitats. Time series imageries of Landsat were used to analyze the Normalized Differential Vegetation Index (NDVI) patterns over the western parts of Indian Sundarbans forest in order to assess the heath of the mangroves in the region. The images were subjected to Land use Land cover (LULC) classification using sub-pixel classification techniques in ERDAS Imagine software and the changes were mapped. The spatial proliferation of aquaculture farms during the study period was also mapped. A multivariate regression analysis was carried out between the obtained NDVI values and the LULC classes. Similarly, the observed meteorological data sets (time series rainfall and minimum and maximum temperature) were also statistically correlated for regression. The study demonstrated the application of NDVI in assessing the environmental status of mangroves as the relationship between the changes in the environmental variables and the remote sensing based indices felicitate an efficient evaluation of environmental variables, which can be used in the coastal zone monitoring and development processes.

Keywords: aquaculture farms, LULC, Mangrove, NDVI

Procedia PDF Downloads 164
32 Study of Growth Patterns of the Built-Up Area in Tourism Destinations in Relation to Sustainable Development

Authors: Tagore Sai Priya Nunna, Ankhi Banerjee

Abstract:

The rapid growth of the tourism industry in India in the last few years after the economic crisis in 2009 has been one of the significant causes that led to the Land Use Land Cover change (LULC) of most tourism destinations. The tourist regions are subjected to significant increase in built-up due to increased construction activities for developing accommodation facilities further boosting tourism demand. This research attempts to analyse the changing LULC and the growth pattern of the built-up area within tourist destinations. Four popular tourist destinations, which promises various types of tourism activity and which are significantly dependent on tourism for economic growth, are selected for the study. The study uses remotely sensed data for analysis of land use change through supervised segmentation into five broad classes. Further, the landuse map is reclassified into binary classes to extract the built-up area. The growth patterns of the built-up are analysed in terms of size, shape, direction and form of growth, through a set of spatial metrics. Additionally, a detailed analysis of the existing development pattern corresponding to planned development zones was performed to identify unplanned growth spots in the study regions. The findings of the study provide insights into how tourism has contributed to significant changes in LULC around tourist sites. Also, the study highlights the growth pattern of built-up areas with respect to the type of tourism activity and geographical characteristics. The research attempts to address the need of integrating spatial metrics for the development of sustainable tourism plans as part of the goals of sustainable development.

Keywords: built-up, growth, patterns, tourism, sustainable

Procedia PDF Downloads 96
31 Evaluating the Impact of Expansion on Urban Thermal Surroundings: A Case Study of Lahore Metropolitan City, Pakistan

Authors: Usman Ahmed Khan

Abstract:

Urbanization directly affects the existing infrastructure, landscape modification, environmental contamination, and traffic pollution, especially if there is a lack of urban planning. Recently, the rapid urban sprawl has resulted in less developed green areas and has devastating environmental consequences. This study was aimed to study the past urban expansion rates and measure LST from satellite data. The land use land cover (LULC) maps of years 1996, 2010, 2013, and 2017 were generated using landsat satellite images. Four main classes, i.e., water, urban, bare land, and vegetation, were identified using unsupervised classification with iterative self-organizing data analysis (isodata) technique. The LST from satellite thermal data can be derived from different procedures: atmospheric, radiometric calibrations and surface emissivity corrections, classification of spatial changeability in land-cover. Different methods and formulas were used in the algorithm that successfully retrieves the land surface temperature to help us study the thermal environment of the ground surface. To verify the algorithm, the land surface temperature and the near-air temperature were compared. The results showed that, From 1996-2017, urban areas increased to about a considerable increase of about 48%. Few areas of the city also shown in a reduction in LST from the year 1996-2017 that actually began their transitional phase from rural to urban LULC. The mean temperature of the city increased averagely about 1ºC each year in the month of October. The green and vegetative areas witnessed a decrease in the area while a higher number of pixels increased in urban class.

