Search results for: organic pollution
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4005

Search results for: organic pollution

1845 Diversity and Structure of Trichoptera Communities and Water Quality Variables in Streams, Northern Thailand

Authors: T. Prommi, P. Thamsenanupap

Abstract:

The influence of physicochemical water quality parameters on the abundance and diversity of caddisfly larvae was studied in seven sampling stations in Mae Tao and Mae Ku watersheds, Mae Sot District, Tak Province, northern Thailand. The streams: MK2 and MK8 as reference site, and impacted streams (MT1-MT5) were sampled bi-monthly during July 2011 to May 2012. A total of 4,584 individual of caddisfly larvae belonging to 10 family and 17 genera were found. The larvae of family Hydropsychidae were the most abundance, followed by Philopotamidae, Odontoceridae, and Leptoceridae, respectively. The genus Cheumatopsyche, Hydropsyche, and Chimarra were the most abundance genera in this study. Results of CCA ordination showed the total dissolved solids, sulfate, water temperature, dissolved oxygen and pH were the most important physicochemical factors to affect distribution of caddisflies communities. Changes in the caddisfly fauna may indicate changes in physicochemical factors owing to agricultural pollution, urbanization, or other human activities. Results revealed that the order Trichoptera, identified to species or genus, can be potentially used to assess environmental water quality status in freshwater ecosystems.

Keywords: Caddisfly larvae, environmental variables, diversity, streams

Procedia PDF Downloads 291
1844 Zinc Oxid Nanotubes Modified by SiO2 as a Recyclable Catalyst for the Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones

Authors: Rakhshan Hakimelahi

Abstract:

In recent years, zinc oxid nano tubes have attracted much attention. The direct use of zinc oxid nano tubes modified by SiO2 as recoverable catalysts for organic reactions is very rare. The catalysts were characterized by XRD. The average particle size of ZnO catalysts is 57 nm and there are high density defects on nano tubes surfaces. A simple and efficient method for the quinazolin derivatives synthesis from the condensation isatoic anhydride and an aromatic aldehyde with ammonium acetate in the presence of a catalytic amount zinc oxid nano tubes modified by SiO2 is described. The reason proposed for higher catalytic activity of zinc oxid nano tubes modified by SiO2 is a combination effect of the small particle size and high-density surface defects. The practical and simple method led to excellent yields of the 2,3-Di hydro quinazolin-4(1H)-one derivatives under mild conditions and within short times.

Keywords: 2, 3-Dihydroquinazolin-4(1H)-one derivatives, reusable catalyst, SiO2, zinc oxid nanotubes

Procedia PDF Downloads 369
1843 Testing Plastic-Sand Construction Blocks Made from Recycled Polyethylene Terephthalate (rPET)

Authors: Cassi Henderson, Lucia Corsini, Shiv Kapila, Egle Augustaityte, Tsemaye Uwejamomere Zinzan Gurney, Aleyna Yildirim

Abstract:

Plastic pollution is a major threat to human and planetary health. In Low- and Middle-Income Countries, plastic waste poses a major problem for marginalized populations who lack access to formal waste management systems. This study explores the potential for converting waste plastic into construction blocks. It is the first study to analyze the use of polyethylene terephthalate (PET) as a binder in plastic-sand bricks. Unlike previous studies of plastic sand-bricks, this research tests the properties of bricks that were made using a low-cost kiln technology that was co-designed with a rural, coastal community in Kenya.  The mechanical strength, resistance to fire and water absorption properties of the bricks are tested in this study. The findings show that the bricks meet structural standards for mechanical performance, fire resistance and water absorption. It was found that 30:70 PET to sand demonstrated the best overall performance.

Keywords: recycling, PET, plastic, sustainable construction, sustainable development

Procedia PDF Downloads 120
1842 The Use of Rice Husk Ash as a Stabilizing Agent in Lateritic Clay Soil

Authors: J. O. Akinyele, R. W. Salim, K. O. Oikelome, O. T. Olateju

Abstract:

Rice Husk (RH) is the major byproduct in the processing of paddy rice. The management of this waste has become a big challenge to some of the rice producers, some of these wastes are left in open dumps while some are burn in the open space, and these two actions have been contributing to environmental pollution. This study evaluates an alternative waste management of this agricultural product for use as a civil engineering material. The RH was burn in a controlled environment to form Rice Husk Ash (RHA). The RHA was mix with lateritic clay at 0, 2, 4, 6, 8, and 10% proportion by weight. Chemical test was conducted on the open burn and controlled burn RHA with the lateritic clay. Physical test such as particle size distribution, Atterberg limits test, and density test were carried out on the mix material. The chemical composition obtained for the RHA showed that the total percentage compositions of Fe2O3, SiO2 and Al2O3 were found to be above 70% (class “F” pozzolan) which qualifies it as a very good pozzolan. The coefficient of uniformity (Cu) was 8 and coefficient of curvature (Cc) was 2 for the soil sample. The Plasticity Index (PI) for the 0, 2, 4, 6, 8. 10% was 21.0, 18.8, 16.7, 14.4, 12.4 and 10.7 respectively. The work concluded that RHA can be effectively used in hydraulic barriers and as a stabilizing agent in soil stabilization.