Keywords: LST, LULC, isodata, urbanization

Procedia PDF Downloads 92
30 Quantifying the Rapid Urbanization Impact on Potential Stormwater Runoff of Dhaka City, Bangladesh

Authors: Md. Kumruzzaman, Anutosh Das, Md. Mosharraf Hossain

Abstract:

Historically, rapid urban growth activities are considered one of the main culprits behind urban floods or waterlogging. The increased unplanned urbanization of many areas of Dhaka has resulted in waterlogging, urban floods, and increasing groundwater depth. To determine potential groundwater recharge from precipitation, the study is being conducted to examine the changes in land use/land cover (LULC) and urban runoff extent based on the NRCS-CN from 2005–2021. Four kinds of land use are used to examine the LULC change: built-up, bare land, vegetation, and water body. These categories are used for the years 2005, 2010, 2015, and 2021. The built-up area is growing at a relatively fast rate: 7.43%, 17.4%, and 5.21%, respectively, between the years 2005 and 2010, 2010 and 2015, and 2015 and 2021. As the amount of impervious surface rose in Dhaka city, stormwater discharge increased from 2005 to 2021. In 2005, 2010, 2015, and 2021, heavy stormwater runoff regions made up around 24.873%, 32.616%, 49.118%, and 55.986% of the entire Dhaka city. Stormwater runoff accounted for around 53.738%, 55.092%, 63.472%, and 67.061% of the total rainfall in 2005, 2010, 2015, and 2021, respectively. Between 2005 and 2021, a significant portion of the natural land cover was altered because of the expanding impervious surface, which also harmed the natural drainage system. Due to careless growth, the potential for stormwater runoff and groundwater recharge in Dhaka city worsens every year. Concerning this situation, a sustainable urban drainage system (SUDS) can be the best possible solution for minimizing the stormwater runoff and groundwater recharge problem.

Keywords: LULC, impervious surface, stormwater runoff, groundwater recharge, SUDS

Procedia PDF Downloads 66
29 Application of Multilayer Perceptron and Markov Chain Analysis Based Hybrid-Approach for Predicting and Monitoring the Pattern of LULC Using Random Forest Classification in Jhelum District, Punjab, Pakistan

Authors: Basit Aftab, Zhichao Wang, Feng Zhongke

Abstract:

Land Use and Land Cover Change (LULCC) is a critical environmental issue that has significant effects on biodiversity, ecosystem services, and climate change. This study examines the spatiotemporal dynamics of land use and land cover (LULC) across a three-decade period (1992–2022) in a district area. The goal is to support sustainable land management and urban planning by utilizing the combination of remote sensing, GIS data, and observations from Landsat satellites 5 and 8 to provide precise predictions of the trajectory of urban sprawl. In order to forecast the LULCC patterns, this study suggests a hybrid strategy that combines the Random Forest method with Multilayer Perceptron (MLP) and Markov Chain analysis. To predict the dynamics of LULC change for the year 2035, a hybrid technique based on multilayer Perceptron and Markov Chain Model Analysis (MLP-MCA) was employed. The area of developed land has increased significantly, while the amount of bare land, vegetation, and forest cover have all decreased. This is because the principal land types have changed due to population growth and economic expansion. The study also discovered that between 1998 and 2023, the built-up area increased by 468 km² as a result of the replacement of natural resources. It is estimated that 25.04% of the study area's urbanization will be increased by 2035. The performance of the model was confirmed with an overall accuracy of 90% and a kappa coefficient of around 0.89. It is important to use advanced predictive models to guide sustainable urban development strategies. It provides valuable insights for policymakers, land managers, and researchers to support sustainable land use planning, conservation efforts, and climate change mitigation strategies.

Keywords: land use land cover, Markov chain model, multi-layer perceptron, random forest, sustainable land, remote sensing.