Keywords: rice husk ash, pozzolans, paddy rice, lateritic clay

Procedia PDF Downloads 321
1841 Removal of Heavy Metals from Water in the Presence of Organic Wastes: Fruit Peels

Authors: Özge Yılmaz Gel, Berk Kılıç, Derin Dalgıç, Ela Mia Sevilla Levi, Ömer Aydın

Abstract:

In this experiment, our goal was to remove heavy metals from water. Most recent studies have used removing toxic heavy elements: Cu⁺², Cr⁺³ and Fe⁺³ ions from aqueous solutions has been previously investigated with different kinds of plants like kiwi and tangerines. However, in this study, three different fruit peels were used. We tested banana, peach, and potato peels to remove heavy metal ions from their solution. The first step of the experiment was to wash the peels with distilled water and then dry the peels in an oven for 48 hrs at 80°C. Once the peels were washed and dried, 0.2 grams were weighed and added into 200 mL of %0.1 percent heavy metal solutions by mass. The mixing process was done via a magnetic stirrer. Each sample was taken in 15-minute intervals, and absorbance changes of the solutions were detected using a UV-Vis Spectrophotometer. Among the used waste products, banana peel was the most efficient one. Moreover, the amount of fruit peel, pH values of the initial heavy metal solution, and initial concentration of heavy metal solutions were investigated to determine the effect of fruit peels.

Keywords: absorbance, heavy metal, removal of heavy metals, fruit peels

Procedia PDF Downloads 70
1840 Dye Removal from Aqueous Solution by Regenerated Spent Bleaching Earth

Authors: Ahmed I. Shehab, Sabah M. Abdel Basir, M. A. Abdel Khalek, M. H. Soliman, G. Elgemeie

Abstract:

Spent bleaching earth (SBE) recycling and utilization as an adsorbent to eliminate dyes from aqueous solution was studied. Organic solvents and subsequent thermal treatment were carried out to recover and reactivate the SBE. The effect of pH, temperature, dye’s initial concentration, and contact time on the dye removal using recycled spent bleaching earth (RSBE) was investigated. Recycled SBE showed better removal affinity of cationic than anionic dyes. The maximum removal was achieved at pH 2 and 8 for anionic and cationic dyes, respectively. Kinetic data matched with the pseudo second-order model. The adsorption phenomenon governing this process was identified by the Langmuir and Freundlich isotherms for anionic dye while Freundlich model represented the sorption process for cationic dye. The changes of Gibbs free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) were computed and compared through thermodynamic study for both dyes.

Keywords: Spent bleaching earth, reactivation, regeneration, thermal treatment, dye removal, thermodynamic

Procedia PDF Downloads 174
1839 Adsorption of Cd(II) and Pb(II) from Aqueous Solutions by Using Pods of Acacia Karoo

Authors: Gulshan Kumar Jawa, Sandeep Mohan Ahuja

Abstract:

With the increase in industrialization, the presence of heavy metals in wastewater streams has turned into a serious concern for the ecosystem. The metals diffuse through the food chains, causing various health hazards. Conventional methods used to remove these heavy metals from water have some limitations, such as cost, secondary pollution due to sludge formation, recovery of metal, economic viability at low metal concentrations, etc. Many of the biomaterials have been investigated by researchers for the adsorption of heavy metals from water solutions as an alternative technique for the last two decades and have found promising results. In this paper, the batch study on the use of pods of acacia karoo for the adsorption of Cd(II) and Pb(II) from aqueous solutions has been reported. The effect of various parameters on the removal of metal ions, such as pH, contact time, stirring speed, initial metal ion concentration, adsorbent dose, and temperature, have been established to find the optimum parameters through one parameter optimization. Further, kinetic, equilibrium, and thermodynamic studies have been conducted. The pods of acacia karoo have shown great potential for adsorption of Cd(II) and Pb(II) from aqueous solutions and have proven to be a better and more economical alternative for the purpose.

Keywords: adsorption, heavy metals, biomaterials, Cadmium(II), Lead(II), pods of acacia karoo

Procedia PDF Downloads 34
1838 Energy Audit: A Case Study of a Hot Rolling Mill in Steel Industry

Authors: Arvind Dhingra, Tejinder Singh Saggu

Abstract:

As the energy demands rise and the pollution levels grow, it becomes imperative for us to save energy in all the fields in which it is used. The industrial sector is the major commercial energy consuming sector in India, where electrical energy is the most common and widely used type of energy. As the demand and price of energy are increasing day by day, therefore, the subject of energy conservation is a concern for most energy users particularly industry. Judicious use of energy becomes imperative for third world developing country being presence of energy crisis. This paper provides some measure for energy saving that can be commonly recommended for a rolling unit of steel industry. A case of hot rolling unit in JSL Stainless Ltd., Hisar for energy conservation is given. Overall improvement in energy consumption in light of the stated recommendation is illustrated along with the proposed utilization of the techniques and their applications. Energy conservation in conventional motor with replacement or use of star delta star converter, reduction in cable losses, replacement of filament of LED lamps, replacement of conventional transformer with cast resin dry type transformer and provision of energy management system for energy conservation and per unit production cost reduction are elaborated in this paper.

Keywords: energy audit, energy conservation, energy efficient motors

Procedia PDF Downloads 523
1837 Transition to Electricity-based Urban Mobility in India: Analysis of Barriers, Drivers and Consumer Willingness

Authors: Shravanth Vasisht M., Balachandra P., Dasappa S.

Abstract:

Electric mobility (e-mob) is one of the significant actions proposed for sustainable urban transport in India. The current efforts are aimed at reducing the carbon-dioxide (CO2) emissions and environmental pollution through a smooth transition from fossil-fueled mobility (f-mob) to e-mob. The study summarizes the e-mob landscape in India, its roadmap, the expected challenges relevant to the consumer preferences and perceptions. In addition to the challenges of transition from f-mob to e-mob, the sustainability of e-mob is more crucial as it involves addressing challenges related to three dimensions, namely, environmental, economic, and social sustainability. The critical factors in each of these dimensions are analyzed. The recommendations for attaining sustainability are suggested to enable a successful transition from f-mob to e-mob. The specific objectives of the research include a detailed synthesis of urban mobility landscape, analyses of various stakeholders' behaviors, drivers, and barriers influencing the transition, measures to boost the drivers and mitigate the barriers. The study also aims to arrive at policy recommendations and strategies for a successful and sustainable transition from f-mob to e-mob, reducing the carbon footprint due to transportation.

Keywords: electricmobility, urbanmobility, transportation, consumerbehaviour, carbonemission

Procedia PDF Downloads 39
1836 Solar-Electric Pump-out Boat Technology: Impacts on the Marine Environment, Public Health, and Climate Change

Authors: Joy Chiu, Colin Hemez, Emma Ryan, Jia Sun, Robert Dubrow, Michael Pascucilla

Abstract:

The popularity of recreational boating is on the rise in the United States, which raises numerous national-level challenges in the management of air and water pollution, aquatic habitat destruction, and waterway access. The need to control sewage discharge from recreational vessels underlies all of these challenges. The release of raw human waste into aquatic environments can lead to eutrophication and algal blooms; can increase human exposure to pathogenic viruses, bacteria, and parasites; can financially impact commercial shellfish harvest/fisheries and marine bathing areas; and can negatively affect access to recreational and/or commercial waterways to the detriment of local economies. Because of the damage that unregulated sewage discharge can do to environments and human health/marine life, recreational vessels in the United States are required by law to 'pump-out' sewage from their holding tanks into sewage treatment systems in all designated 'no discharge areas'. Many pump-out boats, which transfer waste out of recreational vessels, are operated and maintained using funds allocated through the Federal Clean Vessel Act (CVA). The East Shore District Health Department of Branford, Connecticut is protecting this estuary by pioneering the design and construction of the first-in-the-nation zero-emissions, the solar-electric pump-out boat of its size to replace one of its older traditional gasoline-powered models through a Connecticut Department of Energy and Environmental Protection CVA Grant. This study, conducted in collaboration with the East Shore District Health Department, the Connecticut Department of Energy and Environmental Protection, States Organization for Boating Access and Connecticut’s CVA program coordinators, had two aims: (1) To perform a national assessment of pump-out boat programs, supplemented by a limited international assessment, to establish best pump-out boat practices (regardless of how the boat is powered); and (2) to estimate the cost, greenhouse gas emissions, and environmental and public health impacts of solar-electric versus traditional gasoline-powered pump-out boats. A national survey was conducted of all CVA-funded pump-out program managers and selected pump-out boat operators to gauge best practices; costs associated with gasoline-powered pump-out boat operation and management; and the regional, cultural, and policy-related issues that might arise from the adoption of solar-electric pump-out boat technology. We also conducted life-cycle analyses of gasoline-powered and solar-electric pump-out boats to compare their greenhouse gas emissions; production of air, soil and water pollution; and impacts on human health. This work comprises the most comprehensive study into pump-out boating practices in the United States to date, in which information obtained at local, state, national, and international levels is synthesized. This study aims to enable CVA programs to make informed recommendations for sustainable pump-out boating practices and identifies the challenges and opportunities that remain for the wide adoption of solar-electric pump-out boat technology.

Keywords: pump-out boat, marine water, solar-electric, zero emissions

Procedia PDF Downloads 125
1835 Evaluation of Shale Gas Resource Potential of the Middle Benue Trough, Nigeria

Authors: Ovye Yohanna Musah

Abstract:

Shale formations of the Middle Benue Trough in North Central Nigeria present a variety of opportunities for the exploration, development and exploitation of unconventional natural gas. Prospective formations range in age from Albian through Coniacian; they include the Asu River Group, Awe, Ezeaku and the Awgu formations, however, the Keana and Lafia formations are thought to be of lesser importance. The Awgu formation presents the best prospect when compared to the Barnett Shales of Fort Worth Basin in Texa, United States with regards to the organic matter maturition, TOC content of formation and shale thicknesses which are key attributes that aid in determining the economic viability of any shale gas play. The vitrinite reflectance value from Rock Eval pyrolysis for Awe and Awgu formations are 0.89—1.34(%) and 0.83—1.13(%) respectively and are good and sufficiently mature to generate gas from the Benue Trough. The TOC value are good for Awgu formation which is 0.83—6.54(%) and closest to that of the Barnett at 1—4.5(%). Asu River and Ezeaku are less viable. Furthermore, the High to Medium Volatile bituminous coals found in the Awgu formation are characterized by high TOC contents which may enhance gas generation and this is good for further examination and possible development.