Procedia PDF Downloads 10
28 Dynamics of the Landscape in the Different Colonization Models Implemented in the Legal Amazon

Authors: Valdir Moura, FranciléIa De Oliveira E. Silva, Erivelto Mercante, Ranieli Dos Anjos De Souza, Jerry Adriani Johann

Abstract:

Several colonization projects were implemented in the Brazilian Legal Amazon in the 1970s and 1980s. Among all of these colonization projects, the most prominent were those with the Fishbone and Topographic models. Within this scope, the projects of settlements known as Anari and Machadinho were created, which stood out because they are contiguous areas with different models and structure of occupation and colonization. The main objective of this work was to evaluate the dynamics of Land-Use and Land-Cover (LULC) in two different colonization models, implanted in the State of Rondonia in the 1980s. The Fishbone and Topographic models were implanted in the Anari and Machadinho settlements respectively. The understanding of these two forms of occupation will help in future colonization programs of the Brazilian Legal Amazon. These settlements are contiguous areas with different occupancy structures. A 32-year Landsat time series (1984-2016) was used to evaluate the rates and trends in the LULC process in the different colonization models. In the different occupation models analyzed, the results showed a rapid loss of primary and secondary forests (deforestation), mainly due to the dynamics of use, established by the Agriculture/Pasture (A/P) relation and, with heavy dependence due to road construction.

Keywords: land-cover, deforestation, rate fragments, remote sensing, secondary succession

Procedia PDF Downloads 125
27 Simulating the Surface Runoff for the Urbanized Watershed of Mula-Mutha River from Western Maharashtra, India

Authors: Anargha A. Dhorde, Deshpande Gauri, Amit G. Dhorde

Abstract:

Mula-Mutha basin is one of the speedily urbanizing watersheds, wherein two major urban centers, Pune and Pimpri-Chinchwad, have developed at a shocking rate in the last two decades. Such changing land use/land cover (LULC) is prone to hydrological problems and flash floods are a frequent, eventuality in the lower reaches of the basin. The present research brings out the impact of varying LULC, impervious surfaces on urban surface hydrology and generates storm-runoff scenarios for the hydrological units. The two multi-temporal satellite images were processed and supervised classification is performed with > 75% accuracy. The built-up has increased from 14.4% to 34.37% in the 28 years span, which is concentrated in and around the Pune-PCMC region. Impervious surfaces that were obtained by population calibrated multiple regression models. Almost 50% area of the watershed is impervious, which attribute to increase surface runoff and flash floods. The SCS-CN method was employed to calculate surface runoff of the watershed. The comparison between calculated and measured values of runoff was performed in a statistically precise way which shows no significant difference. Increasing built-up areas, as well as impervious surface areas due to rapid urbanization and industrialization, may lead to generating high runoff volumes in the basin especially in the urbanized areas of the watershed and along the major transportation arteries. Simulations generated with 50 mm and 100 mm rainstorm depth conspicuously noted that most of the changes in terms of increased runoff are constricted to the highly urbanized areas. Considering whole watershed area, the runoff values 39 m³ generated with 1'' rainfall whereas only urbanized areas of the basin (Pune and Pimpari-Chinchwad) were generated 11154 m³ runoff. Such analysis is crucial in providing information regarding their intensity and location, which proves instrumental in their analysis in order to formulate proper mitigation measures and rehabilitation strategies.

Keywords: land use/land cover, LULC, impervious surfaces, surface hydrology, storm-runoff scenarios

Procedia PDF Downloads 205
26 Remote Sensing Approach to Predict the Impacts of Land Use/Land Cover Change on Urban Thermal Comfort Using Machine Learning Algorithms

Authors: Ahmad E. Aldousaria, Abdulla Al Kafy

Abstract:

Urbanization is an incessant process that involves the transformation of land use/land cover (LULC), resulting in a reduction of cool land covers and thermal comfort zones (TCZs). This study explores the directional shrinkage of TCZs in Kuwait using Landsat satellite data from 1991 – 2021 to predict the future LULC and TCZ distribution for 2026 and 2031 using cellular automata (CA) and artificial neural network (ANN) algorithms. Analysis revealed a rapid urban expansion (40 %) in SE, NE, and NW directions and TCZ shrinkage in N – NW and SW directions with 25 % of the very uncomfortable area. The predicted result showed an urban area increase from 44 % in 2021 to 47 % and 52 % in 2026 and 2031, respectively, where uncomfortable zones were found to be concentrated around urban areas and bare lands in N – NE and N – NW directions. This study proposes an effective and sustainable framework to control TCZ shrinkage, including zero soil policies, planned landscape design, manmade water bodies, and rooftop gardens. This study will help urban planners and policymakers to make Kuwait an eco–friendly, functional, and sustainable country.