Keywords: shale gas, resource, unconventional, benue, TOC

Procedia PDF Downloads 380
1834 Mansonone G and Its Ether Analogues as New Antibacterial Agents

Authors: Rita Hairani, Warinthorn Chavasiri

Abstract:

Naphthoquinones are secondary metabolites widespread in nature and can be produced by plants, fungi and actinomycetes. The interest of naphthoquinones is not only limited as organic dyes, but also their wide variety of biological activities such as antitumor, antibacterial, and cytotoxic activities. Typical 1,2-naphthoquinones such as mansonones can be found in Mansonia gagei Drumm. (“chan-cha-mod”), Sterculaceae family. This plant has been used traditionally to treat some diseases such as antiemetic and antidepressant. In this study, some natural mansonones isolated from the CH2Cl2 extract of M. gagei heartwood have been assessed for their antibacterial activities using agar well diffusion method. According to the antibacterial activity results of four natural mansonones (mansonones C, E, G and H), mansonones E and G showed higher activities than the others against Staphylococcus aureus, Propionibacterium acnes and Salmonella typhi, respectively. Since mansonone G exhibited good antibacterial activity and was obtained in the highest yield, we decided to derivertize mansonone G into five ether analogues. Based on the antibacterial activities of these synthesized compounds, four ether analogues (compounds 1-4) revealed higher antibacterial activities than its natural mansonone G against S. aureus and S. typhi.

Keywords: Mansonia gagei Drumm., antibacterial activities, mansonone G, ether analogues

Procedia PDF Downloads 420
1833 Burrowing Invertebrates Induce Fragmentation of Mariculture Styrofoam Floats and Formation of Microplastics

Authors: Yifan Zheng, Jinmin Zhu, Jiji Li, Gulling Li, Huahong Shi

Abstract:

Secondary microplastics originate from the fragmentation of large plastics, and weathering is supposed to be the main cause of fragmentation. In this study, we investigated burrows and burrowing invertebrates on Styrofoam floats from the mariculture areas of China’s coastal waters. Various burrows were found on the submerged surface of Styrofoam floats and could be divided into ‘I’, ‘S’, ‘J’, and ‘Y’ types based on the burrow entrance number and passage curvature. Different invertebrate species, including 5 isopods, 8 clamworms, and 12 crabs, were found inside the burrows. Micro-foams were found in the bodies of these burrowers, with an average abundance of 4.2 ± 0.3 (isopod), 6.9 ± 2.0 (clamworm), and 3.0 ± 0.5 (crab) micro-foams per individual. In the laboratory, we observed the boring process of crabs in abandoned floats. Field and laboratory evidence suggested that these invertebrates bored various burrows. The total volume of crab burrows on a 3-year-used float was estimated to be 2.6 × 10³ cm³, producing 4.1 × 10⁸ microplastics. This study highlights the critical role of bioerosion in destroying man-made substrates and prompting microplastic pollution.

Keywords: burrowing invertebrate, mariculture area, styrofoam float, fragmentation, microplastics

Procedia PDF Downloads 98
1832 Synthesis of Ce Impregnated on Functionalized Graphene Oxide Nanosheets for Transesterification of Propylene Carbonate and Ethanol to Produce Diethyl Carbonate

Authors: Kumar N., Verma S., Park J., Srivastava V. C.

Abstract:

Organic carbonates have the potential to be used as fuels and because of this, their production through non-phosgene routes is a thrust area of research. Di-ethyl carbonate (DEC) synthesis from propylene carbonate (PC) in the presence of alcohol is a green route. In this study, the use of reduced graphene oxide (rGO) based metal oxide catalysts [rGO-MO, where M = Ce] with different amounts of graphene oxide (0.2%, 0.5%, 1%, and 2%) has been investigated for the synthesis of DEC by using PC and ethanol as reactants. The GO sheets were synthesized by an electrochemical process and the catalysts were synthesized using an in-situ method. A theoretical study of the thermodynamics of the reaction was done, which revealed that the reaction is mildly endothermic. The theoretical value of optimum temperature was found to be 420 K. The synthesized catalysts were characterized for their morphological, structural and textural properties using field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), N2 adsorption/desorption, thermogravimetric analysis (TGA), and Raman spectroscopy. Optimization studies were carried out to study the effect of different reaction conditions like temperature (140 °C to 180 °C) and catalyst dosage (0.102 g to 0.255 g) on the yield of DEC. Amongst the various synthesized catalysts, 1% rGO-CeO2 gave the maximum yield of DEC.

Keywords: GO, DEC, propylene carbonate, transesterification, thermodynamics

Procedia PDF Downloads 75
1831 Evaluation of Combined System of Constructed Wetland/Expended Clay Aggregate in Greywater Treatment

Authors: Eya Hentati, Mona Lamine, Jalel Bouzid

Abstract:

In this study, a laboratory-scale was designed and fabricated to treat single house greywater in the north of Tunisia with a combination of physical and natural treatments systems. The combined system includes a bio-filter composed of LECA® (lightweight expanded clay aggregate) followed by a vertical up-flow constructed wetland planted with Iris pseudacorus and Typha Latifolia. Applied two hydraulic retention times (HRTs) with two different plants types showed that a bio-filter planted with Typha Latifolia has an optimum removal efficiency for degradation of organic matter and transformation of nitrogen and phosphate at HRT of 30 h. The optimum removal efficiency of biochemical oxygen demand (BOD), chemical oxygen demand (COD), and suspended solids (SS) ranged between 48-65%, between while the nutrients removal was in the range of 70% to 90%. Fecal coliforms dropped by three to four orders of magnitude from their initial concentration, but this steel does not meet current regulations for unlimited irrigation. Hence further improvement procedures are suggested.

Keywords: constructed wetland, greywater treatment, nutriments, organics

Procedia PDF Downloads 157
1830 Clogging Reduction Design Factor for Geosynthetics Used in Sustainable Urban Drainage Systems and Roads

Authors: Jaime Carpio-García, Elena Blanco-Fernández, Javier González-Fernández, Daniel Castro-Fresno

Abstract:

Sustainable urban drainage systems (SUDS) are more often used in order to prevent floods, water treatment, fight against pollution, urban heat island effect, and global warming in applications like green roofs, permeable pavements, and others. Furthermore, geosynthetics are also worldwide used as a part of drainage systems in road construction. Geotextiles are an essential part of both, and one of the main geotextile properties in those applications is permeability, whose behavior is not well established along its service life. In this paper, clogging reduction design factors for an estimated service life of 25 years are experimentally obtained for five different geotextiles used in SUDS and roads combined with two different soils and with two pollutants, motor oil, and lime, in order to evaluate chemical clogging, too. The effect of characteristic opening size and other characteristics of the geosynthetics are also discussed in order to give civil engineers, together with the clogging reduction factors, a better long-time design of geotextiles used in their SUDS and roads.

Keywords: geotextiles, drainage, clogging, reduction factor

Procedia PDF Downloads 70
1829 Simulation of Photocatalytic Degradation of Rhodamine B in Annular Photocatalytic Reactor

Authors: Jatinder Kumar, Ajay Bansal

Abstract:

Simulation of a photocatalytic reactor helps in understanding the complex behavior of the photocatalytic degradation. Simulation also aids the designing and optimization of the photocatalytic reactor. Lack of simulation strategies is a huge hindrance in the commercialization of the photocatalytic technology. With the increased performance of computational resources, and development of simulation software, computational fluid dynamics (CFD) is becoming an affordable engineering tool to simulate and optimize reactor designs. In the present paper, a CFD (Computational fluid dynamics) model for simulating the performance of an immobilized-titanium dioxide based annular photocatalytic reactor was developed. The computational model integrates hydrodynamics, species mass transport, and chemical reaction kinetics using a commercial CFD code Fluent 6.3.26. The CFD model was based on the intrinsic kinetic parameters determined experimentally in a perfectly mixed batch reactor. Rhodamine B, a complex organic compound, was selected as a test pollutant for photocatalytic degradation. It was observed that CFD could become a valuable tool to understand and improve the photocatalytic systems.

Keywords: simulation, computational fluid dynamics (CFD), annular photocatalytic reactor, titanium dioxide

Procedia PDF Downloads 579
1828 Progression Rate, Prevalence, Incidence of Black Band Disease on Stony (Scleractinia) in Barranglompo Island, South Sulawesi

Authors: Baso Hamdani, Arniati Massinai, Jamaluddin Jompa

Abstract:

Coral diseases are one of the factors affect reef degradation. This research had analysed the progression rate, incidence, and prevalence of Black Band Disease (BBD) on stony coral (Pachyseris sp.) in relation to the environmental parameters (pH, nitrate, phospate, Dissolved Organic Matter (DOM), and turbidity). The incidence of coral disease was measured weekly for 6 weeks using Belt Transect Method. The progression rate of BBD was measured manually. Furthermore, the prevalence and incidence of BBD were calculated each colonies infected. The relationship between environmental parameters and the progression rate, prevalence and incidence of BBD was analysed by Principal Component Analysis (PCA). The results showed the average of progression rate is 0,07 ± 0,02 cm/ hari. The prevalence of BBD increased from 0,92% - 19,73% in 7 weeks observation with the average incidence of new infected colonies coral 0,2 - 0,65 colony/day The environment factors which important were pH, Nitrate, Phospate, DOM, and Turbidity.

Keywords: progression rate, incidence, prevalence, Black Band Disease, Barranglompo

Procedia PDF Downloads 642
1827 Exploring Menstrual Disposal and Myths in Mumbai’s Slums through Filmmaking

Authors: Annika Agarwal, Sara Baumann

Abstract:

The urbanization of Mumbai has loosened restrictions placed on Indian women while menstruating, like not praying or entering the kitchen, but it has also introduced sanitary issues. On one hand, residents use community toilets that lack water, electricity, doors, or disposal, making menstruation a communal issue. On the other hand, menstrual taboos perpetuate a culture of a dirty and clandestine menstrual experience. This dichotomy makes India the ideal location for public health research given the complexities of purity and pollution concepts in the Hindu tradition. This study asks: What are the attitudes, practices, and sources of knowledge production around menstrual disposal among men and women of different age groups in Dharavi? Using collaborative filmmaking (CF), researchers cocreated films on menstrual disposal with 20-30 women from 3 slum sites: Dharavi, Kandivali, and Kalwa. Results demonstrate 1) fear and availability issues around sustainable product use, 2) the prominence of certain myths and traditions, 3) lack of disposal facilities and clean toilets, and 4) a lack of discussion around periods with males. These factors jeopardize the health and safety for menstruating women.