Keywords: land cover change, thermal environment, green cover loss, machine learning, remote sensing

Procedia PDF Downloads 212
25 Rice Area Determination Using Landsat-Based Indices and Land Surface Temperature Values

Authors: Burçin Saltık, Levent Genç

Abstract:

In this study, it was aimed to determine a route for identification of rice cultivation areas within Thrace and Marmara regions of Turkey using remote sensing and GIS. Landsat 8 (OLI-TIRS) imageries acquired in production season of 2013 with 181/32 Path/Row number were used. Four different seasonal images were generated utilizing original bands and different transformation techniques. All images were classified individually using supervised classification techniques and Land Use Land Cover Maps (LULC) were generated with 8 classes. Areas (ha, %) of each classes were calculated. In addition, district-based rice distribution maps were developed and results of these maps were compared with Turkish Statistical Institute (TurkSTAT; TSI)’s actual rice cultivation area records. Accuracy assessments were conducted, and most accurate map was selected depending on accuracy assessment and coherency with TSI results. Additionally, rice areas on over 4° slope values were considered as mis-classified pixels and they eliminated using slope map and GIS tools. Finally, randomized rice zones were selected to obtain maximum-minimum value ranges of each date (May, June, July, August, September images separately) NDVI, LSWI, and LST images to test whether they may be used for rice area determination via raster calculator tool of ArcGIS. The most accurate classification for rice determination was obtained from seasonal LSWI LULC map, and considering TSI data and accuracy assessment results and mis-classified pixels were eliminated from this map. According to results, 83151.5 ha of rice areas exist within study area. However, this result is higher than TSI records with an area of 12702.3 ha. Use of maximum-minimum range of rice area NDVI, LSWI, and LST was tested in Meric district. It was seen that using the value ranges obtained from July imagery, gave the closest results to TSI records, and the difference was only 206.4 ha. This difference is normal due to relatively low resolution of images. Thus, employment of images with higher spectral, spatial, temporal and radiometric resolutions may provide more reliable results.

Keywords: landsat 8 (OLI-TIRS), LST, LSWI, LULC, NDVI, rice

Procedia PDF Downloads 212
24 Analyzing Changes in Runoff Patterns Due to Urbanization Using SWAT Models

Authors: Asawari Ajay Avhad

Abstract:

The Soil and Water Assessment Tool (SWAT) is a hydrological model designed to predict the complex interactions within natural and human-altered watersheds. This research applies the SWAT model to the Ulhas River basin, a small watershed undergoing urbanization and characterized by bowl-like topography. Three simulation scenarios (LC17, LC22, and LC27) are investigated, each representing different land use and land cover (LULC) configurations, to assess the impact of urbanization on runoff. The LULC for the year 2027 is generated using the MOLUSCE Plugin of QGIS, incorporating various spatial factors such as DEM, Distance from Road, Distance from River, Slope, and distance from settlements. Future climate data is simulated within the SWAT model using historical data spanning 30 years. A susceptibility map for runoff across the basin is created, classifying runoff into five susceptibility levels ranging from very low to very high. Sub-basins corresponding to major urban settlements are identified as highly susceptible to runoff. With consideration of future climate projections, a slight increase in runoff is forecasted. The reliability of the methodology was validated through the identification of sub-basins known for experiencing severe flood events, which were determined to be highly susceptible to runoff. The susceptibility map successfully pinpointed these sub-basins with a track record of extreme flood occurrences, thus reinforcing the credibility of the assessment methodology. This study suggests that the methodology employed could serve as a valuable tool in flood management planning.