Keywords: menstruation, sustainability, sanitation, public health, global health

Procedia PDF Downloads 49
1826 Electron Density Analysis and Nonlinear Optical Properties of Zwitterionic Compound

Authors: A. Chouaih, N. Benhalima, N. Boukabcha, R. Rahmani, F. Hamzaoui

Abstract:

Zwitterionic compounds have received the interest of chemists and physicists due to their applications as nonlinear optical materials. Recently, zwitterionic compounds exhibiting high nonlinear optical activity have been investigated. In this context, the molecular electron charge density distribution of the title compound is described accurately using the multipolar model of Hansen and Coppens. The net atomic charge and the molecular dipole moment have been determined in order to understand the nature of inter- and intramolecular charge transfer. The study reveals the nature of intermolecular interactions including charge transfer and hydrogen bonds in the title compound. In this crystal, the molecules form dimers via intermolecular hydrogen bonds. The dimers are further linked by C–H...O hydrogen bonds into chains along the c crystallographic axis. This study has also allowed us to determine various nonlinear optical properties such as molecular electrostatic potential, polarizability, and hyperpolarizability of the title compound.

Keywords: organic compounds, polarizability, hyperpolarizability, dipole moment

Procedia PDF Downloads 412
1825 Adsorption of Cerium as One of the Rare Earth Elements Using Multiwall Carbon Nanotubes from Aqueous Solution: Modeling, Equilibrium and Kinetics

Authors: Saeb Ahmadi, Mohsen Vafaie Sefti, Mohammad Mahdi Shadman, Ebrahim Tangestani

Abstract:

Carbon nanotube has shown great potential for the removal of various inorganic and organic components due to properties such as large surface area and high adsorption capacity. Central composite design is widely used method for determining optimal conditions. Also due to the economic reasons and wide application, the rare earth elements are important components. The analyses of cerium (Ce(III)) adsorption as one of the Rare Earth Elements (REEs) adsorption on Multiwall Carbon Nanotubes (MWCNTs) have been studied. The optimization process was performed using Response Surface Methodology (RSM). The optimum amount conditions were pH of 4.5, initial Ce (III) concentration of 90 mg/l and MWCNTs dosage of 80 mg. Under this condition, the optimum adsorption percentage of Ce (III) was obtained about 96%. Next, at the obtained optimum conditions the kinetic and isotherm studied and result showed the pseudo-second order and Langmuir isotherm are more fitted with experimental data than other models.

Keywords: cerium, rare earth element, MWCNTs, adsorption, optimization

Procedia PDF Downloads 162
1824 Characterization of Domestic Sewage Mixed with Baker's Yeast Factory Effluent of Beja Wastewater Treatment Plant by Respirometry

Authors: Fezzani Boubaker

Abstract:

In this work, a comprehensive study of respirometric method was performed to assess the biodegradable COD fractions of domestic sewage mixed with baker’s yeast factory effluent treated by wastewater treatment plant (WWTP) of Beja. Three respirometric runs were performed in a closed tank reactor to characterize this mixed raw effluent. Respirometric result indicated that the readily biodegradable fraction (SS) was in range of 6-22%, the slowly biodegradable fraction (Xs) was in range of 33-42%, heterotrophic biomass (XH) was in range of 9-40% and the inert fractions: XI and SI were in range of 2-40% and 6-12% respectively which were high due to the presence of baker’s yeast factory effluent compared to domestic effluent alone. The fractions of the total nitrogen showed that SNO fraction is between 6 and 9% of TKN, the fraction of nitrogen ammonia SNH was ranging from 5 to 68%. The organic fraction divided into two compartments SND (11-85%) and XND (5-20%) the inert particulate nitrogen fraction XNI was between 0.4 and 1% and the inert soluble fraction of nitrogen SNI was ranged from 0.4 to 3%.

Keywords: wastewater characterization, COD fractions, respirometry, domestic sewage

Procedia PDF Downloads 478
1823 Evaluation of Biochemical Parameters in the Blood of Dromedary (Camelus Dromedarius)

Authors: M. Titaouine, T. Meziane, K. Deghnouche

Abstract:

The purpose of this study was to determine reference serum biochemistry values from dromedary (Camelus dromedarius) in Algeria and to evaluate potential sources of physiological variability such as the sex, age and season on serum data. Usual serum biochemistry values were determined in blood samples from 26 apparently healthy dromedaries, 11 males and 15 females, divided into 3 lots (ender 4years), (between 5 and 10 years), (up 10 years). Parametric reference ranges and physiological variations are determined for calcium (Ca), organic phosphate (P), magnesium (Mg), natrium (Na), potassium (K), iron (Fe), glucose, triglycerides (TG), cholesterol, urea, creatinine, total proteins and albumin. The results demonstrate: * Values which agreed with literature * Significant statistically differences (Anova test, p < 0.05) depending on: -the sex for Na, glucose, TG, cholesterol, urea, creatinine, albumin, -the age for Ca, P, K, Mg, glucose, TG, b and g globulin, -and season for Fe, urea, total proteins, TG, cholesterol and glucose. These reference ranges for serum biochemical analysis can be used for metabolic and nutritional disorders detection in dromedary.

Keywords: age, biochemistry, dromadery, season, sex

Procedia PDF Downloads 368
1822 Photopolymerization of Dimethacrylamide with (Meth)acrylates

Authors: Yuling Xu, Haibo Wang, Dong Xie

Abstract:

A photopolymerizable dimethacrylamide was synthesized and copolymerized with the selected (meth)acrylates. The polymerization rate, degree of conversion, gel time, and compressive strength of the formed neat resins were investigated. The results show that in situ photo-polymerization of the synthesized dimethacrylamide with comonomers having an electron-withdrawing and/or acrylate group dramatically increased the polymerization rate, degree of conversion, and compressive strength. On the other hand, an electron-donating group on either carbon-carbon double bond or the ester linkage slowed down the polymerization. In contrast, the triethylene glycol dimethacrylate-based system did not show a clear pattern. Both strong hydrogen-bonding between (meth)acrylamide and organic acid groups may be responsible for higher compressive strengths. Within the limitation of this study, the photo-polymerization of dimethacrylamide can be greatly accelerated by copolymerization with monomers having electron-withdrawing and/or acrylate groups. The monomers with methacrylate group can significantly reduce the polymerization rate and degree of conversion.

Keywords: photopolymerization, dimethacrylamide, the degree of conversion, compressive strength

Procedia PDF Downloads 148
1821 Impact of Dietary L-Threonine Supplementation on Performance and Health of Broiler Chickens, a Review

Authors: Mandana Hoseini

Abstract:

During last decades, intensive selection for higher growth rate in broiler chickens has accelerated daily body weight gain, which this has changed/increased the trends and amounts of nutrient requirements in the diet. As a result, considerable studies have been focused on the better determination of protein/amino acids requirements in modern broiler diets. One approach to minimize dietary crude protein inclusion levels is substitution of some of the dietary crude protein with synthetic amino acids. In addition, using synthetic forms of limiting essential amino acids in the diet could help better coincidence of dietary protein with ideal protein concept, which this in turn, minimizes nitrogen dissipation and environmental pollution. Threonine is usually considered as the third limiting amino acid in broiler diets. Recent studies have been demonstrated that dietary supplemental threonine would optimize growth performance, immune system, intestinal morphology, as well as oxidative defense in broiler chickens. In this review, threonine metabolism and its effects in relation with different aspects of broiler performance have been discussed.

Keywords: immune system, intestine, performance, requirement, threonine

Procedia PDF Downloads 102
1820 The Impact of Supply Chain Relationship Quality on Cooperative Strategy and Visibility

Authors: Jung-Hsuan Hsu

Abstract:

Due to intense competition within the industry, companies have increasingly recognized partnerships with other companies. In addition, with outsourcing and globalization of the supply chain, it leads to companies' increasing reliance on external resources. Consequently, supply chain network becomes complex, so that it reduces the visibility of the manufacturing process. Therefore, this study is going to focus on the impact of supply chain relationship quality (SCRQ) on cooperative strategy and visibility. Questionnaire survey is going to be conducted as research method, using the organic food industry as the research subject, and the sampling method is random sampling. Finally, the data analysis will use SPSS statistical software and AMOS software to analyze and verify the hypothesis. The expected results in this study is to evaluate the supply chain relationship quality between Taiwan's food manufacturing and their suppliers regarding whether it has a positive impact for the persistence, frequency and diversity of cooperative strategy, as well as the dimensions of supply chain relationship quality on visibility regarding whether it has a positive effect.

Keywords: supply chain relationship quality (SCRQ), cooperative strategy, visibility, competition

Procedia PDF Downloads 446
1819 Microwave Assisted Sol-gel Synthesis And Characterization Of Nanocrystalline Zirconia

Authors: Farzana Majid, Mahwish Bashir, Ammara, Attia Falak

Abstract:

Zirconia nanoparticles have gained significant attention due to their excellent mechanical strength, thermal properties, biocompatibility, and catalytic activity. Tetragonal zirconia holds the greatest efficacy for surgical implants and coatings when it comes to the three zirconia phases (monoclinic, tetragonal, and cubic). However, its stability at higher temperatures and transformation to the monoclinic phase upon cooling are challenging. In this research, zirconia nanoparticles were prepared using microwave-assisted sol-gel method with varying microwave powers (100 W, 300 W, 500 W, 700 W, & 900 W). Organic stabilizing agent, i.e., eggshell powder, was used to stabilize the tetragonal phase. Fourier transform infrared spectroscopy (FTIR) confirmed the phase-pure tetragonal zirconia, corroborating the XRD data. Optical properties, including the optical bandgap, were studied using UV/Visible and PL spectroscopies. The synthesized ZrO2 nanoparticles exhibited excellent photocatalytic degradation efficiency in the degradation of methylene blue (MB) dye under UV irradiation. The findings demonstrate the potential of these ZrO2 nanoparticles as a viable alternative photocatalyst for the efficient degradation of various dyes in contaminated water.