Keywords: future land use impact, flood management, run off prediction, ArcSWAT

Procedia PDF Downloads 28
23 Temporal Transformation of Built-up Area and its Impact on Urban Flooding in Hyderabad, India

Authors: Subbarao Pichuka, Amar Balakrishna Tej, Vikas Vemula

Abstract:

In recent years, the frequency and intensity of urban floods have increased due to climate change all over the world provoking a significant loss in terms of human lives and property. This study investigates the effect of Land Use and Land Cover (LULC) changes and population growth on the urban environmental conditions in the Indian metropolitan city namely Hyderabad. The centennial built-up area data have been downloaded from the Global Human Settlement Layer (GHSL) web portal for various periods (1975 to 2014). The ArcGIS version 10.8 software is employed to convert the GHSL data into shape files and also to calculate the amount of built-up area in the study locations. The decadal population data are obtained from the Census from 1971 to 2011 and forecasted for the required years (1975 and 2014) utilizing the Geometric Increase Method. Next, the analysis has been carried out with respect to the increase in population and the corresponding rise in the built-up area. Further the effects of extreme rainfall events, which exacerbate urban flooding have also been reviewed. Results demonstrate that the population growth was the primary cause of the increase in impervious surfaces in the urban regions. It in turn leads to the intensification of surface runoff and thereby leads to Urban flooding. The built-up area has been doubled from 1975 to 2014 and the population growth has been observed between 109.24% to 400% for the past four decades (1971 to 2014) in the study area (Hyderabad). Overall, this study provides the hindsight on the current urban flooding scenarios, and the findings of this study can be used in the future planning of cities.

Keywords: urban LULC change, urban flooding, GHSL built-up data, climate change, ArcGIS

Procedia PDF Downloads 75
22 Post-Soviet LULC Analysis of Tbilisi, Batumi and Kutaisi Using of Remote Sensing and Geo Information System

Authors: Lela Gadrani, Mariam Tsitsagi

Abstract:

Human is a part of the urban landscape and responsible for it. Urbanization of cities includes the longest phase; thus none of the environment ever undergoes such anthropogenic impact as the area of large cities. The post-Soviet period is very interesting in terms of scientific research. The changes that have occurred in the cities since the collapse of the Soviet Union have not yet been analyzed best to our knowledge. In this context, the aim of this paper is to analyze the changes in the land use of the three large cities of Georgia (Tbilisi, Kutaisi, Batumi). Tbilisi as a capital city, Batumi as a port city, and Kutaisi as a former industrial center. Data used during the research process are conventionally divided into satellite and supporting materials. For this purpose, the largest topographic maps (1:10 000) of all three cities were analyzed, Tbilisi General Plans (1896, 1924), Tbilisi and Kutaisi historical maps. The main emphasis was placed on the classification of Landsat images. In this case, we have classified the images LULC (LandUse / LandCover) of all three cities taken in 1987 and 2016 using the supervised and unsupervised methods. All the procedures were performed in the programs: Arc GIS 10.3.1 and ENVI 5.0. In each classification we have singled out the following classes: built-up area, water bodies, agricultural lands, green cover and bare soil, and calculated the areas occupied by them. In order to check the validity of the obtained results, additionally we used the higher resolution images of CORONA and Sentinel. Ultimately we identified the changes that took place in the land use in the post-Soviet period in the above cities. According to the results, a large wave of changes touched Tbilisi and Batumi, though in different periods. It turned out that in the case of Tbilisi, the area of developed territory has increased by 13.9% compared to the 1987 data, which is certainly happening at the expense of agricultural land and green cover, in particular, the area of agricultural lands has decreased by 4.97%; and the green cover by 5.67%. It should be noted that Batumi has obviously overtaken the country's capital in terms of development. With the unaided eye it is clear that in comparison with other regions of Georgia, everything is different in Batumi. In fact, Batumi is an unofficial summer capital of Georgia. Undoubtedly, Batumi’s development is very important both in economic and social terms. However, there is a danger that in the uneven conditions of urban development, we will eventually get a developed center - Batumi, and multiple underdeveloped peripheries around it. Analysis of the changes in the land use is of utmost importance not only for quantitative evaluation of the changes already implemented, but for future modeling and prognosis of urban development. Raster data containing the classes of land use is an integral part of the city's prognostic models.