Keywords: zirconia nanoparticles, sol-gel, photocataylsis, wter purification

Procedia PDF Downloads 74
1818 Chemical and Electrochemical Syntheses of Two Organic Components of Ginger

Authors: Adrienn Kiss, Karoly Zauer, Gyorgy Keglevich, Rita Molnarne Bernath

Abstract:

Ginger (Zingiber officinale) is a perennial plant from Southeast Asia, widely used as a spice, herb, and medicine for many illnesses since its beneficial health effects were observed thousands of years ago. Among the compounds found in ginger, zingerone [4-hydroxy-3- methoxyphenyl-2-butanone] deserves special attention: it has an anti-inflammatory and antispasmodic effect, it can be used in case of diarrheal disease, helps to prevent the formation of blood clots, has antimicrobial properties, and can also play a role in preventing the Alzheimer's disease. Ferulic acid [(E)-3-(4-hydroxy-3-methoxyphenyl)-prop-2-enoic acid] is another cinnamic acid derivative in ginger, which has promising properties. Like many phenolic compounds, ferulic acid is also an antioxidant. Based on the results of animal experiments, it is assumed to have a direct antitumoral effect in lung and liver cancer. It also deactivates free radicals that can damage the cell membrane and the DNA and helps to protect the skin against UV radiation. The aim of this work was to synthesize these two compounds by new methods. A few of the reactions were based on the hydrogenation of dehydrozingerone [4-(4-Hydroxy-3-methoxyphenyl)-3-buten-2-one] to zingerone. Dehydrozingerone can be synthesized by a relatively simple method from acetone and vanillin with good yield (80%, melting point: 41 °C). Hydrogenation can be carried out chemically, for example by the reaction of zinc and acetic acid, or Grignard magnesium and ethyl alcohol. Another way to complete the reduction is the electrochemical pathway. The electrolysis of dehydrozingerone without diaphragm in aqueous media was attempted to produce ferulic acid in the presence of sodium carbonate and potassium iodide using platinum electrodes. The electrolysis of dehydrozingerone in the presence of potassium carbonate and acetic acid to prepare zingerone was carried out similarly. Ferulic acid was expected to be converted to dihydroferulic acid [3-(4-Hydroxy-3-methoxyphenyl)propanoic acid] in potassium hydroxide solution using iron electrodes, separating the anode and cathode space with a Soxhlet paper sheath impregnated with saturated magnesium chloride solution. For this reaction, ferulic acid was synthesized from vanillin and malonic acid in the presence of pyridine and piperidine (yield: 88.7%, melting point: 173°C). Unfortunately, in many cases, the expected transformations did not happen or took place in low conversions, although gas evolution occurred. Thus, a deeper understanding of these experiments and optimization are needed. Since both compounds are found in different plants, they can also be obtained by alkaline extraction or steam distillation from distinct plant parts (ferulic acid from ground bamboo shoots, zingerone from grated ginger root). The products of these reactions are rich in several other organic compounds as well; therefore, their separation must be solved to get the desired pure material. The products of the reactions described above were characterized by infrared spectral data and melting points. The use of these two simple methods may be informative for the formation of the products. In the future, we would like to study the ferulic acid and zingerone content of other plants and extract them efficiently. The optimization of electrochemical reactions and the use of other test methods are also among our plans.

Keywords: ferulic acid, ginger, synthesis, zingerone

Procedia PDF Downloads 166
1817 Analysis of Indoor Air Quality and Sick Building Syndrome in Control Room Oil Gas Refinery

Authors: Dessy Laksyana Utami

Abstract:

The sick building syndrome comprises of various nonspecific symptoms that occur in the occupants of a building. It is commonly increases sickness absenteeism and causes a decrease in productivity of the workers. Evidence suggests that what is called the Sick Building Syndrome are at least three separate entities, which has at least one cause. The following are some of the factors that might be primarily responsible for Sick Building Syndrome such as: Chemical contaminants, Biological contaminants, Inadequate ventilation and Electromagnetic radiation. In many cases it is due to insufficient maintenance of the HVAC (heating, ventilation, air conditioning) system in the building. As this syndrome is increasingly becoming a major occupational hazard. It was used the analytic cross-sectional design. Based on data obtained 80% of respondents reported significant ongoing health problems in the eyes, head, and the nose. 60% had bad symptoms in the throat, the stomach and cough, 50% had gastrointestinal disorders, 40% fatigue and 25% occurred all symptoms sick building syndrome. The 40 respondents were recruited to the study, with a mean age of 35 years (range 20-55). To support the evidence of Sick Building Syndrome, further checks are needed for some of the factors in next research, i.e. measurement of Chemical contaminants, Biological contaminants, inadequate ventilation & Electromagnetic radiation.

Keywords: indoor air pollution, sick building syndrome, indoor air quality, oil gas polution

Procedia PDF Downloads 133
1816 The Influence of Conservation Measures, Limiting Soil Degradation, on the Quality of Surface Water Resources

Authors: V. Sobotková, B. Šarapatka, M. Dumbrovský, J. Uhrová, M. Bednář

Abstract:

The paper deals with the influence of implemented conservation measures on the quality of surface water resources. Recently, a new process of complex land consolidation in the Czech Republic has provided a unique opportunity to improve the quality of the environment and sustainability of crop production by means of better soil and water conservation. The most important degradation factor in our study area in the Hubenov drinking water reservoir catchment basin was water erosion together with loss of organic matter. Hubenov Reservoir water resources were monitored for twenty years (1990–2010) to collect water quality data for nitrate nitrogen (N-NO3-), total P, and undissolved substances. Results obtained from measurements taken before and after land consolidation indicated a decrease in the linear trend of N-NO3- and total P concentrations, this was achieved through implementation of conservation measures limiting soil degradation in the Hubenov reservoir catchment area.

Keywords: complex land consolidation, degradation, land use, soil and water conservation, surface water resources

Procedia PDF Downloads 350