Keywords: analysis, geo information system, remote sensing, LULC

Procedia PDF Downloads 441
21 Relocation of Livestocks in Rural of Canakkale Province Using Remote Sensing and GIS

Authors: Melis Inalpulat, Tugce Civelek, Unal Kizil, Levent Genc

Abstract:

Livestock production is one of the most important components of rural economy. Due to the urban expansion, rural areas close to expanding cities transform into urban districts during the time. However, the legislations have some restrictions related to livestock farming in such administrative units since they tend to create environmental concerns like odor problems resulted from excessive manure production. Therefore, the existing animal operations should be moved from the settlement areas. This paper was focused on determination of suitable lands for livestock production in Canakkale province of Turkey using remote sensing (RS) data and GIS techniques. To achieve the goal, Formosat 2 and Landsat 8 imageries, Aster DEM, and 1:25000 scaled soil maps, village boundaries, and village livestock inventory records were used. The study was conducted using suitability analysis which evaluates the land in terms of limitations and potentials, and suitability range was categorized as Suitable (S) and Non-Suitable (NS). Limitations included the distances from main and crossroads, water resources and settlements, while potentials were appropriate values for slope, land use capability and land use land cover status. Village-based S land distribution results were presented, and compared with livestock inventories. Results showed that approximately 44230 ha area is inappropriate because of the distance limitations for roads and etc. (NS). Moreover, according to LULC map, 71052 ha area consists of forests, olive and other orchards, and thus, may not be suitable for building such structures (NS). In comparison, it was found that there are a total of 1228 ha S lands within study area. The village-based findings indicated that, in some villages livestock production continues on NS areas. Finally, it was suggested that organized livestock zones may be constructed to serve in more than one village after the detailed analysis complemented considering also political decisions, opinion of the local people, etc.

Keywords: GIS, livestock, LULC, remote sensing, suitable lands

Procedia PDF Downloads 277
20 Evaluating the Effect of Climate Change and Land Use/Cover Change on Catchment Hydrology of Gumara Watershed, Upper Blue Nile Basin, Ethiopia

Authors: Gashaw Gismu Chakilu

Abstract:

Climate and land cover change are very important issues in terms of global context and their responses to environmental and socio-economic drivers. The dynamic of these two factors is currently affecting the environment in unbalanced way including watershed hydrology. In this paper individual and combined impacts of climate change and land use land cover change on hydrological processes were evaluated through applying the model Soil and Water Assessment Tool (SWAT) in Gumara watershed, Upper Blue Nile basin Ethiopia. The regional climate; temperature and rainfall data of the past 40 years in the study area were prepared and changes were detected by using trend analysis applying Mann-Kendall trend test. The land use land cover data were obtained from land sat image and processed by ERDAS IMAGIN 2010 software. Three land use land cover data; 1973, 1986, and 2013 were prepared and these data were used for base line, model calibration and change study respectively. The effects of these changes on high flow and low flow of the catchment have also been evaluated separately. The high flow of the catchment for these two decades was analyzed by using Annual Maximum (AM) model and the low flow was evaluated by seven day sustained low flow model. Both temperature and rainfall showed increasing trend; and then the extent of changes were evaluated in terms of monthly bases by using two decadal time periods; 1973-1982 was taken as baseline and 2004-2013 was used as change study. The efficiency of the model was determined by Nash-Sutcliffe (NS) and Relative Volume error (RVe) and their values were 0.65 and 0.032 for calibration and 0.62 and 0.0051 for validation respectively. The impact of climate change was higher than that of land use land cover change on stream flow of the catchment; the flow has been increasing by 16.86% and 7.25% due to climate and LULC change respectively, and the combined change effect accounted 22.13% flow increment. The overall results of the study indicated that Climate change is more responsible for high flow than low flow; and reversely the land use land cover change showed more significant effect on low flow than high flow of the catchment. From the result we conclude that the hydrology of the catchment has been altered because of changes of climate and land cover of the study area.

Keywords: climate, LULC, SWAT, Ethiopia

Procedia PDF Downloads 369